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CERN
CERN is the world’s biggest 
laboratory for particle physics.

Our goal is to understand the 
fundamental particles and laws 
of the universe.
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https://quantum.cern

How can future quantum technologies contribute 
to CERN’s scientific mission?

How can CERN’s technologies and expertise 
contribute to the quantum revolution?

CERN Quantum Technology Initiative

QTI Roadmap: 
https://doi.org/10.5281/zenodo.5553774

Launched  January 2020

22.05.2025



Our areas of research
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The QTI Hub: A collaboration framework for QTI

Enable access to diverse quantum technology and services

Provide a unified framework for all collaborative projects QTI is setting 
up with multiple partners.

Establish a clear separation between commercial relationships and 
R&D collaborations

Facilitate follow-up and ensure more efficient coordination of projects 
also across departments.

Allow for multiples approaches to IP protection according to CERN policies.

The QTI Hub 
creates a 

community of 
partners 

investigating the 
differt areas of 

quantum 
technologies. 

22.05.2025 6



QTI Objectives

Integrate quantum computers within HEP 
computing model

Make CERN a node of the future European
network infrastructure

Play a major role in the development of next 
generation detectors for fundamental physics 

Join the broader quantum ecosystem to multiply 
impact

Design Quantum Network demonstrators incorporating 
White Rabbit for time synchronization;

Characterize performance of communication protocols 
in realistic use cases

Develop superconducting RF cavities for sensing and 
computing applications;

Significant contribution to ECFA DRD5 program 

Develop hybrid algorithms for realistic applications;

Contribute to infrastructure development

Setup co-development partnerships with companies, 
institutes and other entities.

22.05.2025 7



Sustain integration of quantum computing within HEP computing model

o Develop quantum algorithms and Quantum Machine Learning

o Understand the performance  of near-term quantum infrastructure in 
hybrid setups (HPC + QC, ..)

o Study scaling toward fault tolerant

Most of these developments are common to areas beyond HEP

Hybrid Quantum Computing

https://home.cern/science/computing. Image credit: CERN 822.05.2025

https://home.cern/science/computing


Main Quantum Computing Paradigms

Gate-based quantum computers Quantum annealersAnalog quantum simulators

Solve task with an algorithm 
containing a series of quantum 
gates, implementing any unitary 

transformation

Embed task in a Binary Quadratic 
Model & solve Ising or QUBO 
problems, using static qubit 

connectivity and local control

Embed task in a graph & solve Ising 
or QUBO formulation, using 

dynamic qubit positioning but no or 
poor local qubit control
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https://algassert.com/quirk
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HL-LHC: The curse of  dimensionality

200 simultaneous
collisions!



HL-LHC: The curse of  dimensionality

200 simultaneous
collisions!



Theory and simulations challenges

• We are interested in out-of equilibrium and real-
time dynamic problems

(scattering, thermalisation or dynamics after quenches ) 

• Complex equation of states and phase diagrams
(QCD) 

• Standard Monte Carlo solutions are two
expensive or fail entirely
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Why do we think that Quantum Computers could be a solution to data simulation
and data analysis in HEP ?

High Energy Physics studies quantum correlations at high energy 



22.05.2025 14

A short detour…
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https://youtu.be/mtgYG2zsbbQ

22.05.2025



The Bell inequalities

22.05.2025 16

John Bell in 1982 at CERN (Image: CERN) 

• Create ‘’artificial” quantum states for a 
range of applications (single photons, 
trapped ions, superconductors, etc.) 

Quantum Technologies

• 1964: Bell inequalities prove that no 
theory based on local hidden variables
(realism) can reproduce QM results

• Major step confirming the possibility of 
using distant entangled photons as a 
quantum information resource
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The highest energy 

observation of 

quantum 

entanglement 
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QML concept and 

examples



Quantum Computing .. A computer science perspective
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Principles of quantum mechanics enhance computations

Superposition leads to parallelism → exponential speedup?

Entanglement → non linear correlation and classical intractability?

Operations (gates) are unitary transformations → reversible computing?

Output is the result of a measurement according to Born rule → stochastic 

computation ?

No-cloning theorem → information security

Quantum state coherence and isolation → computation stability and errors

Qubit state collapses  → reproducibility?
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• Speed-up and complexity

• Sample efficiency

• Representational power

• Energy efficiency???

• Evaluate performance on realistic use cases

• QPU as accelerators within classical
infrastructure?

QML: Quantum computing to “improve” ML

Study classical intractability: 
Focus on quantum circuits that are not efficiently simulable classically? Cerezo, Marco, et al. "Variational quantum 

algorithms."Nature Reviews Physics3.9 (2021)

22.05.2025



Quantum Machine 
Learning Lifecycle Data 

Preparation

Model 
Definition

Model 
Training

Model 
Testing

Model 
Interpretation

The quantum advantage
of many known QML 

algorithms is impeded by 
an input or output 

bottleneck

21



Models

Gradient-free or gradient-based optimization

Data Embedding can be learned

Ansatz design can leverage data symmetries1

Variational algorithms (ex. QNN)

Kernel methods (ex. QSVM)

Feature maps as quantum kernels

Classical kernel-based training (convex losses)

Identify classes of kernels that relate to specific data
structures2

Image credit M. Schuld

2 Glick, Jennifer R., et al. "Covariant quantum kernels for data with group structure." arXiv:2105.03406 (2021).

Image credit 
SwissQuantumHub

1 Bogatskiy, Alexander, et al. "Lorentz group equivariant neural network for particle physics." PMLR, 2020.

3Jerbi, Sofiene, et al. "Quantum machine learning beyond kernel methods." arXiv:2110.13162 (2021).

Energy-based ML (ex. QBM)

Build networks of stochastic binary units and 
optimise their energy. 
QBM has quadratic energy function that follows
the Boltzman distribution (Ising Hamiltonian)

22.05.2025 22



Parameter optimization

23

https://pennylane.ai/qml/demos/

tutorial_spsa

Simultaneous Perturbation Stochastic Approximation (SPSA)
(gradient-free)

If gradient computation not possible, too resource-intensive, 
or noise-robustness required (slower convergence but fewer function evaluations) 

Gradient is approximated by two sampling steps and parameters are perturbed in all directions simultaneously 

Iterative update rule comparable to 
classical stochastic gradient descent 

22.05.2025

See C. Rieger’s summer students lecture



Gradient-based optimization suffers from ”barren plateaus”

Quantum NN are strongly affected

Need compromise between “power” and convergence

Model convergence in the quantum space

24

J. McClean et al., arXiv:1803.11173

22.05.2025



Challenges for QML 
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• Efficient data handling and data embedding

• Find balance: Generalization and representational power vs. Convergence and intractability

• Problem of barren plateaus and vanishing gradients in optimization landscape 

• How well can we survey the Hilbert space (expressibility)?

• Current hardware limitations 

• Limited number of qubits and connectivity → data dimensionality reduction

• Quantum Noise Effects (decoherence, measurement errors or gate-level errors)

• Efficient interplay between classical and quantum computer

• ….

22.05.2025
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Signal vs background discrimination

• Define a number of features that distinguish signal wrt

background

• Study and characterise those features

• Build criteria for improving separation

Typical data analysis setup Such a  problem can require
hundreds of feautre.

Results are given in 
terms of ROC curves

22.05.2025
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Can QML leverage 
the «exponential
advantage ?»



• Create classically intractable features 
in the Hilbert space

• Estimate Fidelity kernel

• Use classical training (convex losses)
x z

Quantum embedding and kernel methods

Hilbert space is exponentially larger

Sparser data

Loss of predictive power

F. Di Marcantonio et al. , CHEP2023



Project quantum kernels to lower

dimensionality (i.e. local density matrix)1:

• Improved generalizion while keeping 

features into states classically hard

• Example: ttH(bb) binary classification22

Projected Quantum Kernel

1Huang, Hsin-Yuan, et al. "Power of data in quantum machine learning." Nature communications 12.1 (2021): 2631.
2 V Belis et al, (2021), Higgs Analysis with Quantum Classifiers, EPJ Web Conf
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How do we address the 

limitations of current

quantum hardware ?



Guided Quantum Compression
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V. Belis et al., arxiv: 2402.0952 

< 30 features

Two independent
steps:
Classical
preprocessing and 
quantum 
classification

Quantum Guided data 
compresstion

22.05.2025



Result

22.05.2025 32

Guided quantum 
Compression
greatly improves
the performance

We can build 
efficient hybrid
systems for HEP
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Does entanglement 

allow QML to learn more 

complex distributions?



Uncharted High Energy 
Frontier

34

Hunt-Lenox Globe, early XVI, NY Public Library

No hints of physics beyond the Standard 
Model

Most searches focus on specific
theoretical models …

22.05.2025



Uncharted High Energy 
Frontier
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Need to cast the net wider!
… Model Agnostic Anomaly Detection … based on Deep Learning

Hunt-Lenox Globe, early XVI, NY Public Library

No hints of physics beyond the Standard 
Model

Most searches focus on specific
theoretical models …

22.05.2025



Anomaly Detection on Quantum Computers

Data 
compression

Quantum 
algorithm

«Normal» 
training data

Output

Belis V., GM, et al – COMMSPHYS-23-1149C

36

Model Agnostic approach:
• Train using baseline data
• New physics will be 

flagged as an anomaly

Hybrid
implementation: 
Use classical data 
compression

Classical

Quantum

22.05.2025

https://arxiv.org/abs/2402.09524v1
https://arxiv.org/abs/2402.09524v1
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Performance driven by intrinsically quantum properties!

No entanglement

More expressive

24 qubits SVM  reaches 14x classical model performance

Belis V., GM, et al – COMMSPHYS-

23-1149C

Quantum/Classical
ratio

This is a simulation.
Trend confirmed on IBM 
Q Toronto

Is this evidence for 
quantum advantage?

22.05.2025

https://arxiv.org/abs/2402.09524v1
https://arxiv.org/abs/2402.09524v1
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Can QML address
problems of limited 
data/resources?
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Reinforcement Learning for 
particle accelerators

Kaiser, J., Xu, C., Eichler, A. et al. Reinforcement learning-trained optimisers and Bayesian optimisation for online 

particle accelerator tuning. Sci Rep 14, 15733 (2024). https://doi.org/10.1038/s41598-024-66263-y



Quantum reinforcement learning

Quantum RL  massively
outperforms classical algorithm in 
terms of model size and steps to 
convergence

Michael Schenk et al., Hybrid actor-critic algorithm for quantum reinforcement learning at 

CERN beam lines, e-Print: 2209.11044, under review «Quantum Science and Technology»

40

Quantum 
Implementation

Classical RL

50x fewer 
training steps

300x smaller
network

22.05.2025
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Leveraging symmetries
to improve
convergence



Equivariant Quantum CNN 

22.05.2025

▪ Construct equivariant quantum CNN under 
rotational & reflectional symmetry  (p4m)

▪ Improved generalization power

42

Extended MNIST Image classification: 
(digits 4,5) 



Loss landscape plotted with orqviz

Non-convexity of loss landscape

22.05.2025 43

Non-equivariant QCNN ApprEquivQCNN
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What about running 

in realistic

conditions?



Noise effects on EQNN wrt discrete 
symmetry groups e.g. 

𝒁𝟐: R(σ)⋅(xi) = −xi

Bit Flip, Depolarizing (Pauli) and 
Amplitude Damping channels

Noise induced symmetry breaking

45

Adaptive threshold classificationEQNN performance drops with AD

EQNN-Z native:  Z0Z1 commutes with the AD channel generator, but native gate set is limited on hardware!

DP should not affect symmetry

Tüysüz, Cenk, et al. "Symmetry breaking in geometric quantum machine 

learning in the presence of noise." arXiv preprint arXiv:2401.10293 (2024).

22.05.2025



Introducing Adaptive Thresholds

06.03.24 46

Adaptive threshold classification

Apart from Noise induced Barren Plateau and exponential concentrations the AD channel exhibits the 
largest effect on the accuracy performance.

The AD channel shifts the mean of the Z observable: this results in the model having a bias towards one 
label

Use adaptive threshold: computed as the median over the predictions of 

the training set at every iteration. 



Tests on ibm_cairo
Confirms AD channel is dominant

Symmetry breaking is linear in the number of layers

Tests on ibm_cusco using hardware efficient ansatz and 
pulse efficient gate implementation
create RZX(θ) gates by controlling pulses in a continuous way

LM reaches 50% (random) at around 50 qubits

Symmetry breaking on hardware

22.05.2025 47

Number of layers

(Number of layers log2N)

Label Misassignment uses
adaptive thresholds

Number of qubits

ibm_cairo

ibm_cairo



Open questions
• Today’s approach to Quantum Machine Learning is variational or kernel based

• Currently gradient based optimisation is suboptimal

• Can we train Quantum Machine Learning algorithms effectively?

• How do we define advantage ? 

• What is the definition of a fair classical benchmark ?

• Experimental High Energy Physics data has high dimensionality

• Can we reduce the impact of data reduction techniques?

• Experimental High Energy Physics data is shaped by physics laws

• Can we leverage them to build better algorithms? 

22.05.2025 48



The Future Circular Collider

49

CERN is investigating the feasibility of a 91 km circumference collider

Global collaboration: 150 institutes & 30 companies from 34 countries

If approved, it will start operations ≥ 2045 

and continue until the end of the century!

Time scale for fault tolerant quantum computing era ? 22.05.2025



Thanks !
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Geometric Quantum Machine Learning 

22.05.2025

▪ Given a data point 𝑥 ∈ 𝒳 and its label y ∈ 𝒴
▪ Estimate the prediction  𝑦𝜃 from observable 𝑂: 𝑦𝜃 𝑥 = 𝜓 𝑥 𝒰† 𝜃 𝑂 𝒰(𝜃) 𝜓(𝑥)
▪ Given a symmetry group 𝔊 on the data space 𝒳
▪ 𝕲 – Invariance :  For all 𝑥 ∈ 𝒳 and 𝑔 ∈ 𝔊

𝑦𝜃 𝑔 𝑥 = 𝑦𝜃 𝑥
▪ Final prediction 𝑦𝜃 is invariant if: 

S. Y. Chang et al., IEEE QCE23

Equivariant data embedding: 

For  feature map 𝜓:𝒳 → ℋ

𝜓 𝑔 𝑥 ) = 𝑉𝑠 𝑔 𝜓 𝑥 0⟩

𝑉𝑠 𝑔 = Representation of 𝑔 on ℋ
induced by 𝜓

Equivariant ansatz:

For operators generated by a fixed 
generator 𝐺 as 𝑅𝐺 𝜃 = exp −𝑖𝜃𝐺 : 

𝑅𝐺 𝜃 , 𝑉𝑠[𝑔] = 0 𝐺, 𝑉𝑠[𝑔] = 0
Invariant Measurement:

𝑉𝑠
† 𝑔 𝑂𝑉𝑠 𝑔 = 𝑂

51



Classical gradients vanish exponentially with the 
number of layers (J.McClean et al., arXiv:1803.11173)

• Convergence still possible if gradients consistent 
between batches.

Quantum gradient decay exponentially in the 
number of qubits (number of graph paths is 
exponential in the number of gates)

• Random circuit initialization

• Loss function locality in shallow circuits (M. Cerezo et al., 

arXiv:2001.00550)

• Ansatz choice: TTN, CNN (Zhang et al., arXiv:2011.06258, A Pesah, 

et al., Physical Review X 11.4 (2021): 041011. )

• Noise induced barren plateau (Wang, S et al., Nat 

Commun 12, 6961 (2021))

Gradients decay and Model Convergence

QCNN: A Pesah, et al., Physical 
Review X 11.4 (2021): 041011

J. McClean et al., arXiv:1803.11173

Quantum 

Convolutional NN:
Convolution: general 
SU(4)

Pooling: reduces
numer of qubits

Large number of measurements: 1/𝜖2 measurements to estimate a cost to 
precision 𝜖

22.05.2025 52



Parameter optimization

53

Source:https://pennylane.ai/qml/demos/tutorial_stochastic_parameter_shift/

The parameter-shift rule (gradient-based)

Compute partial derivative of variational circuit parameter 𝜃, alternative to analytical gradient 
computation and classical finite difference rule (numerical errors and resource cost considerations)

Evaluate Quantum Circuit twice at shifted parameters to 

compute gradient 

22.05.2025

See C. Rieger’s summer students lecture
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