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Eigenstate property estimation

Inputs:
• Hamiltonian: ℋ = ∑!𝐸! ψ! ψ!
• Observable: 𝑂

Common assumptions:
• Initial state: ψ 0 = ∑! 𝑐! ψ!
 Dominant eigenstate: 

ψ"   (|𝑐"| > |𝑐!| for all 𝑘 ≠ 𝑞)

• Nonvanishing gap: Δ > 0

Goal: 
 Estimate ⟨ψ"|𝑂|ψ"⟩
 for target eigenstate |ψ"⟩
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Fault-tolerant strategies

Quantum Phase Estimation (QPE)

Resource requirements: 
• Deep circuits
• Error corrected qubits

A. Y. Kitaev. Quantum Measurements and the Abelian stabilizer problem. arXiv:quant-ph/9511026 (1995)
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Near-term approaches

Limitations: 
• No converge guarantees
• Trainability issues

Variational techniques

M. Cerezo et al., Variational quantum algorithms. Nat Rev Phys 3, 625-644 (2021).
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Dealing with these challenges

Offload some computational 
burden to a classical computer in 

post-processing!

Compatible with both types of techniques!
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Lemma 1: Random time evolution
We consider the average state:

 1ρ = 𝔼# ρ 𝑡 = ∫$%
% 𝐺 𝑡 ρ 𝑡 d𝑡 = ρ + ℰ

Error term vanishes 
super-exponentially in σ

Gaussian PDF with std. σ

𝐺 𝑡 = 2πσ
!"
𝑒!

#!
$%!

Diagonal state

ρ =)
&

𝑝& ψ& ψ& ,	where	𝑝& = 𝑐& $

Pure time eviolved state: ρ 𝑡 = 𝑒−𝑖𝑡ℋ|ψ(0)⟩⟨ψ(0)|𝑒𝑖𝑡ℋ 
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Lemma 2: Virtual distillation (VD)

B. Koczor, Exponential error suppression for near-term 
quantum devices, Phys. Rev. X 11, 031057 (2021).

Tr ρ&𝑂
Tr ρ&

= ⟨ψ"|𝑂|ψ"⟩ + 𝒜

Error term	vanishes 
exponentially in 𝑛

Property of interest

Nonlinear functionals
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Theorem 1: Applying VD

Tr �̅�+𝑂
Tr �̅�+

= ψ, 𝑂 ψ, + 𝒬

𝒬 ≤ 𝒜 + 4𝑛𝑝,!"||𝑂||-	||ℰ||" + 𝒪 ||ℰ||"$

Vanishes super-exponentially with σ

Vanishes exponentially with 𝑛
η = Fρ+/Tr Fρ+ − ψ, ψ,

Nonlinear functionals 
of average state
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Direct implementation

X

...
...

|+→

ω

Dn

ε

ω

ω

Figure 10: Quantum circuit that applies virtual distillation on n copies of some noisy state ω. A collective
derangement operation Dn is applied across the N -qubit quantum registers, which each contains a copy of
ω, conditioned on the state of a single ancilla qubit prepared in |+→. A subsequent set of controlled Pauli
gates is performed on one of the registers, corresponding to one term in the Pauli-string decomposition of
the observable O, before finally measuring the X observable in the ancilla qubit.

...
...

H H

|ϑ(t1)→

Dn

P

|ϑ(t2)→

|ϑ(tn)→

Figure 11: Straightforward way to apply VD to random time evolutions to get exponential distillation of
eigenstate properties.

...
...

H H

|ϑ(t1)→

Dn

O

|ϑ(t2)→

|ϑ(tn)→

Figure 12: Straightforward way to apply VD to random time evolutions to get exponential distillation of
eigenstate properties.

|0→ H H

|ϑ→ U

Figure 13: Hadamard test (real).

4

1. Sample time values 𝒕 = 𝑡", … , 𝑡+
2. Run Hadamard test circuit
3. Repeat multiple times
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Distillation of dominant eigenproperties (DDE)
Evaluate these nonlinear functionals 
through Monte Carlo (MC) integration!

Tr �̅�&𝑂
Tr �̅�&

= ψ" 𝑂 ψ" + 𝒬

MC samples

Tr 1ρ&𝑂 = @𝐺 𝒕 𝐹 𝒕 d𝒕

MC 1

Tr 1ρ& = @𝐺 𝒕 𝐽 𝒕 d𝒕

MC 2

𝐹 𝒕 = 𝐴 𝑡+, 𝑡" M
&."

+!"
𝐵 𝑡&, 𝑡&/"

𝐽 𝒕 = 𝐵 𝑡+, 𝑡" M
&."

+!"
𝐵 𝑡&, 𝑡&/"

Data

𝐴(𝑡, 𝑡′) 	= 	 ⟨ψ(𝑡)|𝑂|ψ(𝑡′)⟩

𝐵(𝑡, 𝑡′) 	= 	 ⟨ψ(𝑡)|ψ(𝑡′)⟩

MC samples
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DDE algorithm workflow
Estimate correlators via quantum computation

Classical post-processing

e.g.
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H (S†)ω H

Uinit U(ω1) U(ω2) Oε U(ω3)

Figure 5: Optimized quantum circuit used to compute all non-trivial B(t1, t2) and A(t1, t2) for which t1 →= t2.

H (S†)ω H

Uinit U(↑t1) Pε U(t2)

Figure 6: Näıve quantum circuit used to compute all non-trivial B(t1, t2) and A(t1, t2) for which t1 →= t2.

H (S†)ω H

Uinit U(↑t) Oε U(t→)

Figure 7: Näıve quantum circuit used to compute all non-trivial B(t, t→) and A(t, t→) for which t →= t→.

Uinit U(t2)

ε

Figure 8: Quantum circuit used to obtain the diagonal elements of A(t1, t2). After the initial state |ϑ(0)↓ =
Uinit |0↓ is prepared, a time evolution of U(t2) is performed, followed by a measurement in the basis of the
Pauli string ε within the decomposition of the observable O. In the important case where O commutes with
the Hamiltonian (e.g. when O is the Hamiltonian), we only need to evaluate the case where t2 = 0, where
the time evolution is not performed.

Uinit U(ω)

O

Figure 9: Quantum circuit used to obtain the diagonal elements of A(t1, t2), i.e., the case where t1 = t2.
After the initial state |ϑ(0)↓ = Uinit |0↓ is prepared, a time evolution of duration ω is performed, followed by
a measurement in the basis of the Pauli string P in the Pauli-basis decomposition of O. The duration ω = t1
when P ↔ P↑, but no time evolution is needed (i.e., ω = 0 for all t1) when P ↔ P||.

3

Exponentially 
suppressed error

Target eigenstate 
property

Steps:

1. Quantum computation: 
a. Choose temporal grid cutoff T and timestep 

dt.
b.  Estimate A and B objects on the 2D 

timegrid using a quantum device.
2. Generate MC samples:

a. Discretize Gaussian PDF for the gridpoints.
b. Sample 2n timepoints from the discretized 

PDF for each MC sample.
c. Calculate the corresponding F and J 

objects.
3. Estimate expectation value:

a. Using the MC samples estimate the 
numerator and denominator.

b. Take the ratio of the estimates.
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Exact simulation:
 Random-field Heisenberg model
• Hamiltonian (10 qubits): 

ℋ = 𝐽)
0."

1

𝑆0 ⋅ 𝑆0/")
0."

1

ℎ0𝑍0

with periodic boundary condition
• Input state:

• 𝑝! = 0.66
• 𝑝& = 𝑝2 = 0.17

• Observable: 𝑂 = 𝑍!
• Goal: estimate ⟨ψ!|𝑍"|ψ!⟩ 

• 𝑇	 = 200
• σ = 50 
• dt = 	0.5
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Early fault-tolerance:
 Fermi-Hubbard model

• Hamiltonian: 

ℋ = −𝑡 5
",$ ,%

𝑐",%
& 𝑐$,% + 𝑐$,%

& 𝑐",% + 𝑈5
"

𝑛"↑ 𝑛"↓

Interacting fermions on a 2x2 lattice with PBC
4-site system mapped to 8 qubits with Jordan-Wigner

• Input state: lowest energy state in the 4 spin subspace
• 𝑝! = 0.62

• Observable: 𝑂 = 𝑍!𝑍)
• Goal: estimate ⟨ψ!|𝑍"𝑍$|ψ!⟩ 

• 𝑇	 = 200
• σ = 50 
• dt = 	0.5

Motivation: It is expected that early 
fault-tolerant machines will enable 
simple Hamiltonian simulation 
algorithms such as Trotterization.
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Early fault-tolerance:
 Fermi-Hubbard model

Robustness to Trotter error
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Early fault-tolerance:
 Fermi-Hubbard model

Robustness to gate noise 
(noisy rotation gates due to Clifford+T synthesis)

• Observable: 𝑂 =ℋ

Average number of errors in time evolution: 0, 0.1, 0.01

Optimized 
construction 
exploits that 𝑂 
commutes with 
the Hamiltonian.
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Near-term simulation:
 Lattice Schwinger model

• Hamiltonian (6 qubits): toy model 
from high energy physics

ℋ = ℋ𝒵𝒵 +ℋ± +ℋ𝒵
• Input state: from VQE

• 𝑝! = 0.53
• Observable: 𝑂 = ℋ

• Goal: estimate ⟨ψ!|ℋ|ψ!⟩ 
(ground state energy)

• 𝑇	 = 50
• σ = 12.5 
• dt = 	0.2

Variational real time 
evolution
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Quantum-inspired implementation:
 Random-field Heisenberg model

• Motivation: Our algorithm is compatible with quantum-inspired 
approaches as well, such as tensor network methods.

• In our implementation:
• Initial state: matrix product state (MPS).
• Time evolution: TEBD algorithm.
• Obtaining A and B correlators: tensor contractions.
• Goal: ground state and excited state energy.
• Similar hyperparameters as before.
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100-qubit MPS simulation:
 Random-field Heisenberg model
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Thank you!

Soon on arXiv!

GPU Day 2025


