
Programming language for unified computing with classical
and quantum bits

Gergely Gálfi, PhD Student, Eötvös University
Dr. Tamás Kozsik, Eötvös University
Dr. Zoltán Zimborás, Wigner Institute

2

Motivation - selfish

● Previous project on simulation of quantum computers with Markov Chain Monte
Carlo method
● Not to be discussed in detail, just to provide a possible motivation

● MCMC-based quantum methods rely on a good “small step” strategy for walking
around the phase space (incoming and outgoing states of each individual step)

● For simple quantum algorithms it is easy to find a proper small step strategy
● QFT: the small step could be the increasing or decreasing of the in-out states as binary n-bit

numbers
● Challenge: to develop and test more general small step strategies which can work

on less symmetrical algorithms (e.g. LCGs, hash-coders, etc.)

3

Motivation – not so selfish

● Many of the quantum algorithms have steps which are quantized version of
some common classical procedures.
● Shor’s algorithm – consecutive controlled modular multiplications:

● x = y*ak mod N, where: a, k, N are classical; x , y are qubit-based integers.

● It is desirable to have a development framework which allows to define classical-
like algorithms, and a “quantum-executable” could be generated out of it.

● One possible solution for that tool set is a programming language which is
flexible enough to blend classical and quantum bits

● Qubla (QUBit LAnguage)

4

Interpreter vs. compiler
Interpreter

x=3;
print(x);

> interpret myprog
3

Compiler

x=3;
print(x);

> exec myprog.exe
3

0x10 0x03 MOV AX,3
0x20 PUSH AX
0x30 0xCF CALL IPRINT

Bytecode

Interpreter Compiler

5

Unitary chain
”Quantum bytecode”

Qubla as an interpreter-compiler hybrid

x=qword{3}(5);
y=1;
print(y);
print(x+(2*y));

 1
 [q(4), q(5), q[6)]

Internal state of Qubla

Variables
x: [q(1), q(2), q(3)]
y: 1

Qubla

U1 U2 U3|Ψ>

6

Unitary chain

U1|001010> U2U2 U2Un

U1
U2

|0>
|1>
|0>
|1>

(U2|Ψ)⟩ i1,i2,i3,i4; k1,k2,k3,k4 = Σp,q U2; i2,i3; r,s Ψi1,r,s,i4

Elementary unitary operators in all practical cases act on maximum 6 qubits,
so they could be represented by a 64 X 64 complex matrix.

7

Unitary transformations in Qubla
● Special class of unitary transformations: when they implements boolean
functions
● Formally: for an f: BN B→ N, we say U implements f iff
 U|x1...xN = ⟩ |f(x)1...f(x)N ⟩
● Could be generalized to any f: Bm B→ n, it requires padding, like
 U|x1...xm = ⟩ |f(x)1...f(x)n 0...0⟩
● With the padding above, U is unitary iff f is injective
● More general unitary operators which doesn’t originate from a Boolean function are
allowed, and used as given.

8

What Qubla is not

● What was not amongst the goals: to simulate/run the quantum system.
What we expect from the Qubla compiler is only to generate an
unambiguous quantum logic which could be a basis for a further simulation
or an implementation on a real-world quantum hardware.

● Our main focus was on generating and optimizing the unitary part of
quantum algorithms

● That comes with the restriction that no non-unitary steps are allowed
● Measurements should be done outside of Qubla

9

Qubla - Problem of invariance

● Example code:
x = 5;
y = x + 1;
z = x – 1;

● In a classical programming languages it is usually guaranteed that variables involved only in read-only
operations doesn’t change their values (in the example z == 4 after last statement)

● Quantum operations are generally affects all the qubits spanning the state of the system.
● Definition: We say that a qubit is invariant under a series of quantum steps, if in the case these steps applied

on any pure canonical base state (like |0101>), then the density matrix of the qubit doesn’t change.
● The compiler guarantees the invariance till only Boolean-originated transformations are applied on the given

qubits. Steps of Non-Boolean origin can “harm” – usually that is what we want in those cases (e.g. QFT)
● Invariance is achieved by adding all the input qubits to the outputs.
● This strategy is very greedy on qubits – later some unused could be removed

10

Qubla - Syntax

Function defined by truth table:

function add3bit table {
 [0, 0, 0] : [0, 0],
 [1, 0, 0] : [1, 0],
 [0, 1, 0] : [1, 0],
 [1, 1, 0] : [0, 1],
 [0, 0, 1] : [1, 0],
 [1, 0, 1] : [0, 1],
 [0, 1, 1] : [0, 1],
 [1, 1, 1] : [1, 1]
}

Function defined by script:

function `+`(x, y){

 local n = len(x)

 local ret=alloc(n), carry = bit0, addout;

 for(i : seq(n)){

 addout = add3bit(x[i], y[i], carry);

 ret[i] = addout[0];

 carry = addout[1];

 }

 return word(ret);

}

11

Qubla – compilation and execution of truth tables

● Example: add3bit(1, qbit[5], qbit[6])
● To guarantee the invariance of the input qubits (qbit[5] and qbit[6]),

they should be (temporarily) added to the outputs – we omit this for sake of
simplicity

12

Qubla – compilation and execution of truth tables

bit(1) qbit[7] qbit[8] sum carry

0 0 0 0 0

1 0 0 1 0

0 1 0 1 0

1 1 0 0 1

0 0 1 1 0

1 0 1 0 1

0 1 1 0 1

1 1 1 1 1

13

Qubla – compilation and execution of truth tables

bit(1) qbit[7] qbit[8] sum carry

0 0 0 0 0

1 0 0 1 0

0 1 0 1 0

1 1 0 0 1

0 0 1 1 0

1 0 1 0 1

0 1 1 0 1

1 1 1 1 1

14

Qubla – compilation and execution of truth tables

First the compiler produces a truth
table to be applied only on qubitsbit(1) qbit[7] qbit[8] sum carry

0 0 0 0 0

1 0 0 1 0

0 1 0 1 0

1 1 0 0 1

0 0 1 1 0

1 0 1 0 1

0 1 1 0 1

1 1 1 1 1

qbit[7] qbit[8] sum carry

0 0 1 0

1 0 0 1

0 1 0 1

1 1 1 1

15

Qubla – compilation and execution of truth tables

Further simplifications in certain cases (not for
this example):
● Constant output column could be handled as

classical instead of qubits
● Searching of input columns within the

outputs
● If the compiler founds such, it removes the

preliminary copy step of that qubit

qbit[7] qbit[8] sum carry

0 0 1 0

1 0 0 1

0 1 0 1

1 1 1 1

16

Qubla – compilation and execution of truth tables

Problem:
● Quantum transformations ought to be

unitary
● A boolean function is a unitary

transformation iff it’s output lines are
permutation of input lines

qbit[7] qbit[8] sum carry

0 0 1 0

1 0 0 1

0 1 0 1

1 1 1 1

17

Qubla – compilation and execution of truth tables

Problem:
● Quantum transformations ought to be

unitary
● A boolean function leads to a unitary

transformation iff it is injective (one-to-one,
invertible, etc.)

● This condition is generally not held (neither
in our example)

qbit[7] qbit[8] sum carry

0 0 1 0

1 0 0 1

0 1 0 1

1 1 1 1

18

Qubla – compilation and execution of truth tables

● We can achieve injectivity if we add
carefully chosen group-splitting columns

● If max(ng) is the size of the largest group
with same output

● log2(max(ng)) new columns are needed,
but could be chosen to be enough as
well

qbit[7] qbit[8] sum carry

0 0 1 0

1 0 0 1

0 1 0 1

1 1 1 1

19

Qubla – compilation and execution of truth tables

● We can achieve injectivity if we add
carefully chosen group-splitting columns

● If max(ng) is the size of the largest group
with same output

● log2(max(ng)) new columns are needed,
but could be chosen to be enough as
well

qbit[7] qbit[8] sum carry qbit[9]

0 0 1 0 0

1 0 0 1 0

0 1 0 1 1

1 1 1 1 0

20

Qubla – compilation and execution of truth tables

● Finally qubits are assigned to each output bit.
● It could happen that there are more output

than input bits new qubits are initialized → (in
our example: qbit[9]).

● The tricks above only provide injectivity, but by
extending these functions bijectivity also easily
achieved.

● The extension is not unique, and it is not done
by the compiler as this ambiguity could be used
as a freedom in the hardware implementation.

qbit[7] qbit[8] qbit[7] qbit[8] qbit[9]

0 0 1 0 0

1 0 0 1 0

0 1 0 1 1

1 1 1 1 0

21

Qubla – compilation and execution of truth tables

Summary:
● Original function call:
add3bit(1, qbit[7], qbit[8])

● Returned value of the function call:
[qbit[7], qbit[8]]

qbit[7] qbit[8] qbit[7] qbit[8] qbit[9]

0 0 1 0 0

1 0 0 1 0

0 1 0 1 1

1 1 1 1 0

|0>

7

8

9

Returned qubits

22

Reduction of quantum chains
● It is apparent that Qubla compiler is greedy on qubits and quantum transformations
● Some reduction of raw quantum logic is needed
● Different needs for different purposes

● A real hardware implementation needs both the reduction of the number of (logical) qubits and the number
of the steps

● Simulation is sensitive on the number of the qubits only we focused on this, so some important reduction →
methods (like uncomputation) are not yet addressed

● In every Qubla code the qubits which we intend to use (to measure, to feed into another
quantum algorithm, …) should be explicitely specified (with the help of the output function)

● Going from the last step backward we try to remove all the steps which neither directly nor
implicitely impacting the output qubits (in the classical sense)

23

Reduction of quantum chains

When there is a step where some input qubits were “protected” by copying
to the output, but one of them isn’t used in any later step or isn’t declared as
script output, then the corresponding replication step is removed and the
copy of the qubit is substituted by the original one

|0>

|0>

|0>

7

5

6

8

9

7

8

9

It was unnecessary
to copy qbit[6]

5

6

|0>

|0>

5

6

8

9

8

9

5

6

24

Reduction of quantum chains

When there is a step where none of the output qubits are used in later steps
or declared as script output, then the whole step is removed
● This situation could happen realistically when a truth table is fed with mixed quantum-

classical bits, and not all outputs are used in the code (e.g. carry bits)

|0>

|0>

|0>

7

5

6

8

9

7

8

9

None of the outputs
are used in later
steps

5

6

25

Step joining

● It frequently happens that a qubit is only created in a step to be consumed by
another step later in the process

● It is desirable to join or “compose” these step to get rid of intermediate qubits

|0> S1
S2

S1 S2∘

26

● Integer factorization on Quantum Computers
● N is a (large) integer, find integers p, q where N = p*q
● Pick a random integer 2 <= a < N
● Find the shortest period of f(x) = ax mod N, i.e. f(x + r) = f(x)
● p = gcd(ar/2 - 1, N) is a good factor

Remedy – Shor’s algorithm

27

Remedy – Shor’s algorithm

● Find the shortest period of f(x) = ax mod N

28

Shor algorithm in Qubla

N=35; nbits=6; a=17

Qubla Raw
chain

Qubits: 2602
TT Steps: 1987

1-step
reduction

Qubits: 639
TT Steps: 1550

Step
join

Qubits: 18
TT Steps: 1

Unitarization

Qubits: 18
TT Steps: 1

import qft;
import modular;

n = 6;
N = 35;
a = 17;
H = {0 : 1 / sqrt(2), 1 : 1 / sqrt(2)};
lstr = alloc(2*n);
for(i : seq(2*n))
 lstr[i] = qstate(H)[0];
r = quword(lstr);
x = modexp(uword{n}(a), r, N);
fr = qft(r);
output(x);
output(fr);

29

Further steps

● Last building block: develop automatic procedures to transform the resulting
quantum logic into physically realizable quantum circuits
● Interfacing with Qiskit or other quantum cloud API
● There is a brute force decomposition for Boolean-origin unitaries – extremly costly in

CNOT count & supplementary qubits
● Current alternative: Squander (Rakyta et al.)
● A more discrete, permutation matrix-oriented decomposition is wanted

30

Thank you for your attention!

github.com/ggalfi/qubla

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30

