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Some background of my involvement in the topic

The journey Trento Workshop

My first public presentation of the topic with the Title: Beyond second order
theories of relativistic dissipative fluids was in 2009.
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Some background on my involvement

SQM2009 SQM2009
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Some background on my involvement

Towards EIC SQM2009
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Motivation and Conclusions

Relativistic second order dissipative fluid dynamics (e.g., Israel-Stewart
formalism) is a very important scientific achievement of the last three
decades.

It has inspired many authors to apply its methodology to the study of
heavy ion collisions and astrophysics.

In short it furnishes equations which are closed by imposing the entropy
principle up to second order, with respect to equilibrium.

First-order theories (the Navier-Stokes equations) break down at
relativistic speeds. Issues: Causality and stability problems in first-order
theories.

The second-order terms (e.g., relaxation times) help solve issues in
first-order theories.

Azwinndini Third-order relativistic fluid dynamics HUN-REN Wigner Research Centre for Physics Seminar 2025 8 / 38



Motivation and Conclusions

Relativistic second order dissipative fluid dynamics (e.g., Israel-Stewart
formalism) is a very important scientific achievement of the last three
decades.

It has inspired many authors to apply its methodology to the study of
heavy ion collisions and astrophysics.

In short it furnishes equations which are closed by imposing the entropy
principle up to second order, with respect to equilibrium.

First-order theories (the Navier-Stokes equations) break down at
relativistic speeds. Issues: Causality and stability problems in first-order
theories.

The second-order terms (e.g., relaxation times) help solve issues in
first-order theories.

Azwinndini Third-order relativistic fluid dynamics HUN-REN Wigner Research Centre for Physics Seminar 2025 8 / 38



Motivation and Conclusions

Relativistic second order dissipative fluid dynamics (e.g., Israel-Stewart
formalism) is a very important scientific achievement of the last three
decades.

It has inspired many authors to apply its methodology to the study of
heavy ion collisions and astrophysics.

In short it furnishes equations which are closed by imposing the entropy
principle up to second order, with respect to equilibrium.

First-order theories (the Navier-Stokes equations) break down at
relativistic speeds. Issues: Causality and stability problems in first-order
theories.

The second-order terms (e.g., relaxation times) help solve issues in
first-order theories.

Azwinndini Third-order relativistic fluid dynamics HUN-REN Wigner Research Centre for Physics Seminar 2025 8 / 38



Motivation and Conclusions

Relativistic second order dissipative fluid dynamics (e.g., Israel-Stewart
formalism) is a very important scientific achievement of the last three
decades.

It has inspired many authors to apply its methodology to the study of
heavy ion collisions and astrophysics.

In short it furnishes equations which are closed by imposing the entropy
principle up to second order, with respect to equilibrium.

First-order theories (the Navier-Stokes equations) break down at
relativistic speeds. Issues: Causality and stability problems in first-order
theories.

The second-order terms (e.g., relaxation times) help solve issues in
first-order theories.

Azwinndini Third-order relativistic fluid dynamics HUN-REN Wigner Research Centre for Physics Seminar 2025 8 / 38



Motivation and Conclusions

Relativistic second order dissipative fluid dynamics (e.g., Israel-Stewart
formalism) is a very important scientific achievement of the last three
decades.

It has inspired many authors to apply its methodology to the study of
heavy ion collisions and astrophysics.

In short it furnishes equations which are closed by imposing the entropy
principle up to second order, with respect to equilibrium.

First-order theories (the Navier-Stokes equations) break down at
relativistic speeds. Issues: Causality and stability problems in first-order
theories.

The second-order terms (e.g., relaxation times) help solve issues in
first-order theories.

Azwinndini Third-order relativistic fluid dynamics HUN-REN Wigner Research Centre for Physics Seminar 2025 8 / 38



The reluctance to exploit higher-order terms in relativistic dissipative fluid
dynamics arises due to the complexity of calculations.

However, pursuing these terms is essential for several reasons:
(1) Second-order approaches better connect relativistic and classical
cases.
(2) Higher-order terms depend on lower-order ones, potentially
impacting equilibrium conditions.
(3) Couplings between key dissipative processes (e.g., heat conduction
and viscosity) are only fully realized at the third order, making these
terms crucial for accurate modeling.

Despite the complexity, the inclusion of these terms greatly improves the
understanding of fluid dynamics.
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Basics & Formalism
The objective of relativistic dissipative fluid dynamics for one component fluid
is the determination of the 14 fields of

Nµ(xβ) net charge density — net charge flux vector

Tµν(xβ) stress — energy — momentum tensor

Tµν is assumed symmetric so that it has 10 independent components.

The 14 fields are determined from the field equations (fluid dynamical
equations)

∂µNµ = 0 net charge (e.g., baryon, strangeness, etc ) conservation

∂νTµν = 0 energy – momentum conservation

∂λFµνλ = Pµν balance law of fluxes

Fµνλ is completely symmetric tensor of fluxes and Pµν is its production
density such that

Fµν
ν = m2Nµ and Pν

ν = 0
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Basics & Formulation

We then have a set of 14 independent equations ( net charge conservation
(1); energy-momentum conservation (4); balance of fluxes (9))

However, the dynamic equations cannot serve as the field equations for the
thermodynamic fields Nµ and Tµν . Because the additional fields Fµνλ and
Pµν have appeared.

Restriction on the general form of the constitutive functions Fµνλ(Nα,Tαβ)
and Pµν(Nα,Tαβ) is imposed by

entropy principle —the entropy density–entropy flux vector Sµ(Nα,Tαβ)
is a constitutive quantity which obeys the inequality

∂µSµ ≥ 0 for all thermodynamic process

requirement of hyperbolicity — ensures that Cauchy problems of our
field equations are well-posed and all wave speeds are finite =⇒ our set
of field equations should be symmetric hyperbolic
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The 14 Fields and Tensor decomposition

Net charge 4-current Nµ = nuµ

n ≡
√

NµNµ = uµNµ net charge density in fluid rest frame,

uµ ≡ Nµ

√
NνNν

the fluid 4-velocity,

uνuν = 1 =⇒ uµ has 3 independent components
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14 Fields and Tensor decomposition

Stress–energy–momentum tensor Tµν = εuµuν−(p+Π)∆µν+2q(µuν)+π⟨µν⟩

ε ≡ uµuνTµν energy density in fluid rest frame,

p ≡ p(ε , n) pressure in fluid rest frame,

Π bulk viscous pressure, (p +Π) ≡ −1
3
∆µνTµν

∆µν ≡ gµν − uµuν projection tensor onto 3-space, ∆µνuν = ∆µνuµ = 0

gµν ≡ diag(+1,−1,−1,−1) metric tensor

qµ ≡ ∆µ
αuβTαβ heat flux 4-current,

qµuµ = 0 =⇒ qµ has 3 independent components

π⟨µν⟩ ≡ T ⟨µν⟩ shear stress tensor

π⟨µν⟩uµ = π⟨µν⟩uν = 0, π
⟨ν
ν⟩ = 0 =⇒ π⟨µν⟩ has 5 independent components
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14 Fields and Tensor decomposition

Production densities tensor Pµν = PΠΠ
(
∆µν−3uµuν

)
+2Pqq(µuν)+Pππ

⟨µν⟩

The functions PΠ, Pq , Pπ are related to the bulk viscosity, heat conductivity
and shear viscosity and thus may be determined from measurements of
these coefficients

Liu, I-Shih; Müller, I.; Ruggeri, T.; Relativistic thermodynamics of gases.
Annals of Physics, 169 (1986) 191 - 219
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14 Fields and Tensor decomposition

Tensor of fluxes (up to 2nd order)

Fµνλ =
1
2
F0

1 g(µνuλ) +
1
2
F0

2

(
g(µνuλ) − 2uµuνuλ

)
+F1

1Π
(
∆(µνuλ) − uµuνuλ

)
+ F1

2

(
∆(µνqλ) − 5u(µuνqλ)

)
+F1

3π
(⟨µν⟩uλ)

+F2
1Π

2
(
∆(µνuλ) − uµuνuλ

)
+ F2

2

(
−qνqν∆

(µνuλ) − 3u(µqνqλ)
)

−F2
3 qαqα

(
∆(µνuλ) − uµuνuλ

)
+ F2

4

(
3uµπ2⟨νλ⟩ − π2⟨αα⟩uµuνuλ

)
+F2

5π
2⟨αα⟩

(
∆(µνuλ) − uµuνuλ

)
+ F2

6

(
q(µπ⟨νλ⟩) − 2u(µuνπ⟨λ)ν⟩qν

)
+F2

7

(
∆(µνπ⟨λ)α⟩)qα − 5uµuνπ⟨λ)α⟩qα

)
+ F2

8Πu(µπ⟨νλ⟩)

+F2
9Π

(
∆(µνqλ) − 5q(µuνuλ)

)

Zeroth order (Equilibrium) + First order + Second order
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14 Fields and Tensor decomposition

Entropy 4-current (up to 3rd order)

Sµ = S0
1 uµ

+S1
1Πuµ + S1

2 qµ

+
(
S2

1Π
2 − S2

2 qαqα + S2
3π

2⟨αα⟩
)

uµ

+S2
4Πqµ + S2

5π
⟨µα⟩qα

+
(
S3

1Π
3 − S3

2Πqαqα + S3
3Ππ

2⟨αα⟩ + S3
4 qαqβπ

⟨αβ⟩ + S3
5π

3⟨αα⟩
)

uµ

+
(
S3

6Π
2 − S3

7 qαqα + S3
8π

2⟨αα⟩
)

qµ + S3
9Ππ

⟨µα⟩qα + S3
10π

2⟨µα⟩qα

Zeroth order (Equilibrium) + First order + Second order +Third order
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Notation

Parentheses around some indices denote symmetrization, while angular
brackets around two indices denote skew-symmetrization

a(µν) ≡ 1
2

(
aµν + aνµ

)
a⟨µν⟩ ≡

(
∆(µ

α ∆
ν)
β − 1

3
∆µν∆αβ

)
aαβ

The space-time derivative will be split into time and spatial components as
follows

∂µ ≡ uµD +∇µ

with D ≡ uα∂α convective (comoving) time derivative
and ∇µ ≡ ∆µν∂ν spatial gradient

ȧ... ≡ Da... = uµ∂µa... convective (comoving) time derivative of a...

θ = ∇µuµ = ∂µuµ expansion scalar (divergence of 4-velocity)
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Equilibrium

Equilibrium is defined as a process in which production densities vanish
and/or the entropy production vanishes

Pµν
Eq. = 0

ΞEq. = 0

}
=⇒ ΠEq. = 0 , qµ

Eq = 0 , π
⟨µν⟩
Eq = 0

Fµνλ
Eq =

1
2
F0

1 g(µνuλ) +
1
2
F0

2

(
g(µνuλ) − 2uµuνuλ

)
Sµ

Eq. = s(ε, n)uµ

The energy-momentum tensor reduces to

Tµν
Eq. = εuµuν − p∆µν

In the ideal “perfect” fluid limit one has 5 independent fields
(p(n, e)(2), uµ(3)) and 5 field equations
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14-Fields Theory of Relativistic Dissipative Fluid Dynamics :

In dissipative(non-ideal) fluid dynamics one needs 9 additional equations for
the dissipative fluxes. The 14 fields p(n , ε), Π, uα, qα, π⟨αβ⟩ are governed by
the following fields equations

∂µNµ = 0

∆αµ∂νTµν = 0

uµ∂νTµν = 0

uµuν∂λFµνλ = −PΠΠ

∆µ
αuν∂λFανλ = Pqqµ(

∆(µ
α ∆

ν)
β − 1

3
∆µν∆αβ

)
∂λFαβλ = Pππ

⟨µν⟩

For all thermodynamic processes the entropy principle holds

∂µSµ ≥ 0
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Dissipative fluxes: Zeroth order: Equilibrium

Π = ΠEq. = 0

qα = qα
Eq. = 0

π⟨αβ⟩ = π
⟨αβ⟩
Eq. = 0
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Dissipative fluxes: First order

Π(1) = ΠE = −ζ∇αuα

qα (1) = qα
E = κT∆αµ

(∇αT
T

− u̇α

)
π⟨αβ⟩ (1) = π

⟨αβ⟩
E = 2η∆αµ∆βν∇⟨αuβ⟩

Relativistic versions of the laws of Navier-Stokes and Fourier
first derived by Eckart, Landau-Lifshitz.
ζ is the bulk viscosity, κ is the thermal conductivity, η is the shear viscosity

simple algebraic expressions of dissipative fluxes

may lead to acausal and unstable equations of motion
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Dissipative fluxes: Second order

Müller-Israel-Stewart (MIS) equations: Fµνλ linear (first-order) in dissipative
fluxes and Sµ quadratic (second-order) in dissipative fluxes
Resulting equations causal and hyperbolic

Π(2) = ΠMIS = −ζ
[
2S2

1 Π̇ + S2
4∇αqα

]
−ζ

[
Π(Ṡ2

1 + S2
1∇αuα) + qα(∇αS2

4 − S2
4 u̇α)

]
qµ (2) = qµ

MIS = κT∆αµ
[
2S2

2 q̇α + S2
4∇αΠ+ S2

5∇βπ⟨αβ⟩

]
+κT∆αµ

[
qα(Ṡ2

2 + S2
2∇νuν) + Π(∇αS2

4 − S2
4 u̇α)

+π⟨αβ⟩(∇βS2
5 − S2

5 u̇β)
]

π⟨µν⟩ (2) = π
⟨µν⟩
MIS = 2η∆αµ∆βν

[
2S2

3 π̇⟨αβ⟩ + S2
5∇⟨αqβ⟩

]
+2η∆αµ∆βν

[
π⟨αβ⟩(Ṡ2

3 + S2
3∇λuλ)

+q⟨α(∇β⟩S2
5 − S2

5 u̇β⟩)
]
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Dissipative fluxes

The terms in red are neglected in the original MIS formulation. Terms of
the general form Π∂νuµ, Π∂λn, Π∂λε, qα∂νuµ, qα∂λn, qα∂λε, π⟨αβ⟩∂νuµ,
π⟨αβ⟩∂λn, π⟨αβ⟩∂λε have been considered non-linear and thus ignored.
These terms have been shown to be important in heavy ion collisions.
They will be even more important at low energies and high densities.

Derivations of the equations from kinetic theory reveals terms that are
not explicit from phenomenological considerations (e.g., vorticity terms)

Azwinndini Third-order relativistic fluid dynamics HUN-REN Wigner Research Centre for Physics Seminar 2025 23 / 38



Dissipative fluxes: Third order: Bulk equation

Π(3) = −ζ
[
3S3

1 Π̇ + 2S3
2 q̇λqλ + 2S3

3 π̇⟨αβ⟩π
⟨αβ⟩

+S3
6 (Π∇αqα + qα∇αΠ) + S3

9 (π
⟨αβ⟩∇αqβ + qβ∇απ

⟨αβ⟩)
]

−ζ
[
Π2(Ṡ3

1 + S3
1∇αuα)− qαqα(Ṡ3

2 + S3
2∇αuα)

+π2⟨αβ⟩(Ṡ3
3 + S3

3∇αuα)

+Πqα(∇αS3
6 − S3

6 aα) + π⟨αβ⟩qβ(∇αS3
9 − S3

9 aα)
]
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Dissipative fluxes: Third order: Heat equation

qµ (3) = κT∆αµ
[
−S3

2 (2Πq̇α + qαΠ̇) + S3
4 (2q̇βπ⟨αβ⟩ + qβ π̇⟨αβ⟩)

+2S3
6Π∇αΠ− 2S3

7 qβ∇αqβ + S3
9 (Π∇βπ⟨αβ⟩ + π⟨αβ⟩∇βΠ)

+2S3
10π⟨βν⟩∇απ

⟨βν⟩
]

+κT∆αµ
[
Πqα(Ṡ3

2 + S3
2∇νuν) + qβπ⟨αβ⟩(Ṡ3

4 + S3
4∇νuν)

+(Π2∇αS3
6 − qλqλ∇αS3

7 + π2⟨λλ⟩∇αS3
8 )

+Ππ⟨αβ⟩(∇βS3
9 − S3

9 aβ) + π2
⟨αβ⟩(∇βS3

10 − S3
10aβ)

+S3
7 qαqλaλ

]
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Dissipative fluxes: Third order: Shear equation

π⟨µν⟩ (3) = 2η∆αµ∆βν
[
S3

3 (2Ππ̇⟨αβ⟩ + π⟨αβ⟩Π̇) + 2S3
4 q̇⟨αqβ⟩

+3S3
5 π̇⟨αλ⟩π

⟨λ
β⟩ + S3

8π⟨αβ⟩∇λqλ + S3
9 (Π∇⟨αqβ⟩ + q⟨α∇β⟩Π)

+S3
10(q(β∇λπ⟨α)λ⟩ + π⟨λ(α⟩∇λqβ)

]
+2η∆αµ∆βν

[
Ππ⟨αβ⟩(Ṡ3

3 + S3
3∇λuλ)

+q⟨αqβ⟩(Ṡ3
4 + S3

4∇λuλ) + π⟨αλ⟩π
⟨λ
β⟩(Ṡ

3
5 + S3

5∇λuλ)

+π⟨αβ⟩q
λ(∇λS3

8 − S3
8 aλ) + Πq⟨β(∇α⟩S3

9 − S3
9 aα⟩)

+π⟨αλqλ(∇β⟩S3
10 − S3

10aβ⟩)
]

Azwinndini Third-order relativistic fluid dynamics HUN-REN Wigner Research Centre for Physics Seminar 2025 26 / 38



Entropy from Kinetic Theory
We derive the third order entropy 4-current as well the non-classical
coefficients by going beyond Israel-Stewart entropy 4-current expression in
kinetic theory. The kinetic expression for entropy, can be written as

Sµ = −
∫

dwpµψ[f (x , p)] ,

where

ψ[f (x , p)] = f (x , p)
{
ln[A−1

0 f (x , p)]− 1
}
,

and f (x , p) is the out of the equilibrium distribution function. Expanding ψ(f )
around ψ(f eq) up to third order we get,

ψ(f ) = ψ(f eq) + ψ′(f eq)(f − f eq) +
1
2
ψ′′(f eq)(f − f eq)2

+
1
6
ψ′′′(f eq)(f − f eq)3 + .. ,

with student Fhumulani Nemulodi, MSc (Physics): Third order relativistic
dissipative fluid dynamics for heavy-ion collisions., 2011 Unpublished MSc
Dissertation, University of Cape Town,
Extension of the work by W. Israel and J. M. Stewart, Transient relativistic
thermodynamics and kinetic theory, Annals Phys. 118 (1979) 341–372.
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Entropy from kinetic theory

Sµ(1) =
qµ

T
,

Sµ(2) =
1
2
βuµ

[
S2

1Π
2 − S2

2 qαqα + S2
3π

ναπνα

]
+ β

[
S2

4 qµΠ+ S2
5 qαπ

µα
]
,

Sµ(3) =
1
6
βuµ

{
S3

1Π
3 + S3

2Πqαqα + S3
3Ππ

ναπνα + S3
4 qνqαπ

να + S3
5πναπ

ν
βπ

αβ
}

−1
6
βqµ

{
S3

6Π
2 + S3

7 qαqα − S3
8π

ναπνα

}
− βS3

9Πqαπ
µα

+
1
2
βS3

10qαπ
ναπµ

ν ,

compare with phenomenology results above, now with relaxation and
coupling coefficients calculated from 1-pdfs integrals
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Third order coefficients

As function of m/T , in the large temperature limit

S2
1 = ∞

S2
2 = 5

4p

S2
3 = 3

4p

S2
4 = ∞

S2
5 = 1

4p


=⇒ Second order coefficients known

Third order coefficients

S3
1 = ∞, S3

2 = ∞, S3
3 = ∞

S3
4 = 6

p2 , S3
5 = 3

4p2 =
S2

3
p , S3

6 = ∞

S3
7 = 2

p2 = 2S2
2

p , S3
8 = 27

32p2 , S3
9 = ∞

S3
10 = 9

32p2
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Third order coefficients

compare with those in

A. Muronga, Relaxation and Coupling Coefficients in Third Order
Relativistic Fluid Dynamics , Acta Phys. Polon. Supp. 7 (2014) 197

Teboho Moloi and AM Thermodynamic coefficients in third-order
relativistic dissipative fluid dynamics, in preparation
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Applications

Chattopadhyay, C., Jaiswal, A., & Heinz, U. (2018). Higher-order and
non-linear effects in relativistic hydrodynamics. Physical Review C,
97(3), 034910.

Diles, S.M., Miranda, A.S., Mamani, L.A.H. et al. Third-order relativistic
fluid dynamics at finite density in a general hydrodynamic frame. Eur.
Phys. J. C 84, 516 (2024).

Azwinndini Third-order relativistic fluid dynamics HUN-REN Wigner Research Centre for Physics Seminar 2025 31 / 38



Simple scaling solution
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Simple scaling solution

Pressure isotropy evolution
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Simple scaling solution

Comparison with other model calculations
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Simple scaling solution

Pressure isotropy by terms or order
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Simple scaling solution

Energy density and Shear evolution
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In closing - from cold Minnesota days. AI/ML might help!

Evolution of ideas. Evolution of people.
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Conclusions

In a one-component fluid, there are three main mechanisms of entropy
production: one associated with dynamic pressure, one due to heat flux,
and one related to shear stress.

For non-negative entropy production, the coefficients corresponding to
bulk viscosity, shear viscosity, and heat flux must satisfy specific
inequality relations.

Third-order relativistic fluid dynamics introduces couplings and
relaxation times not present in second-order theories.

The numerous identities encountered in deriving the equations suggest
the possibility of constraining lower-order known functions, such as the
equation of state and transport, relaxation, and coupling coefficients.

The equations derived here remain consistent, whether approached
through divergence theory or kinetic theory.

The relaxation and coupling coefficients are not entirely new parameters
but can be determined from the equation of state.
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