

Exponential distillation of dominant eigenproperties

Bence Bakó, Tenzan Araki, Bálint Koczor

GPU Day 2025

AZ NKFI ALAPBÓL MEGVALÓSULÓ PROJEKT

Outline

- 1. Problem formulation
- 2. Existing approaches and their limitations
- 3. Performance guarantees
- 4. The DDE algorithm
- 5. Numerical experiments

Eigenstate property estimation

Inputs:

- Hamiltonian: $\mathcal{H} = \sum_k E_k |\psi_k\rangle \langle \psi_k |$
- Observable: 0

Common assumptions:

- Initial state: $|\psi(0)\rangle = \sum_k c_k |\psi_k\rangle$ Dominant eigenstate: $|\psi_q\rangle \ (|c_q| > |c_k| \text{ for all } k \neq q)$
- Nonvanishing gap: $\Delta > 0$

Eigenstates of a Hamiltonian

Goal:

Estimate $\langle \psi_q | O | \psi_q \rangle$ for target eigenstate $| \psi_q \rangle$

Fault-tolerant strategies

Quantum Phase Estimation (QPE)

A. Y. Kitaev. Quantum Measurements and the Abelian stabilizer problem. arXiv:quant-ph/9511026 (1995)

Near-term approaches

M. Cerezo et al., Variational quantum algorithms. Nat Rev Phys 3, 625-644 (2021).

Dealing with these challenges

Offload some computational burden to a classical computer in post-processing!

Compatible with both types of techniques!

Lemma 1: Random time evolution

Lemma 2: Virtual distillation (VD)

B. Koczor, Exponential error suppression for near-term quantum devices, Phys. Rev. X 11, 031057 (2021).

Theorem 1: Applying VD

Direct implementation

1. Sample time values $\mathbf{t} = (t_1, \dots, t_n)$

- 2. Run Hadamard test circuit
- 3. Repeat multiple times

Distillation of dominant eigenproperties (DDE)

$$\frac{\mathrm{Tr}[\bar{\rho}^n O]}{\mathrm{Tr}[\bar{\rho}^n]} = \langle \psi_q | O | \psi_q \rangle + Q \qquad \blacksquare$$

Evaluate these nonlinear functionals through Monte Carlo (MC) integration!

DDE algorithm workflow

~

Steps:

- **1.** Quantum computation:
 - a. Choose **temporal grid** cutoff *T* and timestep *dt*.
 - b. Estimate **A and B objects** on the 2D timegrid using a quantum device.

2. Generate MC samples:

- a. Discretize Gaussian PDF for the gridpoints.
- b. Sample *2n* **timepoints** from the discretized PDF for each MC sample.
- c. Calculate the corresponding *F* and *J* objects.
- 3. Estimate expectation value:
 - a. Using the MC samples estimate the **numerator** and **denominator**.
 - b. Take the **ratio** of the estimates.

Exact simulation: Random-field Heisenberg model

22.05.2025

Early fault-tolerance:

Motivation: It is expected that early

fault-tolerant machines will enable

algorithms such as **Trotterization**.

simple Hamiltonian simulation

- T = 200
- $\sigma = 50$
- dt = 0.5

4-site system mapped to **8 qubits** with Jordan-Wigner

- Input state: lowest energy state in the 4 spin subspace • $p_1 = 0.62$
- <u>Observable</u>: $O = Z_1 Z_2$
 - <u>Goal</u>: estimate $\langle \psi_1 | Z_1 Z_2 | \psi_1 \rangle$

 $\mathcal{H} = -t \sum_{\langle i,j \rangle_{S}} \left(c_{i,s}^{\dagger} c_{j,s} + c_{j,s}^{\dagger} c_{i,s} \right) + U \sum_{i} n_{i\uparrow} n_{i\downarrow}$ Interacting fermions on a 2x2 lattice with PBC

Fermi-Hubbard model Hamiltonian:

Early fault-tolerance: Fermi-Hubbard model

Early fault-tolerance: Fermi-Hubbard model

• <u>Observable</u>: $O = \mathcal{H}$

Robustness to gate noise

(noisy rotation gates due to Clifford+T synthesis)

Average number of errors in time evolution: 0, 0.1, 0.01

Exponential distillation of dominant eigenproperties

Optimized

construction

exploits that O

commutes with

the Hamiltonian.

17

Near-term simulation: Lattice Schwinger model

Variational real time evolution

- <u>Hamiltonian (6 qubits)</u>: toy model from high energy physics $\mathcal{H} = \mathcal{H}_{ZZ} + \mathcal{H}_{+} + \mathcal{H}_{Z}$
- Input state: from VQE
 - $p_1 = 0.53$
- <u>Observable</u>: $0 = \mathcal{H}$
 - <u>Goal</u>: estimate $\langle \psi_1 | \mathcal{H} | \psi_1 \rangle$ (ground state energy)
- T = 50
- $\sigma = 12.5$
- dt = 0.2

Quantum-inspired implementation: Random-field Heisenberg model

• <u>Motivation</u>: Our algorithm is compatible with **quantum-inspired** approaches as well, such as **tensor network** methods.

- In our implementation:
 - Initial state: matrix product state (MPS).
 - Time evolution: TEBD algorithm.
 - Obtaining A and B correlators: tensor contractions.
 - **Goal**: ground state and excited state energy.
 - Similar hyperparameters as before.

100-qubit MPS simulation: Random-field Heisenberg model

Thank you!

Soon on arXiv!

AZ NKFI ALAPBÓL MEGVALÓSULÓ PROJEKT