On the construction of hyperboloidal initial data without logarithmic singularities I.

István Rácz racz.istvan@wigner.hu

HUN-REN Wigner Research Center for Physics

GRG **57**, 96 (2025), arXiv:2503.11804 joint work with Károly Csukás

> Theoretical Department Wigner RCP, Budapest June 6, 2025

Image: Image:

Gravitational field in the radiation regime: the expected behavior

- In the early 60's, Bondi, Sachs, and Penrose proposed a set of boundary conditions that are appropriate for gravitational fields in the radiation regime.
- A somewhat simplified way to introduce their conditions is to assume the existence of "asymptotically quasi-Minkowskian coordinates" $(x^{\nu}) = (t, x, y, z)$ in which

$$g_{\mu\nu} - \eta_{\mu\nu} = \frac{f_{\mu\nu}^{(1)}(t - r, \theta, \phi)}{r} + \frac{f_{\mu\nu}^{(2)}(t - r, \theta, \phi)}{r^2} + \dots$$

where $\eta_{\mu\nu}$ is the Minkowski metric diag(-1, 1, 1, 1), while (r, θ, ϕ) stand for the standard spherical coordinates on \mathbb{R}^3 .

- The expansion above has to hold at, say, fixed value of t-r, while $r \to \infty$.
- As we will see later, there are results that support these expectations.
- In the mid-1990s, it was discovered that the above formula **may not give** the generic asymptotic behavior for radiative vacuum solutions.

Gravitational field in the radiation regime: the expected behavior

- In the early 60's, Bondi, Sachs, and Penrose proposed a set of boundary conditions that are appropriate for gravitational fields in the radiation regime.
- A somewhat simplified way to introduce their conditions is to assume the existence of "asymptotically quasi-Minkowskian coordinates" $(x^{\nu}) = (t, x, y, z)$ in which

$$g_{\mu\nu} - \eta_{\mu\nu} = \frac{f_{\mu\nu}^{(1)}(t - r, \theta, \phi)}{r} + \frac{f_{\mu\nu}^{(2)}(t - r, \theta, \phi)}{r^2} + \dots$$

where $\eta_{\mu\nu}$ is the Minkowski metric diag(-1, 1, 1, 1), while (r, θ, ϕ) stand for the standard spherical coordinates on \mathbb{R}^3 .

- The expansion above has to hold at, say, fixed value of t-r, while $r \to \infty$.
- As we will see later, there are results that support these expectations.
- In the mid-1990s, it was discovered that the above formula **may not give** the generic asymptotic behavior for radiative vacuum solutions.

< □ > < 同 > < 回 > < 回 >

Gravitational field in the radiation regime: the expected behavior

- In the early 60's, Bondi, Sachs, and Penrose proposed a set of boundary conditions that are appropriate for gravitational fields in the radiation regime.
- A somewhat simplified way to introduce their conditions is to assume the existence of "asymptotically quasi-Minkowskian coordinates" $(x^{\nu}) = (t, x, y, z)$ in which

$$g_{\mu\nu} - \eta_{\mu\nu} = \frac{f_{\mu\nu}^{(1)}(t - r, \theta, \phi)}{r} + \frac{f_{\mu\nu}^{(2)}(t - r, \theta, \phi)}{r^2} + \dots$$

where $\eta_{\mu\nu}$ is the Minkowski metric diag(-1, 1, 1, 1), while (r, θ, ϕ) stand for the standard spherical coordinates on \mathbb{R}^3 .

- The expansion above has to hold at, say, fixed value of t-r, while $r \to \infty$.
- As we will see later, there are results that support these expectations.
- In the mid-1990s, it was discovered that the above formula **may not give** the generic asymptotic behavior for radiative vacuum solutions.

イロト イヨト イヨト

Gravitational field in the radiation regime: the expected behavior

- In the early 60's, Bondi, Sachs, and Penrose proposed a set of boundary conditions that are appropriate for gravitational fields in the radiation regime.
- A somewhat simplified way to introduce their conditions is to assume the existence of "asymptotically quasi-Minkowskian coordinates" $(x^{\nu}) = (t, x, y, z)$ in which

$$g_{\mu\nu} - \eta_{\mu\nu} = \frac{f_{\mu\nu}^{(1)}(t - r, \theta, \phi)}{r} + \frac{f_{\mu\nu}^{(2)}(t - r, \theta, \phi)}{r^2} + \dots$$

where $\eta_{\mu\nu}$ is the Minkowski metric diag(-1, 1, 1, 1), while (r, θ, ϕ) stand for the standard spherical coordinates on \mathbb{R}^3 .

- The expansion above has to hold at, say, fixed value of t-r, while $r \to \infty$.
- As we will see later, there are results that support these expectations.
- In the mid-1990s, it was discovered that the above formula **may not give** the generic asymptotic behavior for radiative vacuum solutions.

イロト イヨト イヨト

Gravitational field in the radiation regime: the expected behavior

- In the early 60's, Bondi, Sachs, and Penrose proposed a set of boundary conditions that are appropriate for gravitational fields in the radiation regime.
- A somewhat simplified way to introduce their conditions is to assume the existence of "asymptotically quasi-Minkowskian coordinates" $(x^{\nu}) = (t, x, y, z)$ in which

$$g_{\mu\nu} - \eta_{\mu\nu} = \frac{f_{\mu\nu}^{(1)}(t - r, \theta, \phi)}{r} + \frac{f_{\mu\nu}^{(2)}(t - r, \theta, \phi)}{r^2} + \dots$$

where $\eta_{\mu\nu}$ is the Minkowski metric diag(-1, 1, 1, 1), while (r, θ, ϕ) stand for the standard spherical coordinates on \mathbb{R}^3 .

- The expansion above has to hold at, say, fixed value of t-r, while $r \to \infty$.
- As we will see later, there are results that support these expectations.
- In the mid-1990s, it was discovered that the above formula **may not give** the generic asymptotic behavior for radiative vacuum solutions.

イロト イヨト イヨト

Gravitational field in the radiation regime: the expected behavior

- In the early 60's, Bondi, Sachs, and Penrose proposed a set of boundary conditions that are appropriate for gravitational fields in the radiation regime.
- A somewhat simplified way to introduce their conditions is to assume the existence of "asymptotically quasi-Minkowskian coordinates" $(x^{\nu}) = (t, x, y, z)$ in which

$$g_{\mu\nu} - \eta_{\mu\nu} = \frac{f_{\mu\nu}^{(1)}(t - r, \theta, \phi)}{r} + \frac{f_{\mu\nu}^{(2)}(t - r, \theta, \phi)}{r^2} + \dots$$

where $\eta_{\mu\nu}$ is the Minkowski metric diag(-1, 1, 1, 1), while (r, θ, ϕ) stand for the standard spherical coordinates on \mathbb{R}^3 .

- The expansion above has to hold at, say, fixed value of t-r, while $r \to \infty$.
- As we will see later, there are results that support these expectations.
- In the mid-1990s, it was discovered that the above formula **may not give** the generic asymptotic behavior for radiative vacuum solutions.

イロト イヨト イヨト イヨト

Gravitational field in the radiation regime: with polyhomogeneous expansions

• Indeed, many results from the mid-90's demonstrated that the correct formula, instead of

$$g_{\mu\nu} - \eta_{\mu\nu} = \omega f^{(1)}_{\mu\nu}(u,\theta,\phi) + \omega^2 f^{(2)}_{\mu\nu}(u,\theta,\phi) + \dots$$

where the replacements $\omega = r^{-1}$ and u = t - r were used,

• Using the l'Hopital rule:

$$\lim_{\omega \to 0} \omega^a \log^b \omega = \lim_{\omega \to 0} \frac{\log^b \omega}{\omega^{-a}} = \lim_{\omega \to 0} \frac{\partial_\omega \log^b \omega}{\partial_\omega \omega^{-a}} = -\frac{b}{a} \lim_{\omega \to 0} \omega^a \log^{b-1} \omega = \dots = 0 \, (!)$$

But

$$\partial_{\omega} \left(\omega \, \log \omega \right) = \log \omega + 1$$

which is unbounded in the $\omega \rightarrow 0$ limit!

Gravitational field in the radiation regime: with polyhomogeneous expansions

 Indeed, many results from the mid-90's demonstrated that the correct formula, instead of

$$g_{\mu\nu} - \eta_{\mu\nu} = \omega f^{(1)}_{\mu\nu}(u,\theta,\phi) + \omega^2 f^{(2)}_{\mu\nu}(u,\theta,\phi) + \dots$$

where the replacements $\omega = r^{-1}$ and u = t - r were used,

• Using the l'Hopital rule:

$$\lim_{\omega \to 0} \omega^a \log^b \omega = \lim_{\omega \to 0} \frac{\log^b \omega}{\omega^{-a}} = \lim_{\omega \to 0} \frac{\partial_\omega \log^b \omega}{\partial_\omega \omega^{-a}} = -\frac{b}{a} \lim_{\omega \to 0} \omega^a \log^{b-1} \omega = \dots = 0 \, (!)$$

But

$$\partial_{\omega} \left(\omega \, \log \omega \right) = \log \omega + 1$$

which is unbounded in the $\omega \rightarrow 0$ limit!

Gravitational field in the radiation regime: with polyhomogeneous expansions

 Indeed, many results from the mid-90's demonstrated that the correct formula, instead of

$$g_{\mu\nu} - \eta_{\mu\nu} = \omega f_{\mu\nu}^{(1)}(u,\theta,\phi) + \omega^2 f_{\mu\nu}^{(2)}(u,\theta,\phi) + \dots$$

where the replacements $\omega = r^{-1}$ and u = t - r were used, may be of the form, involving a lot of logarithmic terms,

$$g_{\mu\nu} - \eta_{\mu\nu} = \omega \left\{ f_{\mu\nu}^{(1)} + \left[h_{\mu\nu}^{(1,1)} \cdot \log \omega + h_{\mu\nu}^{(1,2)} \cdot \log^2 \omega + \dots \right] \right\} \\ + \omega^2 \left\{ f_{\mu\nu}^{(2)} + \left[h_{\mu\nu}^{(2,1)} \cdot \log \omega + h_{\mu\nu}^{(2,2)} \cdot \log^2 \omega + \dots \right] \right\} + \dots$$

where the coefficients are assumed to be smooth functions of (u, θ, ϕ) . Using the l'Hopital rule:

$$\lim_{\omega \to 0} \omega^a \log^b \omega = \lim_{\omega \to 0} \frac{\log^b \omega}{\omega^{-a}} = \lim_{\omega \to 0} \frac{\partial_\omega \log^b \omega}{\partial_\omega \omega^{-a}} = -\frac{b}{a} \lim_{\omega \to 0} \omega^a \log^{b-1} \omega = \dots = 0 \, (!)$$

But

$$\partial_{\omega} \left(\omega \, \log \omega \right) = \log \omega + 1$$

which is unbounded in the $\omega \rightarrow 0$ limit!

Gravitational field in the radiation regime: with polyhomogeneous expansions

 Indeed, many results from the mid-90's demonstrated that the correct formula, instead of

$$g_{\mu\nu} - \eta_{\mu\nu} = \omega f_{\mu\nu}^{(1)}(u,\theta,\phi) + \omega^2 f_{\mu\nu}^{(2)}(u,\theta,\phi) + \dots$$

where the replacements $\omega = r^{-1}$ and u = t - r were used, may be of the form, involving a lot of logarithmic terms,

$$g_{\mu\nu} - \eta_{\mu\nu} = \omega \left\{ f_{\mu\nu}^{(1)} + \left[h_{\mu\nu}^{(1,1)} \cdot \log \omega + h_{\mu\nu}^{(1,2)} \cdot \log^2 \omega + \dots \right] \right\} \\ + \omega^2 \left\{ f_{\mu\nu}^{(2)} + \left[h_{\mu\nu}^{(2,1)} \cdot \log \omega + h_{\mu\nu}^{(2,2)} \cdot \log^2 \omega + \dots \right] \right\} + \dots$$

where the coefficients are assumed to be smooth functions of $(u,\theta,\phi).$ \bullet Using the l'Hopital rule:

$$\lim_{\omega \to 0} \omega^a \log^b \omega = \lim_{\omega \to 0} \frac{\log^b \omega}{\omega^{-a}} = \lim_{\omega \to 0} \frac{\partial_\omega \log^b \omega}{\partial_\omega \omega^{-a}} = -\frac{b}{a} \lim_{\omega \to 0} \omega^a \log^{b-1} \omega = \dots = 0 \, (!)$$

But

$$\partial_{\omega} \left(\omega \, \log \omega \right) = \log \omega + 1$$

which is unbounded in the $\omega \rightarrow 0$ limit!

3/20

Gravitational field in the radiation regime: with polyhomogeneous expansions

 Indeed, many results from the mid-90's demonstrated that the correct formula, instead of

$$g_{\mu\nu} - \eta_{\mu\nu} = \omega f_{\mu\nu}^{(1)}(u,\theta,\phi) + \omega^2 f_{\mu\nu}^{(2)}(u,\theta,\phi) + \dots$$

where the replacements $\omega = r^{-1}$ and u = t - r were used, may be of the form, involving a lot of logarithmic terms,

$$g_{\mu\nu} - \eta_{\mu\nu} = \omega \left\{ f_{\mu\nu}^{(1)} + \left[h_{\mu\nu}^{(1,1)} \cdot \log \omega + h_{\mu\nu}^{(1,2)} \cdot \log^2 \omega + \dots \right] \right\} \\ + \omega^2 \left\{ f_{\mu\nu}^{(2)} + \left[h_{\mu\nu}^{(2,1)} \cdot \log \omega + h_{\mu\nu}^{(2,2)} \cdot \log^2 \omega + \dots \right] \right\} + \dots$$

where the coefficients are assumed to be smooth functions of (u, θ, ϕ) . • Using the l'Hopital rule:

$$\lim_{\omega \to 0} \omega^a \log^b \omega = \lim_{\omega \to 0} \frac{\log^b \omega}{\omega^{-a}} = \lim_{\omega \to 0} \frac{\partial_\omega \log^b \omega}{\partial_\omega \omega^{-a}} = -\frac{b}{a} \lim_{\omega \to 0} \omega^a \log^{b-1} \omega = \dots = 0 \, (!)$$

But

$$\partial_{\omega} \left(\omega \, \log \omega \right) = \log \omega + 1$$

which is unbounded in the $\omega \to 0$ limit!

3/20

- Spacetime: (M, g_{ab}) smooth manifold M ... with a smooth metric g_{ab} ...
- Einstein's equations: $E_{ab} = G_{ab} \mathcal{G}_{ab} = 0$ $\nabla^a \mathcal{G}_{ab} = 0$
 - In a more conventional setup: $\left[[R_{ab} \frac{1}{2} g_{ab} R] + \Lambda g_{ab} = 8\pi T_{ab} \right]$ where the energy-momentum tensor is T_{ab} and Λ is the cosmological constant: $\left[\mathscr{G}_{ab} = 8\pi T_{ab} - \Lambda g_{ab} \right]$ (!) matter fields satisfying their field equations...
- Yvonne Choquet-Bruhat (1952): Einstein's equations as a coupled set of quasi-linear wave equations: local existence & uniqueness of solutions...with Geroch (1969) the existence of a maximal Cauchy development unique up to diffeos
- the initial value problem is well-posed: ∃ a map so that it is "one-to-one" & continuous & causal

Einstein's equations & the Cauchy problem

- Spacetime: (M, g_{ab}) smooth manifold M ... with a smooth metric g_{ab} ...
- Einstein's equations:

$$E_{ab} = G_{ab} - \mathscr{G}_{ab} = 0 \qquad \nabla^a \mathscr{G}_{ab} = 0$$

• In a more conventional setup: $\begin{bmatrix} R_{ab} - \frac{1}{2} g_{ab} R \end{bmatrix} + \Lambda g_{ab} = 8\pi T_{ab}$ where the energy-momentum tensor is T_{ab} and Λ is the cosmological constant: $\boxed{\mathscr{G}_{ab} = 8\pi T_{ab} - \Lambda g_{ab}} (!)$ matter fields satisfying their field equations...

- Yvonne Choquet-Bruhat (1952): Einstein's equations as a coupled set of quasi-linear wave equations: local existence & uniqueness of solutions...with Geroch (1969) the existence of a maximal Cauchy development unique up to diffeos
- the initial value problem is well-posed: ∃ a map so that it is "one-to-one" & continuous & causal

- Spacetime: (M, g_{ab}) smooth manifold M ... with a smooth metric g_{ab} ...
- Einstein's equations:

$$E_{ab} = G_{ab} - \mathscr{G}_{ab} = 0 \qquad \nabla^a \mathscr{G}_{ab} = 0$$

- In a more conventional setup: $\begin{bmatrix} R_{ab} \frac{1}{2} g_{ab} R \end{bmatrix} + \Lambda g_{ab} = 8\pi T_{ab}$ where the energy-momentum tensor is T_{ab} and Λ is the cosmological constant: $\boxed{\mathscr{G}_{ab} = 8\pi T_{ab} - \Lambda g_{ab}}$ (!) matter fields satisfying their field equations...
- Yvonne Choquet-Bruhat (1952): Einstein's equations as a coupled set of quasi-linear wave equations: local existence & uniqueness of solutions...with Geroch (1969) the existence of a maximal Cauchy development unique up to diffeos
- the initial value problem is well-posed: ∃ a map so that it is "one-to-one" & continuous & causal

- Spacetime: (M, g_{ab}) smooth manifold M ... with a smooth metric g_{ab} ...
- Einstein's equations:

$$E_{ab} = G_{ab} - \mathscr{G}_{ab} = 0 \qquad \nabla^a \mathscr{G}_{ab} = 0$$

- In a more conventional setup: $\begin{bmatrix} R_{ab} \frac{1}{2} g_{ab} R \end{bmatrix} + \Lambda g_{ab} = 8\pi T_{ab}$ where the energy-momentum tensor is T_{ab} and Λ is the cosmological constant: $\boxed{\mathscr{G}_{ab} = 8\pi T_{ab} - \Lambda g_{ab}} (!)$ matter fields satisfying their field equations...
- Yvonne Choquet-Bruhat (1952): Einstein's equations as a coupled set of quasi-linear wave equations: local existence & uniqueness of solutions...with Geroch (1969) the existence of a maximal Cauchy development unique up to diffeos
- the initial value problem is well-posed: ∃ a map so that it is "one-to-one" & continuous & causal

- Spacetime: (M, g_{ab}) smooth manifold M ... with a smooth metric g_{ab} ...
- Einstein's equations:

$$E_{ab} = G_{ab} - \mathscr{G}_{ab} = 0 \qquad \nabla^a \mathscr{G}_{ab} = 0$$

- In a more conventional setup: $\begin{bmatrix} R_{ab} \frac{1}{2} g_{ab} R \end{bmatrix} + \Lambda g_{ab} = 8\pi T_{ab}$ where the energy-momentum tensor is T_{ab} and Λ is the cosmological constant: $\boxed{\mathscr{G}_{ab} = 8\pi T_{ab} - \Lambda g_{ab}} (!)$ matter fields satisfying their field equations...
- Yvonne Choquet-Bruhat (1952): Einstein's equations as a coupled set of quasi-linear wave equations: local existence & uniqueness of solutions...with Geroch (1969) the existence of a maximal Cauchy development unique up to diffeos
- the initial value problem is well-posed: ∃ a map so that it is "one-to-one" & continuous & causal

• Since there is **no fixed background in GR**, the topology of *M* is not necessarily \mathbb{R}^4 **Cauchy problem:** *M* is constructed together with the metric.

The constraints are projections: $n^a n^b E_{ab} = 0 \ \& \ \pi_i{}^a n^b E_{ab} = 0$

$$(\mathscr{G}_{ab} = 0) \quad |^{(3)}R + (K_{ij}h^{ij})^2 - K_{ij}K^{ij} = 0 \quad \& \quad D^i [K_{ij} - h_{ij} (K_{ef}h^{ef})] = 0 \quad D_i \dots$$

Since there is no fixed background in GR, the topology of M is not necessarily R⁴
Cauchy problem: M is constructed together with the metric.

Initial data surface: (Σ, h_{ij}, K_{ij}) (satisfying the constraints) Spacetime:

 (M, g_{ab}) (satisfying the Einstein equations)

The constraints are projections: $n^a n^b E_{ab} = 0 \ \& \ \pi_i{}^a n^b E_{ab} = 0$

$$(\mathscr{G}_{ab} = 0) \quad {}^{(3)}R + (K_{ij}h^{ij})^2 - K_{ij}K^{ij} = 0 \quad \& \quad D^i [K_{ij} - h_{ij}(K_{ef}h^{ef})] = 0 \quad D_{i...}$$

Since there is no fixed background in GR, the topology of M is not necessarily R⁴
Cauchy problem: M is constructed together with the metric.

Initial data surface: **Spacetime:** (Σ, h_{ij}, K_{ij}) (M, g_{ab}) (satisfying the constraints) (satisfying the Einstein equations) na na $\left(\phi_*h_{ij} = \pi_i{}^a\pi_j{}^bg_{ab}, \phi_*K_{ij} = \pi_i{}^a\pi_j{}^b\nabla_a n_b\right)$ (h_{ij}, K_{ij}) (induced metric, extrinsic curvature)

The constraints are projections: $n^a n^b E_{ab} = 0 \& \pi_i{}^a n^b E_{ab} = 0$

$$(\mathscr{G}_{ab} = 0) \quad {}^{(3)}R + (K_{ij}h^{ij})^2 - K_{ij}K^{ij} = 0 \quad \& \quad D^i [K_{ij} - h_{ij} (K_{ef}h^{ef})] = 0 \quad D_i \dots$$

Since there is no fixed background in GR, the topology of M is not necessarily R⁴
Cauchy problem: M is constructed together with the metric.

Initial data surface: **Spacetime:** (Σ, h_{ij}, K_{ij}) (M, g_{ab}) (satisfying the constraints) (satisfying the Einstein equations) n^a $\left(\phi_*h_{ij} = \pi_i{}^a\pi_j{}^bg_{ab}, \phi_*K_{ij} = \pi_i{}^a\pi_j{}^b\nabla_a n_b\right)$ (h_{ij}, K_{ij}) (induced metric, extrinsic curvature)

The constraints are projections: $n^a n^b E_{ab} = 0 \& \pi_i{}^a n^b E_{ab} = 0$

$$(\mathscr{G}_{ab} = 0) \quad {}^{(3)}R + (K_{ij}h^{ij})^2 - K_{ij}K^{ij} = 0 \quad \& \quad D^i [K_{ij} - h_{ij} (K_{ef}h^{ef})] = 0 \quad D_i \dots$$

István Rácz (Wigner RCP)

• Could we work cleverly with the boundary at infinity?

- In 1963, Penrose introduced such a geometric treatment of generic, isolated, self-gravitating systems that replaces the $r \to \infty$ limit with an $\omega \to 0$ limit.
- To understand this, let us first look at Schwarzschild spacetime as a simple example.

$$ds^{2} = -\left(1 - \frac{2M}{r}\right)dt^{2} + \left(1 - \frac{2M}{r}\right)^{-1}dr^{2} + r^{2}\left(d\theta^{2} + \sin^{2}\theta \,d\phi^{2}\right)$$

• By introducing the retarded time coordinate $u = t - r - 2M \log(r - 2M)$ we obtain $ds^2 = -\left(1 - \frac{2M}{r}\right)du^2 - 2dudr + r^2\left(d\theta^2 + \sin^2\theta \,d\phi^2\right)$

• Choosing $\Omega = r^{-1} = w$ the conformally rescaled "nonphysical" metric reads as $d\tilde{s}^2 = \Omega^2 ds^2 = -(w^2 - 2Mw^3) du^2 + 2 du dw + (d\theta^2 + \sin^2\theta d\phi^2)$

- Could we work cleverly with the boundary at infinity?
- In 1963, Penrose introduced such a geometric treatment of generic, isolated, self-gravitating systems that replaces the $r \to \infty$ limit with an $\omega \to 0$ limit.
- To understand this, let us first look at Schwarzschild spacetime as a simple example.

$$ls^{2} = -\left(1 - \frac{2M}{r}\right)dt^{2} + \left(1 - \frac{2M}{r}\right)^{-1}dr^{2} + r^{2}\left(d\theta^{2} + \sin^{2}\theta \,d\phi^{2}\right)$$

• By introducing the retarded time coordinate $u = t - r - 2M \log(r - 2M)$ we obtain $ds^2 = -\left(1 - \frac{2M}{r}\right)du^2 - 2dudr + r^2\left(d\theta^2 + \sin^2\theta \,d\phi^2\right)$

• Choosing $\Omega = r^{-1} = w$ the conformally rescaled "nonphysical" metric reads as $d\tilde{s}^2 = \Omega^2 ds^2 = -(w^2 - 2Mw^3) du^2 + 2 du dw + (d\theta^2 + \sin^2\theta d\phi^2)$

- Could we work cleverly with the boundary at infinity?
- In 1963, Penrose introduced such a geometric treatment of generic, isolated, self-gravitating systems that replaces the $r \to \infty$ limit with an $\omega \to 0$ limit.
- To understand this, let us first look at Schwarzschild spacetime as a simple example.

$$ds^{2} = -\left(1 - \frac{2M}{r}\right)dt^{2} + \left(1 - \frac{2M}{r}\right)^{-1}dr^{2} + r^{2}\left(d\theta^{2} + \sin^{2}\theta \,d\phi^{2}\right)$$

• By introducing the retarded time coordinate $u = t - r - 2M \log(r - 2M)$ we obtain $ds^2 = -\left(1 - \frac{2M}{r}\right)du^2 - 2dudr + r^2\left(d\theta^2 + \sin^2\theta \,d\phi^2\right)$

• Choosing $\Omega = r^{-1} = w$ the conformally rescaled "nonphysical" metric reads as $d\tilde{s}^2 = \Omega^2 ds^2 = -(w^2 - 2Mw^3) du^2 + 2 dudw + (d\theta^2 + \sin^2\theta d\phi^2)$

- Could we work cleverly with the boundary at infinity?
- In 1963, Penrose introduced such a geometric treatment of generic, isolated, self-gravitating systems that replaces the $r \to \infty$ limit with an $\omega \to 0$ limit.
- To understand this, let us first look at Schwarzschild spacetime as a simple example.

$$ds^{2} = -\left(1 - \frac{2M}{r}\right)dt^{2} + \left(1 - \frac{2M}{r}\right)^{-1}dr^{2} + r^{2}\left(d\theta^{2} + \sin^{2}\theta \,d\phi^{2}\right)$$

• By introducing the retarded time coordinate $u = t - r - 2M \log(r - 2M)$ we obtain $ds^{2} = -\left(1 - \frac{2M}{r}\right)du^{2} - 2dudr + r^{2}\left(d\theta^{2} + \sin^{2}\theta d\phi^{2}\right)$

• Choosing $\Omega = r^{-1} = w$ the conformally rescaled "nonphysical" metric reads as $d\tilde{s}^2 = \Omega^2 ds^2 = -(w^2 - 2Mw^3) du^2 + 2 du dw + (d\theta^2 + \sin^2\theta d\phi^2)$

- Could we work cleverly with the boundary at infinity?
- In 1963, Penrose introduced such a geometric treatment of generic, isolated, self-gravitating systems that replaces the $r \to \infty$ limit with an $\omega \to 0$ limit.
- To understand this, let us first look at Schwarzschild spacetime as a simple example.

$$ds^{2} = -\left(1 - \frac{2M}{r}\right)dt^{2} + \left(1 - \frac{2M}{r}\right)^{-1}dr^{2} + r^{2}\left(d\theta^{2} + \sin^{2}\theta \,d\phi^{2}\right)$$

• By introducing the retarded time coordinate $u = t - r - 2M \log(r - 2M)$ we obtain $ds^2 = -\left(1 - \frac{2M}{r}\right)du^2 - 2dudr + r^2\left(d\theta^2 + \sin^2\theta \,d\phi^2\right)$

• Choosing
$$\Omega = r^{-1} = w$$
 the conformally rescaled "nonphysical" metric reads as $d\tilde{s}^2 = \Omega^2 ds^2 = -(w^2 - 2Mw^3) du^2 + 2 du dw + (d\theta^2 + \sin^2\theta d\phi^2)$

- Could we work cleverly with the boundary at infinity?
- In 1963, Penrose introduced such a geometric treatment of generic, isolated, self-gravitating systems that replaces the $r \to \infty$ limit with an $\omega \to 0$ limit.
- To understand this, let us first look at Schwarzschild spacetime as a simple example.

$$ds^{2} = -\left(1 - \frac{2M}{r}\right)dt^{2} + \left(1 - \frac{2M}{r}\right)^{-1}dr^{2} + r^{2}\left(d\theta^{2} + \sin^{2}\theta \,d\phi^{2}\right)$$

• By introducing the retarded time coordinate $u = t - r - 2M \log(r - 2M)$ we obtain $ds^2 = -\left(1 - \frac{2M}{r}\right)du^2 - 2dudr + r^2\left(d\theta^2 + \sin^2\theta \,d\phi^2\right)$

• Choosing $\Omega = r^{-1} = w$ the conformally rescaled "nonphysical" metric reads as $d\tilde{s}^2 = \Omega^2 ds^2 = -(w^2 - 2Mw^3) du^2 + 2 du dw + (d\theta^2 + \sin^2\theta d\phi^2)$

- Could we work cleverly with the boundary at infinity?
- In 1963, Penrose introduced such a geometric treatment of generic, isolated, self-gravitating systems that replaces the $r \to \infty$ limit with an $\omega \to 0$ limit.
- To understand this, let us first look at Schwarzschild spacetime as a simple example.

$$ds^{2} = -\left(1 - \frac{2M}{r}\right)dt^{2} + \left(1 - \frac{2M}{r}\right)^{-1}dr^{2} + r^{2}\left(d\theta^{2} + \sin^{2}\theta \,d\phi^{2}\right)$$

• By introducing the retarded time coordinate $u = t - r - 2M \log(r - 2M)$ we obtain $ds^2 = -\left(1 - \frac{2M}{r}\right)du^2 - 2dudr + r^2\left(d\theta^2 + \sin^2\theta \,d\phi^2\right)$

• Choosing $\Omega = r^{-1} = w$ the conformally rescaled "nonphysical" metric reads as $d\tilde{s}^2 = \Omega^2 ds^2 = -(w^2 - 2Mw^3) du^2 + 2 du dw + (d\theta^2 + \sin^2\theta d\phi^2)$

- Could we work cleverly with the boundary at infinity?
- In 1963, Penrose introduced such a geometric treatment of generic, isolated, self-gravitating systems that replaces the $r \to \infty$ limit with an $\omega \to 0$ limit.
- To understand this, let us first look at Schwarzschild spacetime as a simple example.

$$ds^{2} = -\left(1 - \frac{2M}{r}\right)dt^{2} + \left(1 - \frac{2M}{r}\right)^{-1}dr^{2} + r^{2}\left(d\theta^{2} + \sin^{2}\theta \,d\phi^{2}\right)$$

• By introducing the retarded time coordinate $u = t - r - 2M \log(r - 2M)$ we obtain $ds^2 = -\left(1 - \frac{2M}{r}\right)du^2 - 2dudr + r^2\left(d\theta^2 + \sin^2\theta \,d\phi^2\right)$

• Choosing $\Omega = r^{-1} = w$ the conformally rescaled "nonphysical" metric reads as $d\tilde{s}^2 = \Omega^2 ds^2 = -(w^2 - 2Mw^3) du^2 + 2 du dw + (d\theta^2 + \sin^2\theta d\phi^2)$

Asymptotically simple spacetimes & conformal compactification

• Consider a **smooth** spacetime (M,g) representing an isolated self-gravitating system.

- All the g-null geodesics are complete in the directions as they approach \mathscr{I} .
- This characterization does not refer to special coordinate systems.
- It brings \mathscr{I} to a finite place in the non-physical spacetime.
- The **degree of smoothness** of the non-physical metric \tilde{g} **is critical**, since the decay of the physical fields depends on this smoothness.

Asymptotically simple spacetimes & conformal compactification

 \bullet Consider a ${\bf smooth}$ spacetime (M,g) representing an isolated self-gravitating system.

- All the g-null geodesics are complete in the directions as they approach \mathscr{I} .
- This characterization does not refer to special coordinate systems.
- It brings \mathscr{I} to a finite place in the non-physical spacetime.
- The **degree of smoothness** of the non-physical metric \tilde{g} **is critical**, since the decay of the physical fields depends on this smoothness.

Asymptotically simple spacetimes & conformal compactification

• Consider a smooth spacetime (M,g) representing an isolated self-gravitating system. Such a spacetime is called asymptotically simple if there exists a smooth spacetime $(\widetilde{M}, \widetilde{g})$ with non-empty boundary $\mathscr{I} \neq \emptyset$ such that M can be diffeomorphically identified with the interior, $\widetilde{M} \setminus \mathscr{I}$, of \widetilde{M} so that

 $\widetilde{g}=\Omega^2 g \ \, {\rm on} \ \, M$

- All the g-null geodesics are complete in the directions as they approach \mathscr{I} .
- This characterization does not refer to special coordinate systems.
- It brings \mathscr{I} to a finite place in the non-physical spacetime.
- The **degree of smoothness** of the non-physical metric \tilde{g} **is critical**, since the decay of the physical fields depends on this smoothness.

Asymptotically simple spacetimes & conformal compactification

• Consider a smooth spacetime (M,g) representing an isolated self-gravitating system. Such a spacetime is called asymptotically simple if there exists a smooth spacetime $(\widetilde{M}, \widetilde{g})$ with non-empty boundary $\mathscr{I} \neq \emptyset$ such that M can be diffeomorphically identified with the interior, $\widetilde{M} \setminus \mathscr{I}$, of \widetilde{M} so that

 $\widetilde{g}=\Omega^2 g \ \, {\rm on} \ \, M$

where Ω is a smooth boundary defining function on M, i.e.

 $\Omega>0 \text{ on } \widetilde{M}\setminus \mathscr{I} \quad \text{ and } \quad \Omega=0 \ \& \ d\Omega\neq 0 \ \text{ on } \mathscr{I}$

• All the g-null geodesics are complete in the directions as they approach \mathscr{I} .

- This characterization does not refer to special coordinate systems.
- It brings \mathscr{I} to a finite place in the non-physical spacetime.
- The **degree of smoothness** of the non-physical metric \tilde{g} **is critical**, since the decay of the physical fields depends on this smoothness.

Asymptotically simple spacetimes & conformal compactification

• Consider a smooth spacetime (M,g) representing an isolated self-gravitating system. Such a spacetime is called asymptotically simple if there exists a smooth spacetime $(\widetilde{M}, \widetilde{g})$ with non-empty boundary $\mathscr{I} \neq \emptyset$ such that M can be diffeomorphically identified with the interior, $\widetilde{M} \setminus \mathscr{I}$, of \widetilde{M} so that

 $\widetilde{g}=\Omega^2g \ \, {\rm on} \ \, M$

where Ω is a smooth boundary defining function on M, i.e.

 $\Omega>0 \text{ on } \widetilde{M}\setminus \mathscr{I} \quad \text{ and } \quad \Omega=0 \ \& \ d\Omega\neq 0 \ \text{ on } \mathscr{I}$

• All the g-null geodesics are complete in the directions as they approach \mathscr{I} .

- This characterization does not refer to special coordinate systems.
- It brings \mathscr{I} to a finite place in the non-physical spacetime.
- The **degree of smoothness** of the non-physical metric \tilde{g} **is critical**, since the decay of the physical fields depends on this smoothness.

Asymptotically simple spacetimes & conformal compactification

• Consider a smooth spacetime (M,g) representing an isolated self-gravitating system. Such a spacetime is called asymptotically simple if there exists a smooth spacetime $(\widetilde{M}, \widetilde{g})$ with non-empty boundary $\mathscr{I} \neq \emptyset$ such that M can be diffeomorphically identified with the interior, $\widetilde{M} \setminus \mathscr{I}$, of \widetilde{M} so that

 $\widetilde{g}=\Omega^2 g \ \, {\rm on} \ \, M$

where Ω is a smooth boundary defining function on M, i.e.

 $\Omega>0 \text{ on } \widetilde{M}\setminus \mathscr{I} \quad \text{ and } \quad \Omega=0 \ \& \ d\Omega\neq 0 \ \text{ on } \mathscr{I}$

- All the g-null geodesics are complete in the directions as they approach \mathscr{I} .
- This characterization does not refer to special coordinate systems.
- It brings I to a finite place in the non-physical spacetime.
- The **degree of smoothness** of the non-physical metric \tilde{g} **is critical**, since the decay of the physical fields depends on this smoothness.

Asymptotically simple spacetimes & conformal compactification

• Consider a smooth spacetime (M,g) representing an isolated self-gravitating system. Such a spacetime is called asymptotically simple if there exists a smooth spacetime $(\widetilde{M}, \widetilde{g})$ with non-empty boundary $\mathscr{I} \neq \emptyset$ such that M can be diffeomorphically identified with the interior, $\widetilde{M} \setminus \mathscr{I}$, of \widetilde{M} so that

 $\widetilde{g}=\Omega^2 g \ \, {\rm on} \ \, M$

where Ω is a smooth boundary defining function on M, i.e.

 $\Omega>0 \text{ on } \widetilde{M}\setminus \mathscr{I} \quad \text{ and } \quad \Omega=0 \ \& \ d\Omega\neq 0 \ \text{ on } \mathscr{I}$

- All the g-null geodesics are complete in the directions as they approach \mathscr{I} .
- This characterization does not refer to special coordinate systems.
- $\bullet\,$ It brings ${\mathscr I}$ to a finite place in the non-physical spacetime.
- The **degree of smoothness** of the non-physical metric \tilde{g} **is critical**, since the decay of the physical fields depends on this smoothness.
Asymptotically simple spacetimes & conformal compactification

• Consider a smooth spacetime (M,g) representing an isolated self-gravitating system. Such a spacetime is called asymptotically simple if there exists a smooth spacetime $(\widetilde{M}, \widetilde{g})$ with non-empty boundary $\mathscr{I} \neq \emptyset$ such that M can be diffeomorphically identified with the interior, $\widetilde{M} \setminus \mathscr{I}$, of \widetilde{M} so that

 $\widetilde{g}=\Omega^2 g \ \, {\rm on} \ \, M$

where Ω is a smooth boundary defining function on M, i.e.

 $\Omega>0 \text{ on } \widetilde{M}\setminus \mathscr{I} \quad \text{ and } \quad \Omega=0 \ \& \ d\Omega\neq 0 \ \text{ on } \mathscr{I}$

- All the g-null geodesics are complete in the directions as they approach \mathscr{I} .
- This characterization does not refer to special coordinate systems.
- It brings \mathscr{I} to a finite place in the non-physical spacetime.
- The **degree of smoothness** of the non-physical metric \tilde{g} **is critical**, since the decay of the physical fields depends on this smoothness.

- Are the applied conditions compatible with the asymptotic behavior of a "sufficiently large" class of physically realistic spacetimes?
- One approach is to use the hyperboloidal initial value problem, where the initial data are prescribed on a hypersurface Σ with boundary $\partial \Sigma$, which is conceived as a hypersurface in an asymptotically simple spacetime. This hypersurface intersects future null infinity \mathscr{I}^+ in $\partial \Sigma$, and is spacelike everywhere.

- In the mid 80's **Friedrich** developed a powerful formalism for studying asymptotically simple spacetimes. His conformal field equations were used to study the evolution of suitably regular hyperboloidal initial data.
- Friedrich proved that sufficiently smooth data evolve into solutions that satisfy the requirements in the definition of asymptotically simple spacetimes. Moreover, these developments admit a conformally regular point i^+ , analogous to the i^+ (timelike infinity) of Minkowski spacetime, provided that the initial data are sufficiently close to Minkowskian hyperboloidal data.

- Are the applied conditions compatible with the asymptotic behavior of a "sufficiently large" class of physically realistic spacetimes?
- One approach is to use the hyperboloidal initial value problem, where the initial data are prescribed on a hypersurface Σ with boundary $\partial \Sigma$, which is conceived as a hypersurface in an asymptotically simple spacetime. This hypersurface intersects future null infinity \mathscr{I}^+ in $\partial \Sigma$, and is spacelike everywhere.

- In the mid 80's **Friedrich** developed a powerful formalism for studying asymptotically simple spacetimes. His conformal field equations were used to study the evolution of suitably regular hyperboloidal initial data.
- Friedrich proved that sufficiently smooth data evolve into solutions that satisfy the requirements in the definition of asymptotically simple spacetimes. Moreover, these developments admit a conformally regular point i^+ , analogous to the i^+ (timelike infinity) of Minkowski spacetime, provided that the initial data are sufficiently close to Minkowskian hyperboloidal data.

- Are the applied conditions compatible with the asymptotic behavior of a "sufficiently large" class of physically realistic spacetimes?
- One approach is to use the hyperboloidal initial value problem, where the initial data are prescribed on a hypersurface Σ with boundary $\partial \Sigma$, which is conceived as a hypersurface in an asymptotically simple spacetime. This hypersurface intersects future null infinity \mathscr{I}^+ in $\partial \Sigma$, and is spacelike everywhere.

- In the mid 80's **Friedrich** developed a powerful formalism for studying asymptotically simple spacetimes. His conformal field equations were used to study the evolution of suitably regular hyperboloidal initial data.
- Friedrich proved that sufficiently smooth data evolve into solutions that satisfy the requirements in the definition of asymptotically simple spacetimes. Moreover, these developments admit a conformally regular point i^+ , analogous to the i^+ (timelike infinity) of Minkowski spacetime, provided that the initial data are sufficiently close to Minkowskian hyperboloidal data.

- Are the applied conditions compatible with the asymptotic behavior of a "sufficiently large" class of physically realistic spacetimes?
- One approach is to use the hyperboloidal initial value problem, where the initial data are prescribed on a hypersurface Σ with boundary $\partial \Sigma$, which is conceived as a hypersurface in an asymptotically simple spacetime. This hypersurface intersects future null infinity \mathscr{I}^+ in $\partial \Sigma$, and is spacelike everywhere.

- In the mid 80's **Friedrich** developed a powerful formalism for studying asymptotically simple spacetimes. His conformal field equations were used to study the evolution of suitably regular hyperboloidal initial data.
- Friedrich proved that sufficiently smooth data evolve into solutions that satisfy the requirements in the definition of asymptotically simple spacetimes. Moreover, these developments admit a conformally regular point i^+ , analogous to the i^+ (timelike infinity) of Minkowski spacetime, provided that the initial data are sufficiently close to Minkowskian hyperboloidal data.

- Are the applied conditions compatible with the asymptotic behavior of a "sufficiently large" class of physically realistic spacetimes?
- One approach is to use the hyperboloidal initial value problem, where the initial data are prescribed on a hypersurface Σ with boundary $\partial \Sigma$, which is conceived as a hypersurface in an asymptotically simple spacetime. This hypersurface intersects future null infinity \mathscr{I}^+ in $\partial \Sigma$, and is spacelike everywhere.

- In the mid 80's **Friedrich** developed a powerful formalism for studying asymptotically simple spacetimes. His conformal field equations were used to study the evolution of suitably regular hyperboloidal initial data.
- Friedrich proved that sufficiently smooth data evolve into solutions that satisfy the requirements in the definition of asymptotically simple spacetimes. Moreover, these developments admit a conformally regular point i^+ , analogous to the i^+ (timelike infinity) of Minkowski spacetime, provided that the initial data are sufficiently close to Minkowskian hyperboloidal data.

How large is the space of asymptotically simple spacetimes?

- Are the applied conditions compatible with the asymptotic behavior of a "sufficiently large" class of physically realistic spacetimes?
- One approach is to use the hyperboloidal initial value problem, where the initial data are prescribed on a hypersurface Σ with boundary $\partial \Sigma$, which is conceived as a hypersurface in an asymptotically simple spacetime. This hypersurface intersects future null infinity \mathscr{I}^+ in $\partial \Sigma$, and is spacelike everywhere.

- In the mid 80's **Friedrich** developed a powerful formalism for studying asymptotically simple spacetimes. His conformal field equations were used to study the evolution of suitably regular hyperboloidal initial data.
- Friedrich proved that sufficiently smooth data evolve into solutions that satisfy the requirements in the definition of asymptotically simple spacetimes. Moreover, these developments admit a conformally regular point i^+ , analogous to the i^+ (timelike infinity) of Minkowski spacetime, provided that the initial data are sufficiently close to Minkowskian hyperboloidal data.

8 / 20

Solving the constraints:

• For those interested in solving the conformal field equations, the first challenge is acquiring as large variety of hyperboloidal initial data sets as possible and also characterizing the space of initial data: in the vacuum case for (h_{ij}, K_{ij}) on Σ

$${}^{(3)}R + (K_{ij}h^{ij})^2 - K_{ij}K^{ij} = 0 \quad \& \quad D^i \left[K_{ij} - h_{ij} \left(K_{ef}h^{ef} \right) \right] = 0$$

Andersson & Chruściel '93, '94, '96: log-terms entered the discussion

Solving the constraints:

• For those interested in solving the conformal field equations, the first challenge is acquiring as large variety of hyperboloidal initial data sets as possible and also characterizing the space of initial data: in the vacuum case for (h_{ij}, K_{ij}) on Σ

$${}^{(3)}R + (K_{ij}h^{ij})^2 - K_{ij}K^{ij} = 0 \quad \& \quad D^i \left[K_{ij} - h_{ij} \left(K_{ef}h^{ef} \right) \right] = 0$$

• It is an underdetermined system, 4 equations for the 12 variables:

(h_{ij}, K_{ij})

Andersson & Chruściel '93, '94, '96: log-terms entered the discussion

- $\begin{array}{ccc} \bullet & \hline (h_{ij}, K_{ij}) & \longleftrightarrow & \left[(\phi, \tilde{h}_{ij}; K^l_{l}, X_i, \tilde{K}_{ij}^{[TT]}) \right] & (\text{the conformal (elliptic) method} \\ \hline h_{ij} = \phi^4 \tilde{h}_{ij} & \& & K_{ij} \frac{1}{2} h_{ij} K = \phi^{-2} \tilde{K}_{ij} & \& & \tilde{K}_{ij} = \tilde{K}_{ij}^{[L]} + \tilde{K}_{ij}^{[TT]} \end{array}$
- Andersson and Chruściel proved that even if the free data is smooth,
 (1) In general, the constrained fields have poly-logarithmic expansions in to we will swhere a denotes the "distance" from the isolated system

Solving the constraints:

• For those interested in solving the conformal field equations, the first challenge is acquiring as large variety of hyperboloidal initial data sets as possible and also characterizing the space of initial data: in the vacuum case for (h_{ij}, K_{ij}) on Σ

$${}^{(3)}R + (K_{ij}h^{ij})^2 - K_{ij}K^{ij} = 0 \quad \& \quad D^i \left[K_{ij} - h_{ij} \left(K_{ef}h^{ef} \right) \right] = 0$$

• It is an underdetermined system, 4 equations for the 12 variables: (h_i)

$$(h_{ij}, K_{ij})$$

Andersson & Chruściel '93, '94, '96: log-terms entered the discussion

- $(h_{ij}, K_{ij}) \longleftrightarrow (\phi, \widetilde{h}_{ij}; K^l_l, X_i, \widetilde{K}_{ij}^{[TT]})$ (the conformal (elliptic) method) $h_{ij} = \phi^4 \widetilde{h}_{ij} \& K_{ij} - \frac{1}{2} h_{ij} K = \phi^{-2} \widetilde{K}_{ij} \& \widetilde{K}_{ij} = \widetilde{K}_{ij}^{[L]} + \widetilde{K}_{i}^{[TT]}$
- Andersson and Chruściel proved that even if the free data is smooth,
 - 1) in general, the constrained fields have poly-logarithmic expansions in $\omega \sim r^{-1}$, where r denotes the "distance" from the isolated system
 - $\mathcal{C} = \mathcal{C}_0 + \mathcal{C}_1 \omega + \mathcal{C}_2 \omega^2 + \dots$ $\mathcal{C} = \mathcal{C}_0 + \sum_{i=1}^{\infty} \omega^i \left[\mathcal{C}_i + \sum_{j=1}^{N_j} \mathcal{C}_{i,j}^{[log]} \log^j \omega \right]$

 in non-generic cases, the initial data can be smooth (i.e., free of log-terms) if certain tensorial expressions derived from the free data vanish at ∂Σ.

9/20

Solving the constraints:

• For those interested in solving the conformal field equations, the first challenge is acquiring as large variety of hyperboloidal initial data sets as possible and also characterizing the space of initial data: in the vacuum case for (h_{ij}, K_{ij}) on Σ

$${}^{(3)}R + (K_{ij}h^{ij})^2 - K_{ij}K^{ij} = 0 \quad \& \quad D^i \left[K_{ij} - h_{ij} \left(K_{ef}h^{ef} \right) \right] = 0$$

• It is an underdetermined system, 4 equations for the 12 variables: (h_{ij}, K_{ij})

Andersson & Chruściel '93, '94, '96: log-terms entered the discussion

• $(h_{ij}, K_{ij}) \longleftrightarrow (\phi, \tilde{h}_{ij}; K^l_l, X_i, \tilde{K}_{ij}^{[TT]})$ (the conformal (elliptic) method) $h_{ij} = \phi^4 \tilde{h}_{ij}$ & $K_{ij} - \frac{1}{2} h_{ij} K = \phi^{-2} \tilde{K}_{ij}$ & $\tilde{K}_{ij} = \tilde{K}_{ij}^{[L]} + \tilde{K}_{ij}^{[TT]}$

• Andersson and Chruściel proved that even if the free data is smooth,

1) in general, the constrained fields have poly-logarithmic expansions in $\omega \sim r^{-1}$, where r denotes the "distance" from the isolated system

$$\mathcal{C} = \mathcal{C}_0 + \mathcal{C}_1 \omega + \mathcal{C}_2 \omega^2 + \dots \qquad \mathcal{C} = \mathcal{C}_0 + \sum_{i=1}^{\infty} \omega^i \left[\mathcal{C}_i + \sum_{j=1}^{\mathcal{N}_j} \mathcal{C}_{i,j}^{[log]} \log^j \omega \right]$$

(2) in non-generic cases, the initial data can be smooth (i.e., free of log-terms) if certain tensorial expressions derived from the free data vanish at ∂Σ.

Solving the constraints:

• For those interested in solving the conformal field equations, the first challenge is acquiring as large variety of hyperboloidal initial data sets as possible and also characterizing the space of initial data: in the vacuum case for (h_{ij}, K_{ij}) on Σ

$${}^{(3)}R + (K_{ij}h^{ij})^2 - K_{ij}K^{ij} = 0 \quad \& \quad D^i \left[K_{ij} - h_{ij} \left(K_{ef}h^{ef} \right) \right] = 0$$

• It is an underdetermined system, 4 equations for the 12 variables: (h_{ij}, K_{ij})

Andersson & Chruściel '93, '94, '96: log-terms entered the discussion

- $(h_{ij}, K_{ij}) \longleftrightarrow (\phi, \tilde{h}_{ij}; K^l_l, X_i, \tilde{K}_{ij}^{[TT]})$ (the conformal (elliptic) method) $h_{ij} = \phi^4 \tilde{h}_{ij}$ & $K_{ij} - \frac{1}{3} h_{ij} K = \phi^{-2} \tilde{K}_{ij}$ & $\tilde{K}_{ij} = \tilde{K}_{ij}^{[L]} + \tilde{K}_{ij}^{[TT]}$
- Andersson and Chruściel proved that even if the free data is smooth,
 - (1) in general, the constrained fields have poly-logarithmic expansions in $\omega \sim r^{-1}$, where r denotes the "distance" from the isolated system

$$\mathcal{C} = \mathcal{C}_0 + \mathcal{C}_1 \omega + \mathcal{C}_2 \omega^2 + \dots$$
 $\mathcal{C} = \mathcal{C}_0 + \sum_{i=1}^{\infty} \omega^i \left[\mathcal{C}_i + \sum_{j=1}^{\mathcal{N}_j} \mathcal{C}_{i,j}^{[log]} \log^j \omega \right]$

(2) in non-generic cases, the initial data can be smooth (i.e., free of log-terms) if certain tensorial expressions derived from the free data vanish at ∂Σ.

Solving the constraints:

• For those interested in solving the conformal field equations, the first challenge is acquiring as large variety of hyperboloidal initial data sets as possible and also characterizing the space of initial data: in the vacuum case for (h_{ij}, K_{ij}) on Σ

$${}^{(3)}R + (K_{ij}h^{ij})^2 - K_{ij}K^{ij} = 0 \quad \& \quad D^i \left[K_{ij} - h_{ij} \left(K_{ef}h^{ef} \right) \right] = 0$$

• It is an underdetermined system, 4 equations for the 12 variables: (h_{ij}, K_{ij})

Andersson & Chruściel '93, '94, '96: log-terms entered the discussion

- $(h_{ij}, K_{ij}) \longleftrightarrow (\phi, \tilde{h}_{ij}; K^l_l, X_i, \tilde{K}_{ij}^{[TT]})$ (the conformal (elliptic) method) $h_{ij} = \phi^4 \tilde{h}_{ij}$ & $K_{ij} - \frac{1}{3} h_{ij} K = \phi^{-2} \tilde{K}_{ij}$ & $\tilde{K}_{ij} = \tilde{K}_{ij}^{[L]} + \tilde{K}_{ij}^{[TT]}$
- Andersson and Chruściel proved that even if the free data is smooth,
 - (1) in general, the constrained fields have poly-logarithmic expansions in $\omega \sim r^{-1}$, where r denotes the "distance" from the isolated system

$$\mathcal{C} = \mathcal{C}_0 + \mathcal{C}_1 \omega + \mathcal{C}_2 \omega^2 + \dots$$
 $\mathcal{C} = \mathcal{C}_0 + \sum_{i=1}^{\infty} \omega^i \left[\mathcal{C}_i + \sum_{j=1}^{\mathcal{N}_j} \mathcal{C}_{i,j}^{[log]} \log^j \omega \right]$

(2) in non-generic cases, the initial data can be smooth (i.e., free of log-terms) if certain tensorial expressions derived from the free data vanish at $\partial \Sigma$.

- These conclusions were disappointing because they implied that the initial data constructed by the conformal method is **generally not regular enough** for use in Friedrich's existence theorems.
- Andersson and Chruściel also showed that if the initial data involves logarithmic terms, then the evolving metric will also contain log-terms.
- \implies In general, we cannot decompose the physical metric into a sufficiently smooth non-physical metric and a sufficiently smooth conformal factor.
- Given the definition of asymptotically simple spacetimes, it is natural to ask whether Einstein's equations can be used to verify the smoothness assumptions.
- The question is not whether C[∞] should be replaced by C^k for sufficiently large k in the context of the physical spacetime. Rather, the question is whether solutions to the field equations admit conformal extensions of class C^k, where k can be chosen large enough to make the concept of asymptotically simple spacetimes meaningful.

- Friedrich emphasized that "before we can arrive at a conclusion we need to answer the following questions:
 - what physical relevance do the data with logarithmic terms have,
 - are they needed to model the systems of interest, and
 - which are the systems of interest ?

- These conclusions were disappointing because they implied that the initial data constructed by the conformal method is **generally not regular enough** for use in Friedrich's existence theorems.
- Andersson and Chruściel also showed that if the initial data involves logarithmic terms, then the evolving metric will also contain log-terms.
- \implies In general, we cannot decompose the physical metric into a sufficiently smooth non-physical metric and a sufficiently smooth conformal factor.
- Given the definition of asymptotically simple spacetimes, it is natural to ask whether Einstein's equations can be used to verify the smoothness assumptions.
- The question is not whether C[∞] should be replaced by C^k for sufficiently large k in the context of the physical spacetime. Rather, the question is whether solutions to the field equations admit conformal extensions of class C^k, where k can be chosen large enough to make the concept of asymptotically simple spacetimes meaningful.

- Friedrich emphasized that "before we can arrive at a conclusion we need to answer the following questions:
 - what physical relevance do the data with logarithmic terms have,
 - are they needed to model the systems of interest, and
 - which are the systems of interest ?

- These conclusions were disappointing because they implied that the initial data constructed by the conformal method is **generally not regular enough** for use in Friedrich's existence theorems.
- Andersson and Chruściel also showed that if the initial data involves logarithmic terms, then the evolving metric will also contain log-terms.
- \implies In general, we cannot decompose the physical metric into a sufficiently smooth non-physical metric and a sufficiently smooth conformal factor.
- Given the definition of asymptotically simple spacetimes, it is natural to ask whether Einstein's equations can be used to verify the smoothness assumptions.
- The question is not whether C[∞] should be replaced by C^k for sufficiently large k in the context of the physical spacetime. Rather, the question is whether solutions to the field equations admit conformal extensions of class C^k, where k can be chosen large enough to make the concept of asymptotically simple spacetimes meaningful.

- Friedrich emphasized that "before we can arrive at a conclusion we need to answer the following questions: $[\widetilde{\nabla}_e K_{abc}{}^e = 0 \quad \& \quad K_{abc}{}^e = \Omega^{-1}C_{abc}{}^e]$
 - what physical relevance do the data with logarithmic terms have,
 - are they needed to model the systems of interest, and
 - which are the systems of interest ?

- These conclusions were disappointing because they implied that the initial data constructed by the conformal method is **generally not regular enough** for use in Friedrich's existence theorems.
- Andersson and Chruściel also showed that if the initial data involves logarithmic terms, then the evolving metric will also contain log-terms.
- \implies In general, we cannot decompose the physical metric into a sufficiently smooth non-physical metric and a sufficiently smooth conformal factor.
- Given the definition of asymptotically simple spacetimes, **it is natural to ask** whether Einstein's equations can be used to verify the smoothness assumptions.
- The question is not whether C[∞] should be replaced by C^k for sufficiently large k in the context of the physical spacetime. Rather, the question is whether solutions to the field equations admit conformal extensions of class C^k, where k can be chosen large enough to make the concept of asymptotically simple spacetimes meaningful.

- Friedrich emphasized that "before we can arrive at a conclusion we need to answer the following questions: $[\widetilde{\nabla}_e K_{abc}{}^e = 0 \quad \& \quad K_{abc}{}^e = \Omega^{-1}C_{abc}{}^e]$
 - what physical relevance do the data with logarithmic terms have,
 - are they needed to model the systems of interest, and
 - which are the systems of interest ?

- These conclusions were disappointing because they implied that the initial data constructed by the conformal method is **generally not regular enough** for use in Friedrich's existence theorems.
- Andersson and Chruściel also showed that if the initial data involves logarithmic terms, then the evolving metric will also contain log-terms.
- \implies In general, we cannot decompose the physical metric into a sufficiently smooth non-physical metric and a sufficiently smooth conformal factor.
- Given the definition of asymptotically simple spacetimes, it is natural to ask whether Einstein's equations can be used to verify the smoothness assumptions.
- The question is not whether C^{∞} should be replaced by C^k for sufficiently large k in the context of the physical spacetime. Rather, the question is whether solutions to the field equations admit conformal extensions of class C^k , where k can be chosen large enough to make the concept of asymptotically simple spacetimes meaningful.

- Friedrich emphasized that "before we can arrive at a conclusion we need to answer the following questions: $[\widetilde{\nabla}_e K_{abc}{}^e = 0 \quad \& \quad K_{abc}{}^e = \Omega^{-1}C_{abc}{}^e]$
 - what physical relevance do the data with logarithmic terms have,
 - are they needed to model the systems of interest, and
 - which are the systems of interest ?

- These conclusions were disappointing because they implied that the initial data constructed by the conformal method is **generally not regular enough** for use in Friedrich's existence theorems.
- Andersson and Chruściel also showed that if the initial data involves logarithmic terms, then the evolving metric will also contain log-terms.
- \implies In general, we cannot decompose the physical metric into a sufficiently smooth non-physical metric and a sufficiently smooth conformal factor.
- Given the definition of asymptotically simple spacetimes, it is natural to ask whether Einstein's equations can be used to verify the smoothness assumptions.
- The question is not whether C^{∞} should be replaced by C^k for sufficiently large k in the context of the physical spacetime. Rather, the question is whether solutions to the field equations admit conformal extensions of class C^k , where k can be chosen large enough to make the concept of asymptotically simple spacetimes meaningful.

- Friedrich emphasized that "before we can arrive at a conclusion we need to answer the following questions: $[\widetilde{\nabla}_e K_{abc}{}^e = 0 \quad \& \quad K_{abc}{}^e = \Omega^{-1}C_{abc}{}^e]$
 - what physical relevance do the data with logarithmic terms have,
 - are they needed to model the systems of interest, and
 - which are the systems of interest ?

- These conclusions were disappointing because they implied that the initial data constructed by the conformal method is **generally not regular enough** for use in Friedrich's existence theorems.
- Andersson and Chruściel also showed that if the initial data involves logarithmic terms, then the evolving metric will also contain log-terms.
- \implies In general, we cannot decompose the physical metric into a sufficiently smooth non-physical metric and a sufficiently smooth conformal factor.
- Given the definition of asymptotically simple spacetimes, it is natural to ask whether Einstein's equations can be used to verify the smoothness assumptions.
- The question is not whether C^{∞} should be replaced by C^k for sufficiently large k in the context of the physical spacetime. Rather, the question is whether solutions to the field equations admit conformal extensions of class C^k , where k can be chosen large enough to make the concept of asymptotically simple spacetimes meaningful.

- Friedrich emphasized that "before we can arrive at a conclusion we need to answer the following questions: $[\widetilde{\nabla}_e K_{abc}{}^e = 0 \quad \& \quad K_{abc}{}^e = \Omega^{-1}C_{abc}{}^e]$
 - what physical relevance do the data with logarithmic terms have,
 - are they needed to model the systems of interest, and
 - which are the systems of interest ?

- These conclusions were disappointing because they implied that the initial data constructed by the conformal method is **generally not regular enough** for use in Friedrich's existence theorems.
- Andersson and Chruściel also showed that if the initial data involves logarithmic terms, then the evolving metric will also contain log-terms.
- \implies In general, we cannot decompose the physical metric into a sufficiently smooth non-physical metric and a sufficiently smooth conformal factor.
- Given the definition of asymptotically simple spacetimes, it is natural to ask whether Einstein's equations can be used to verify the smoothness assumptions.
- The question is not whether C^{∞} should be replaced by C^k for sufficiently large k in the context of the physical spacetime. Rather, the question is whether solutions to the field equations admit conformal extensions of class C^k , where k can be chosen large enough to make the concept of asymptotically simple spacetimes meaningful.

- Friedrich emphasized that "before we can arrive at a conclusion we need to answer the following questions: $[\widetilde{\nabla}_e K_{abc}{}^e = 0 \quad \& \quad K_{abc}{}^e = \Omega^{-1}C_{abc}{}^e]$
 - what physical relevance do the data with logarithmic terms have,
 - are they needed to model the systems of interest, and
 - which are the systems of interest ?

- These conclusions were disappointing because they implied that the initial data constructed by the conformal method is **generally not regular enough** for use in Friedrich's existence theorems.
- Andersson and Chruściel also showed that if the initial data involves logarithmic terms, then the evolving metric will also contain log-terms.
- \implies In general, we cannot decompose the physical metric into a sufficiently smooth non-physical metric and a sufficiently smooth conformal factor.
- Given the definition of asymptotically simple spacetimes, it is natural to ask whether Einstein's equations can be used to verify the smoothness assumptions.
- The question is not whether C^{∞} should be replaced by C^k for sufficiently large k in the context of the physical spacetime. Rather, the question is whether solutions to the field equations admit conformal extensions of class C^k , where k can be chosen large enough to make the concept of asymptotically simple spacetimes meaningful.

The positivists approach 1.:

- Friedrich emphasized that "before we can arrive at a conclusion we need to answer the following questions: $[\widetilde{\nabla}_e K_{abc}{}^e = 0 \quad \& \quad K_{abc}{}^e = \Omega^{-1}C_{abc}{}^e]$
 - what physical relevance do the data with logarithmic terms have,
 - are they needed to model the systems of interest, and
 - which are the systems of interest ?"

10/20

• At the stage of this difficulty **Beyer and Ritchie** [CQG,39,145012,(2022)] came up with an interesting result:

- Assume that there exist smooth global solutions to the parabolic-hyperbolic form of the constraints on a "hyperboloidal initial data surface" Σ. If these solutions extend regularly up to some finite order to ∂Σ, then they extend smoothly to ∂Σ.
- "The main thing we establish is that any solution that satisfies these a priori regularity assumptions extends smoothly to ∂Σ. This is important because it means that such solutions are free of all log-terms in their expansions."
- Beyer and Ritchie introduced an impressive Fuchsian-type argument, but
- they also made very strong assumptions about both the constrained and the free data that went largely uncommented. In this way, Beyer and Ritchie's results came close to Andersson and Chruściel's second claim on the non-generic case.

イロト イヨト イヨト イヨ

- At the stage of this difficulty **Beyer and Ritchie** [CQG,39,145012,(2022)] came up with an interesting result:
 - Assume that there exist smooth global solutions to the parabolic-hyperbolic form of the constraints on a "hyperboloidal initial data surface" Σ . If these solutions extend regularly up to some finite order to $\partial\Sigma$, then they extend smoothly to $\partial\Sigma$.
 - "The main thing we establish is that any solution that satisfies these a priori regularity assumptions extends smoothly to $\partial \Sigma$. This is important because it means that such solutions are free of all log-terms in their expansions."
 - Beyer and Ritchie introduced an impressive Fuchsian-type argument, but
 - they also made very strong assumptions about both the constrained and the free data that went largely uncommented. In this way, Beyer and Ritchie's results came close to Andersson and Chruściel's second claim on the non-generic case.

< □ > < 同 > < 回 > < 回 >

- At the stage of this difficulty **Beyer and Ritchie** [CQG,39,145012,(2022)] came up with an interesting result:
 - Assume that there exist smooth global solutions to the parabolic-hyperbolic form of the constraints on a "hyperboloidal initial data surface" Σ. If these solutions extend regularly up to some finite order to ∂Σ, then they extend smoothly to ∂Σ.
 - "The main thing we establish is that any solution that satisfies these a priori regularity assumptions extends smoothly to ∂Σ. This is important because it means that such solutions are free of all log-terms in their expansions."
 - Beyer and Ritchie introduced an impressive Fuchsian-type argument, but
 - they also made very strong assumptions about both the constrained and the free data that went largely uncommented. In this way, Beyer and Ritchie's results came close to Andersson and Chruściel's second claim on the non-generic case.

イロト イヨト イヨト

- At the stage of this difficulty **Beyer and Ritchie** [CQG,39,145012,(2022)] came up with an interesting result:
 - Assume that there exist smooth global solutions to the parabolic-hyperbolic form of the constraints on a "hyperboloidal initial data surface" Σ. If these solutions extend regularly up to some finite order to ∂Σ, then they extend smoothly to ∂Σ.
 - "The main thing we establish is that any solution that satisfies these a priori regularity assumptions extends smoothly to ∂Σ. This is important because it means that such solutions are free of all log-terms in their expansions."
 - Beyer and Ritchie introduced an impressive Fuchsian-type argument, but
 - they also made very strong assumptions about both the constrained and the free data that went largely uncommented. In this way, Beyer and Ritchie's results came close to Andersson and Chruściel's second claim on the non-generic case.

イロト イヨト イヨト

- At the stage of this difficulty **Beyer and Ritchie** [CQG,39,145012,(2022)] came up with an interesting result:
 - Assume that there exist smooth global solutions to the parabolic-hyperbolic form of the constraints on a "hyperboloidal initial data surface" Σ. If these solutions extend regularly up to some finite order to ∂Σ, then they extend smoothly to ∂Σ.
 - "The main thing we establish is that any solution that satisfies these a priori regularity assumptions extends smoothly to ∂Σ. This is important because it means that such solutions are free of all log-terms in their expansions."
 - Beyer and Ritchie introduced an impressive Fuchsian-type argument, but
 - they also made very strong assumptions about both the constrained and the free data that went largely uncommented. In this way, Beyer and Ritchie's results came close to Andersson and Chruściel's second claim on the non-generic case.

(日) (四) (日) (日) (日)

The parabolic-hyperbolic form of the constraints & the spin-weighted variables

• For (h_{ij}, K_{ij}) on Σ $^{(3)}R + (K^{j}{}_{j})^{2} - K_{ij}K^{ij} = 0$ $D_{j}K^{j}{}_{i} - D_{i}K^{j}{}_{j} = 0$

• ASSUME: Σ can be foliated by a one-parameter family of topological two-spheres

- $\rho: \Sigma \to \mathbb{R}$: $\partial_i \rho$ a.n. vanishes, $\widehat{n}_i \sim \partial_i \rho$, $\widehat{\gamma}_i{}^j = \delta_i{}^j \widehat{n}_i \widehat{n}^j$, $h_{ij} = \widehat{\gamma}_{ij} + \widehat{n}_i \widehat{n}_j$
- Choose a flow ρ^a such that $\rho^a \partial_a \rho = 1$ and such that its integral curves intersect each of the $\rho = const$ level surfaces precisely once: $\rho^i = \widehat{N} \, \widehat{n}^i + \widehat{N}^i$
- introduce spherical coordinates (θ, ϕ) and complex null dyad q^a : $q_{ab} = q_{(a}\bar{q}_{b)}$ on some $\rho = const$ and Lie-drag them along the flow ρ^a

• THEN: $\begin{aligned}
\widehat{\mathbf{N}} &= (\widehat{n}_{i} \rho^{i}) & \kappa = (\widehat{n}^{i} \widehat{n}^{j} K_{ij}) \\
\mathbf{N} &= q^{i} (\widehat{\gamma}_{ij} \rho^{j}) & \mathbf{k} = q^{i} (\widehat{n}^{j} \widehat{\gamma}_{i}^{e} K_{je}) \\
\mathbf{a} &= \frac{1}{2} q^{i} \overline{q}^{j} \widehat{\gamma}_{ij} & \mathbf{K} = K_{ij} \widehat{\gamma}^{ij} \\
\mathbf{b} &= \frac{1}{2} q^{i} q^{j} \widehat{\gamma}_{ij} & \mathring{\mathbf{K}}_{qq} = q^{i} q^{j} \left(\widehat{\gamma}_{i}^{e} \widehat{\gamma}_{j}^{f} K_{ef} - \frac{1}{2} \widehat{\gamma}_{ij} [K_{ef} \widehat{\gamma}^{ef}] \right)
\end{aligned}$

• $(h_{ab}, K_{ab}) \iff$ spin-weighted variables: $(\widehat{\mathbf{N}}, \mathbf{N}, \mathbf{a}, \mathbf{b}; \boldsymbol{\kappa}, \mathbf{k}, \mathbf{K}, \mathbf{K}_{qq})$

The parabolic-hyperbolic form of the constraints & the spin-weighted variables

• For (h_{ij}, K_{ij}) on Σ $(3)R + (K^j{}_j)^2 - K_{ij}K^{ij} = 0$ $D_j K^j{}_i - D_i K^j{}_j = 0$

• ASSUME: Σ can be foliated by a one-parameter family of topological two-spheres

- $\rho: \Sigma \to \mathbb{R}$: $\partial_i \rho$ a.n. vanishes, $\widehat{n}_i \sim \partial_i \rho$, $\widehat{\gamma}_i{}^j = \delta_i{}^j \widehat{n}_i \widehat{n}^j$, $h_{ij} = \widehat{\gamma}_{ij} + \widehat{n}_i \widehat{n}_j$
- Choose a flow ρ^a such that $\rho^a \partial_a \rho = 1$ and such that its integral curves intersect each of the $\rho = const$ level surfaces precisely once: $\rho^i = \hat{N} \, \hat{n}^i + \hat{N}^i$
- introduce spherical coordinates (θ, ϕ) and complex null dyad q^a : $q_{ab} = q_{(a}\bar{q}_{b)}$ on some $\rho = const$ and Lie-drag them along the flow ρ^a

• THEN: $\begin{aligned}
\widehat{\mathbf{N}} &= (\widehat{n}_i \rho^i) & \kappa = (\widehat{n}^i \widehat{n}^j K_{ij}) \\
\mathbf{N} &= q^i (\widehat{\gamma}_{ij} \rho^j) & \mathbf{k} = q^i (\widehat{n}^j \widehat{\gamma}_i^e K_{je}) \\
\mathbf{a} &= \frac{1}{2} q^i \overline{q}^j \widehat{\gamma}_{ij} & \mathbf{K} = K_{ij} \widehat{\gamma}^{ij} \\
\mathbf{b} &= \frac{1}{2} q^i q^j \widehat{\gamma}_{ij} & \widehat{\mathbf{K}}_{qq} = q^i q^j \left(\widehat{\gamma}_i^e \widehat{\gamma}_j^f K_{ef} - \frac{1}{2} \widehat{\gamma}_{ij} [K_{ef} \widehat{\gamma}^{ef}] \right)
\end{aligned}$

• $(h_{ab}, K_{ab}) \iff$ spin-weighted variables: $(\widehat{\mathbf{N}}, \mathbf{N}, \mathbf{a}, \mathbf{b}; \boldsymbol{\kappa}, \mathbf{k}, \mathbf{K}, \mathbf{K}_{qq})$

The parabolic-hyperbolic form of the constraints & the spin-weighted variables

- For (h_{ij}, K_{ij}) on Σ $(3) R + (K^j{}_j)^2 - K_{ij}K^{ij} = 0$ $D_j K^j{}_i - D_i K^j{}_j = 0$
- ASSUME: Σ can be foliated by a one-parameter family of topological two-spheres
- $\rho: \Sigma \to \mathbb{R}$: $\partial_i \rho$ a.n. vanishes, $\widehat{n}_i \sim \partial_i \rho$, $\widehat{\gamma}_i{}^j = \delta_i{}^j \widehat{n}_i \widehat{n}^j$, $h_{ij} = \widehat{\gamma}_{ij} + \widehat{n}_i \widehat{n}_j$
- Choose a flow ρ^a such that $\rho^a \partial_a \rho = 1$ and such that its integral curves intersect each of the $\rho = const$ level surfaces precisely once: $\rho^i = \hat{N} \, \hat{n}^i + \hat{N}^i$
- introduce spherical coordinates (θ, ϕ) and complex null dyad q^a : $q_{ab} = q_{(a}\bar{q}_{b)}$ on some $\rho = const$ and Lie-drag them along the flow ρ^a

• THEN: $\begin{aligned}
\widehat{\mathbf{N}} &= (\widehat{n}_{i}\rho^{i}) & \kappa = (\widehat{n}^{i}\widehat{n}^{j}K_{ij}) \\
\mathbf{N} &= q^{i}(\widehat{\gamma}_{ij}\rho^{j}) & \mathbf{k} = q^{i}(\widehat{n}^{j}\widehat{\gamma}_{i}^{e}K_{je}) \\
\mathbf{a} &= \frac{1}{2}q^{i}\overline{q}^{j}\widehat{\gamma}_{ij} & \mathbf{K} = K_{ij}\widehat{\gamma}^{ij} \\
\mathbf{b} &= \frac{1}{2}q^{i}q^{j}\widehat{\gamma}_{ij} & \mathring{\mathbf{K}}_{qq} = q^{i}q^{j}\left(\widehat{\gamma}_{i}^{e}\widehat{\gamma}_{j}^{f}K_{ef} - \frac{1}{2}\widehat{\gamma}_{ij}[K_{ef}\widehat{\gamma}^{ef}]\right)
\end{aligned}$

• $(h_{ab}, K_{ab}) \iff$ spin-weighted variables: $(\widehat{\mathbf{N}}, \mathbf{N}, \mathbf{a}, \mathbf{b}; \boldsymbol{\kappa}, \mathbf{k}, \mathbf{K}, \mathbf{K}_{qq})$

The parabolic-hyperbolic form of the constraints & the spin-weighted variables

- For (h_{ij}, K_{ij}) on Σ ${}^{(3)}R + (K^{j}{}_{j})^{2} - K_{ij}K^{ij} = 0$ $D_{j}K^{j}{}_{i} - D_{i}K^{j}{}_{j} = 0$
- ASSUME: Σ can be foliated by a one-parameter family of topological two-spheres
- $\rho: \Sigma \to \mathbb{R}$: $\partial_i \rho$ a.n. vanishes, $\widehat{n}_i \sim \partial_i \rho$, $\widehat{\gamma}_i{}^j = \delta_i{}^j \widehat{n}_i \widehat{n}^j$, $h_{ij} = \widehat{\gamma}_{ij} + \widehat{n}_i \widehat{n}_j$
- Choose a flow ρ^a such that $\rho^a \partial_a \rho = 1$ and such that its integral curves intersect each of the $\rho = const$ level surfaces precisely once: $\rho^i = \hat{N} \, \hat{n}^i + \hat{N}^i$

• introduce spherical coordinates (θ, ϕ) and complex null dyad q^a : $q_{ab} = q_{(a}\bar{q}_{b)}$ on some $\rho = const$ and Lie-drag them along the flow ρ^a

• THEN: $\begin{aligned}
\widehat{\mathbf{N}} &= (\widehat{n}_{i}\rho^{i}) & \kappa = (\widehat{n}^{i}\widehat{n}^{j}K_{ij}) \\
\mathbf{N} &= q^{i}(\widehat{\gamma}_{ij}\rho^{j}) & \mathbf{k} = q^{i}(\widehat{n}^{j}\widehat{\gamma}_{i}^{e}K_{je}) \\
\mathbf{a} &= \frac{1}{2}q^{i}\overline{q}^{j}\widehat{\gamma}_{ij} & \mathbf{K} = K_{ij}\widehat{\gamma}^{ij} \\
\mathbf{b} &= \frac{1}{2}q^{i}q^{j}\widehat{\gamma}_{ij} & \mathring{\mathbf{K}}_{qq} = q^{i}q^{j}\left(\widehat{\gamma}_{i}^{e}\widehat{\gamma}_{j}^{f}K_{ef} - \frac{1}{2}\widehat{\gamma}_{ij}[K_{ef}\widehat{\gamma}^{ef}]\right)
\end{aligned}$

• $(h_{ab}, K_{ab}) \iff$ spin-weighted variables: $(\widehat{\mathbf{N}}, \mathbf{N}, \mathbf{a}, \mathbf{b}; \boldsymbol{\kappa}, \mathbf{k}, \mathbf{K}, \widetilde{\mathbf{K}}_{qq})$

The parabolic-hyperbolic form of the constraints & the spin-weighted variables

- For (h_{ij}, K_{ij}) on Σ ${}^{(3)}R + (K^{j}{}_{j})^{2} - K_{ij}K^{ij} = 0$ $D_{j}K^{j}{}_{i} - D_{i}K^{j}{}_{j} = 0$
- ASSUME: Σ can be foliated by a one-parameter family of topological two-spheres
- $\rho: \Sigma \to \mathbb{R}$: $\partial_i \rho$ a.n. vanishes, $\widehat{n}_i \sim \partial_i \rho$, $\widehat{\gamma}_i{}^j = \delta_i{}^j \widehat{n}_i \widehat{n}^j$, $h_{ij} = \widehat{\gamma}_{ij} + \widehat{n}_i \widehat{n}_j$
- Choose a flow ρ^a such that $\rho^a \partial_a \rho = 1$ and such that its integral curves intersect each of the $\rho = const$ level surfaces precisely once: $\rho^i = \hat{N} \, \hat{n}^i + \hat{N}^i$
- introduce spherical coordinates (θ, ϕ) and complex null dyad q^a : $q_{ab} = q_{(a}\bar{q}_{b)}$ on some $\rho = const$ and Lie-drag them along the flow ρ^a
- THEN: $\begin{aligned}
 \hat{\mathbf{N}} &= (\hat{n}_i \rho^i) & \kappa = (\hat{n}^i \hat{n}^j K_{ij}) \\
 \mathbf{N} &= q^i (\hat{\gamma}_{ij} \rho^j) & \mathbf{k} = q^i (\hat{n}^j \hat{\gamma}_i^e K_{je}) \\
 \mathbf{a} &= \frac{1}{2} q^i \bar{q}^j \hat{\gamma}_{ij} & \mathbf{K} = K_{ij} \hat{\gamma}^{ij} \\
 \mathbf{b} &= \frac{1}{2} q^i q^j \hat{\gamma}_{ij} & \hat{\mathbf{K}}_{qq} = q^i q^j \left(\hat{\gamma}_i^e \hat{\gamma}_j^f K_{ef} - \frac{1}{2} \hat{\gamma}_{ij} [K_{ef} \hat{\gamma}^{ef}] \right)
 \end{aligned}$

• $(h_{ab}, K_{ab}) \iff$ spin-weighted variables: $(\widehat{\mathbf{N}}, \mathbf{N}, \mathbf{a}, \mathbf{b}; \boldsymbol{\kappa}, \mathbf{k}, \mathbf{K}, \widetilde{\mathbf{K}}_{qq})$

The parabolic-hyperbolic form of the constraints & the spin-weighted variables

- For (h_{ij}, K_{ij}) on Σ ${}^{(3)}R + (K^j{}_j)^2 - K_{ij}K^{ij} = 0$ $D_j K^j{}_i - D_i K^j{}_j = 0$
- ASSUME: Σ can be foliated by a one-parameter family of topological two-spheres
- $\rho: \Sigma \to \mathbb{R}$: $\partial_i \rho$ a.n. vanishes, $\widehat{n}_i \sim \partial_i \rho$, $\widehat{\gamma}_i{}^j = \delta_i{}^j \widehat{n}_i \widehat{n}^j$, $h_{ij} = \widehat{\gamma}_{ij} + \widehat{n}_i \widehat{n}_j$
- Choose a flow ρ^a such that $\rho^a \partial_a \rho = 1$ and such that its integral curves intersect each of the $\rho = const$ level surfaces precisely once: $\rho^i = \hat{N} \, \hat{n}^i + \hat{N}^i$
- introduce spherical coordinates (θ, ϕ) and complex null dyad q^a : $q_{ab} = q_{(a}\bar{q}_{b)}$ on some $\rho = const$ and Lie-drag them along the flow ρ^a
- THEN: $\begin{aligned}
 \widehat{\mathbf{N}} &= (\widehat{n}_i \rho^i) & \mathbf{\kappa} &= (\widehat{n}^i \widehat{n}^j K_{ij}) \\
 \mathbf{N} &= q^i (\widehat{\gamma}_{ij} \rho^j) & \mathbf{k} &= q^i (\widehat{n}^j \widehat{\gamma}_i^e K_{je}) \\
 \mathbf{a} &= \frac{1}{2} q^i \overline{q}^j \widehat{\gamma}_{ij} & \mathbf{K} &= K_{ij} \widehat{\gamma}^{ij} \\
 \mathbf{b} &= \frac{1}{2} q^i q^j \widehat{\gamma}_{ij} & \mathring{\mathbf{K}}_{qq} &= q^i q^j \left(\widehat{\gamma}_i^e \widehat{\gamma}_j^f K_{ef} - \frac{1}{2} \widehat{\gamma}_{ij} [K_{ef} \widehat{\gamma}^{ef}] \right)
 \end{aligned}$

• $(h_{ab}, K_{ab}) \iff$ spin-weighted variables: $(\mathbf{\hat{N}}, \mathbf{N}, \mathbf{a}, \mathbf{b}; \boldsymbol{\kappa}, \mathbf{k}, \mathbf{K}, \mathbf{K}_{qq})$

The parabolic-hyperbolic form of the constraints & the spin-weighted variables

- For (h_{ij}, K_{ij}) on Σ ${}^{(3)}R + (K^j{}_j)^2 - K_{ij}K^{ij} = 0$ $D_j K^j{}_i - D_i K^j{}_j = 0$
- ASSUME: Σ can be foliated by a one-parameter family of topological two-spheres
- $\rho: \Sigma \to \mathbb{R}$: $\partial_i \rho$ a.n. vanishes, $\widehat{n}_i \sim \partial_i \rho$, $\widehat{\gamma}_i{}^j = \delta_i{}^j \widehat{n}_i \widehat{n}^j$, $h_{ij} = \widehat{\gamma}_{ij} + \widehat{n}_i \widehat{n}_j$
- Choose a flow ρ^a such that $\rho^a \partial_a \rho = 1$ and such that its integral curves intersect each of the $\rho = const$ level surfaces precisely once: $\rho^i = \hat{N} \, \hat{n}^i + \hat{N}^i$
- introduce spherical coordinates (θ, ϕ) and complex null dyad q^a : $q_{ab} = q_{(a}\bar{q}_{b)}$ on some $\rho = const$ and Lie-drag them along the flow ρ^a
- THEN: $\begin{aligned}
 \widehat{\mathbf{N}} &= (\widehat{n}_i \rho^i) & \kappa = (\widehat{n}^i \widehat{n}^j K_{ij}) \\
 \mathbf{N} &= q^i (\widehat{\gamma}_{ij} \rho^j) & \mathbf{k} = q^i (\widehat{n}^j \widehat{\gamma}_i^e K_{je}) \\
 \mathbf{a} &= \frac{1}{2} q^i \overline{q}^j \widehat{\gamma}_{ij} & \mathbf{K} = K_{ij} \widehat{\gamma}^{ij} \\
 \mathbf{b} &= \frac{1}{2} q^i q^j \widehat{\gamma}_{ij} & \mathring{\mathbf{K}}_{qq} = q^i q^j \left(\widehat{\gamma}_i^e \widehat{\gamma}_j^f K_{ef} - \frac{1}{2} \widehat{\gamma}_{ij} [K_{ef} \widehat{\gamma}^{ef}] \right)
 \end{aligned}$

• $(h_{ab}, K_{ab}) \iff$ spin-weighted variables: $(\widehat{\mathbf{N}}, \mathbf{N}, \mathbf{a}, \mathbf{b}; \boldsymbol{\kappa}, \mathbf{k}, \mathbf{K}, \widecheck{\mathbf{K}}_{qq})$

Parabolic-hyperbolic form of constraints: $(h_{ij}; K_{ij}) \leftrightarrow (\widehat{\mathbf{N}}, \mathbf{N}, \mathbf{a}, \mathbf{b}; \boldsymbol{\kappa}, \mathbf{k}, \mathbf{K}, \widetilde{\mathbf{K}}_{qq})$

• constrained fields $(\widehat{\mathbf{N}}, \mathbf{k}, \mathbf{K})$; free data on Σ : $(\mathbf{N}, \mathbf{a}, \mathbf{b}; \boldsymbol{\kappa}, \mathbf{K}_{qq})$

- parabolic PDE for N
- symmetric hyperbolic system for (\mathbf{k}, \mathbf{K})
- require initial data for $(\mathbf{\hat{N}}, \mathbf{k}, \mathbf{K})$ on \mathscr{S}_0 , then integrate toward \mathscr{I}^+
- no direct control over the asymptotics apart from the falloff of the free data

Asymptotically hyperboloidal data

- Andersson and Chruściel introduced the notion of asymptotically hyperboloidal data, comprised by (Σ, h_{ij}, K_{ij}) , which is not necessarily a solution to the constraints, by requiring the following behavior close to the boundary:
 - $\gg \Sigma$ is the interior of a compact manifold $\Sigma = \Sigma \cup \partial \Sigma$
 - if ω is a defining function for US then ω^{*} h_U and ω(K_U = §h_U K^{*}) extend regularly to US;
 - \ast the trace $K=K_{ij}h^{ij}$ is bounded away from zero near $\partial \Sigma$.
- A data set (Σ, h_{ij}, K_{ij}) is an asymptotically hyperboloidal one if the following falloff conditions hold for the spin-weighted variables: ω ~ ρ⁻¹

Parabolic-hyperbolic form of constraints: $(h_{ij}; K_{ij}) \leftrightarrow (\widehat{\mathbf{N}}, \mathbf{N}, \mathbf{a}, \mathbf{b}; \boldsymbol{\kappa}, \mathbf{k}, \mathbf{K}, \widetilde{\mathbf{K}}_{qq})$

• constrained fields $(\widehat{\mathbf{N}}, \mathbf{k}, \mathbf{K})$; free data on Σ : $(\mathbf{N}, \mathbf{a}, \mathbf{b}; \boldsymbol{\kappa}, \mathbf{K}_{qq})$

• parabolic PDE for $\widehat{\mathbf{N}}$

- symmetric hyperbolic system for (**k**, **K**)
- require initial data for $(\widehat{f N},{f k},{f K})$ on \mathscr{S}_0 , then integrate toward \mathscr{I}^+
- no direct control over the asymptotics apart from the falloff of the free data

Asymptotically hyperboloidal data

- Andersson and Chruściel introduced the notion of asymptotically hyperboloidal data, comprised by (Σ, h_{ij}, K_{ij}) , which is not necessarily a solution to the constraints, by requiring the following behavior close to the boundary:
 - $\sim \Sigma$ is the interior of a compact manifold $\Sigma = \Sigma \cup \partial \Sigma$
 - If w is a defining function for DD then w'hy, and w(Ky §hy/Ki') extend regularly to DD.
 - \ast the trace $K=K_{
 m eff}h^{lpha}$ is bounded away from zero near $\partial\Sigma$.
- A data set (Σ, h_{ij}, K_{ij}) is an asymptotically hyperboloidal one if the following falloff conditions hold for the spin-weighted variables: $\omega \sim \rho^{-1}$
Parabolic-hyperbolic form of constraints: $(h_{ij}; K_{ij}) \leftrightarrow (\widehat{\mathbf{N}}, \mathbf{N}, \mathbf{a}, \mathbf{b}; \kappa, \mathbf{k}, \mathbf{K}, \widetilde{\mathbf{K}}_{qq})$

- constrained fields $(\widehat{\mathbf{N}}, \mathbf{k}, \mathbf{K})$; free data on Σ : $(\mathbf{N}, \mathbf{a}, \mathbf{b}; \boldsymbol{\kappa}, \mathbf{K}_{qq})$
 - parabolic PDE for $\widehat{\mathbf{N}}$
 - $\bullet\,$ symmetric hyperbolic system for $({\bf k},{\bf K})$
- ullet require initial data for $(\widehat{f N},{f k},{f K})$ on \mathscr{S}_0 , then integrate toward \mathscr{I}^+
- no direct control over the asymptotics apart from the falloff of the free data

- Andersson and Chruściel introduced the notion of asymptotically hyperboloidal data, comprised by (Σ, h_{ij}, K_{ij}) , which is not necessarily a solution to the constraints, by requiring the following behavior close to the boundary:
 - $\otimes \Sigma$ is the interior of a compact manifold $\Sigma = \Sigma \cup \partial \Sigma$
 - If us in a defining function for 303 then us have and us(Kay §hayKa) instead regularly to 305.
 - \ast the trace $K=K_{ij}h^{ij}$ is bounded away from zero near $\partial \Sigma$.
- A data set (Σ, h_{ij}, K_{ij}) is an asymptotically hyperboloidal one if the following falloff conditions hold for the spin-weighted variables: $\omega \sim \rho^{-1}$

Parabolic-hyperbolic form of constraints: $(h_{ij}; K_{ij}) \leftrightarrow (\widehat{\mathbf{N}}, \mathbf{N}, \mathbf{a}, \mathbf{b}; \boldsymbol{\kappa}, \mathbf{k}, \mathbf{K}, \overset{\circ}{\mathbf{K}}_{qq})$

- constrained fields $(\widehat{\mathbf{N}}, \mathbf{k}, \mathbf{K})$; free data on Σ : $(\mathbf{N}, \mathbf{a}, \mathbf{b}; \boldsymbol{\kappa}, \mathbf{K}_{qq})$ [the coefficients]
 - parabolic PDE for $\widehat{\mathbf{N}}$
 - $\bullet\,$ symmetric hyperbolic system for $({\bf k},{\bf K})$
- ullet require initial data for $(\widehat{f N},{f k},{f K})$ on \mathscr{S}_0 , then integrate toward \mathscr{I}^+
- no direct control over the asymptotics apart from the falloff of the free data

- Andersson and Chruściel introduced the notion of asymptotically hyperboloidal data, comprised by (Σ, h_{ij}, K_{ij}) , which is not necessarily a solution to the constraints, by requiring the following behavior close to the boundary:
 - $\otimes \Sigma$ is the interior of a compact manifold $\Sigma = \Sigma \cup \partial \Sigma$.
 - if a is defining function for (03) then a ²h₂, and a (K₂, ..., ¹₂h₂, K₂²) extend regularly to (03).
 - \ast the trace $K=K_{ij}h^{ij}$ is bounded away from zero near $\partial \Sigma$.
- A data set (Σ, h_{ij}, K_{ij}) is an asymptotically hyperboloidal one if the following falloff conditions hold for the spin-weighted variables: $\omega \sim \rho^{-1}$

Parabolic-hyperbolic form of constraints: $(h_{ij}; K_{ij}) \leftrightarrow (\widehat{\mathbf{N}}, \mathbf{N}, \mathbf{a}, \mathbf{b}; \boldsymbol{\kappa}, \mathbf{k}, \mathbf{K}, \overset{\circ}{\mathbf{K}}_{qq})$

- constrained fields $(\widehat{\mathbf{N}}, \mathbf{k}, \mathbf{K})$; free data on Σ : $(\mathbf{N}, \mathbf{a}, \mathbf{b}; \boldsymbol{\kappa}, \mathbf{K}_{qq})$ [the coefficients]
 - parabolic PDE for $\widehat{\mathbf{N}}$
 - $\bullet\,$ symmetric hyperbolic system for $({\bf k},{\bf K})$
- \bullet require initial data for $(\widehat{\mathbf{N}},\mathbf{k},\mathbf{K})$ on $\mathscr{S}_0,$ then integrate toward \mathscr{I}^+
 - no direct control over the asymptotics apart from the falloff of the free data

- Andersson and Chruściel introduced the notion of asymptotically hyperboloidal data, comprised by (Σ, h_{ij}, K_{ij}) , which is not necessarily a solution to the constraints, by requiring the following behavior close to the boundary:
 - * Σ is the interior of a compact manifold $\Sigma = \Sigma \cup \partial \Sigma$.
 - If us in a defining function for 303 then us have and us(Kay §hayKa) instead regularly to 305.
 - \ast the trace $K=K_{ij}h^{ij}$ is bounded away from zero near $\partial \Sigma$.
- A data set (Σ, h_{ij}, K_{ij}) is an asymptotically hyperboloidal one if the following falloff conditions hold for the spin-weighted variables: $\omega \sim \rho^{-1}$

Parabolic-hyperbolic form of constraints: $(h_{ij}; K_{ij}) \leftrightarrow (\widehat{\mathbf{N}}, \mathbf{N}, \mathbf{a}, \mathbf{b}; \boldsymbol{\kappa}, \mathbf{k}, \mathbf{K}, \overset{\circ}{\mathbf{K}}_{qq})$

- constrained fields $(\widehat{\mathbf{N}}, \mathbf{k}, \mathbf{K})$; free data on Σ : $(\mathbf{N}, \mathbf{a}, \mathbf{b}; \boldsymbol{\kappa}, \mathbf{K}_{qq})$ [the coefficients]
 - parabolic PDE for $\widehat{\mathbf{N}}$
 - $\bullet\,$ symmetric hyperbolic system for $({\bf k},{\bf K})$
- ullet require initial data for $(\widehat{\mathbf{N}},\mathbf{k},\mathbf{K})$ on \mathscr{S}_0 , then integrate toward \mathscr{I}^+
- no direct control over the asymptotics apart from the falloff of the free data

- Andersson and Chruściel introduced the notion of asymptotically hyperboloidal data, comprised by (Σ, h_{ij}, K_{ij}) , which is not necessarily a solution to the constraints, by requiring the following behavior close to the boundary:
 - $\otimes \Sigma$ is the interior of a compact manifold $\Sigma = \Sigma \cup \partial \Sigma$
 - If us in a defining function for 303 then us have and us(Kay §hayKa) instead regularly to 305.
 - \ast the trace $K=K_{ij}h^{ij}$ is bounded away from zero near $\partial \Sigma$.
- A data set (Σ, h_{ij}, K_{ij}) is an asymptotically hyperboloidal one if the following falloff conditions hold for the spin-weighted variables: $\omega \sim \rho^{-1}$

Parabolic-hyperbolic form of constraints: $(h_{ij}; K_{ij}) \leftrightarrow (\widehat{\mathbf{N}}, \mathbf{N}, \mathbf{a}, \mathbf{b}; \kappa, \mathbf{k}, \mathbf{K}, \widecheck{\mathbf{K}}_{qq})$

- constrained fields $(\widehat{\mathbf{N}}, \mathbf{k}, \mathbf{K})$; free data on Σ : $(\mathbf{N}, \mathbf{a}, \mathbf{b}; \boldsymbol{\kappa}, \mathbf{K}_{qq})$ [the coefficients]
 - parabolic PDE for $\widehat{\mathbf{N}}$
 - symmetric hyperbolic system for $({\bf k},{\bf K})$
- \bullet require initial data for $(\widehat{\mathbf{N}},\mathbf{k},\mathbf{K})$ on \mathscr{S}_0 , then integrate toward \mathscr{I}^+
- no direct control over the asymptotics apart from the falloff of the free data

Asymptotically hyperboloidal data

- Andersson and Chruściel introduced the notion of asymptotically hyperboloidal data, comprised by (Σ, h_{ij}, K_{ij}) , which is not necessarily a solution to the constraints, by requiring the following behavior close to the boundary:
 - Σ is the interior of a compact manifold $\Sigma = \Sigma \cup \partial \Sigma$
 - if ω is a defining function for $\partial \Sigma$ then $\omega^2 h_{ij}$ and $\omega(K_{ij} \frac{1}{3}h_{ij}K_l^{i})$ extend regularly to $\partial \Sigma$,
 - the trace $K = K_{ij} h^{ij}$ is bounded away from zero near $\partial \Sigma$

• A data set (Σ, h_{ij}, K_{ij}) is an asymptotically hyperboloidal one if the following falloff conditions hold for the spin-weighted variables: $\omega \sim \rho^{-1}$

Parabolic-hyperbolic form of constraints: $(h_{ij}; K_{ij}) \leftrightarrow (\widehat{\mathbf{N}}, \mathbf{N}, \mathbf{a}, \mathbf{b}; \kappa, \mathbf{k}, \mathbf{K}, \widecheck{\mathbf{K}}_{qq})$

- constrained fields $(\widehat{\mathbf{N}}, \mathbf{k}, \mathbf{K})$; free data on Σ : $(\mathbf{N}, \mathbf{a}, \mathbf{b}; \boldsymbol{\kappa}, \mathbf{K}_{qq})$ [the coefficients]
 - parabolic PDE for N
 - $\bullet\,$ symmetric hyperbolic system for $({\bf k},{\bf K})$
- \bullet require initial data for $(\widehat{\mathbf{N}},\mathbf{k},\mathbf{K})$ on \mathscr{S}_0 , then integrate toward \mathscr{I}^+
- no direct control over the asymptotics apart from the falloff of the free data

- Andersson and Chruściel introduced the notion of asymptotically hyperboloidal data, comprised by (Σ, h_{ij}, K_{ij}) , which is not necessarily a solution to the constraints, by requiring the following behavior close to the boundary:
 - Σ is the interior of a compact manifold $\Sigma = \Sigma \cup \partial \Sigma$
 - if ω is a defining function for $\partial \Sigma$ then $\omega^2 h_{ij}$ and $\omega (K_{ij} \frac{1}{3}h_{ij}K_l^l)$ extend regularly to $\partial \Sigma$,
 - the trace $K = K_{ij} h^{ij}$ is bounded away from zero near $\partial \Sigma$
- A data set (Σ, h_{ij}, K_{ij}) is an asymptotically hyperboloidal one if the following falloff conditions hold for the spin-weighted variables: $\omega \sim \rho^{-1}$

Parabolic-hyperbolic form of constraints: $(h_{ij}; K_{ij}) \leftrightarrow (\widehat{\mathbf{N}}, \mathbf{N}, \mathbf{a}, \mathbf{b}; \kappa, \mathbf{k}, \mathbf{K}, \widecheck{\mathbf{K}}_{qq})$

- constrained fields $(\widehat{\mathbf{N}}, \mathbf{k}, \mathbf{K})$; free data on Σ : $(\mathbf{N}, \mathbf{a}, \mathbf{b}; \boldsymbol{\kappa}, \mathbf{K}_{qq})$ [the coefficients]
 - parabolic PDE for N
 - $\bullet\,$ symmetric hyperbolic system for $({\bf k},{\bf K})$
- \bullet require initial data for $(\widehat{\mathbf{N}},\mathbf{k},\mathbf{K})$ on $\mathscr{S}_0,$ then integrate toward \mathscr{I}^+
- no direct control over the asymptotics apart from the falloff of the free data

- Andersson and Chruściel introduced the notion of asymptotically hyperboloidal data, comprised by (Σ, h_{ij}, K_{ij}) , which is not necessarily a solution to the constraints, by requiring the following behavior close to the boundary:
 - Σ is the interior of a compact manifold $\widetilde{\Sigma} = \Sigma \cup \partial \Sigma$
 - if ω is a defining function for $\partial \Sigma$ then $\omega^2 h_{ij}$ and $\omega (K_{ij} \frac{1}{3}h_{ij}K_l^{\ l})$ extend regularly to $\partial \Sigma$,
 - the trace $K = K_{ij} h^{ij}$ is bounded away from zero near $\partial \Sigma$
- A data set (Σ, h_{ij}, K_{ij}) is an asymptotically hyperboloidal one if the following falloff conditions hold for the spin-weighted variables: $\omega \sim \rho^{-1}$

Parabolic-hyperbolic form of constraints: $(h_{ij}; K_{ij}) \leftrightarrow (\widehat{\mathbf{N}}, \mathbf{N}, \mathbf{a}, \mathbf{b}; \kappa, \mathbf{k}, \mathbf{K}, \widecheck{\mathbf{K}}_{qq})$

- constrained fields $(\widehat{\mathbf{N}}, \mathbf{k}, \mathbf{K})$; free data on Σ : $(\mathbf{N}, \mathbf{a}, \mathbf{b}; \boldsymbol{\kappa}, \mathbf{K}_{qq})$ [the coefficients]
 - parabolic PDE for N
 - $\bullet\,$ symmetric hyperbolic system for $({\bf k},{\bf K})$
- \bullet require initial data for $(\widehat{\mathbf{N}},\mathbf{k},\mathbf{K})$ on \mathscr{S}_0 , then integrate toward \mathscr{I}^+
- no direct control over the asymptotics apart from the falloff of the free data

Asymptotically hyperboloidal data

- Andersson and Chruściel introduced the notion of asymptotically hyperboloidal data, comprised by (Σ, h_{ij}, K_{ij}) , which is not necessarily a solution to the constraints, by requiring the following behavior close to the boundary:
 - Σ is the interior of a compact manifold $\widetilde{\Sigma} = \Sigma \cup \partial \Sigma$
 - if ω is a defining function for $\partial \Sigma$ then $\omega^2 h_{ij}$ and $\omega(K_{ij} \frac{1}{3}h_{ij}K_l^l)$ extend regularly to $\partial \Sigma$,
 - the trace $K = K_{ij}h^{ij}$ is bounded away from zero near $\partial\Sigma$

• A data set (Σ, h_{ij}, K_{ij}) is an asymptotically hyperboloidal one if the following falloff conditions hold for the spin-weighted variables: $\omega \sim \rho^{-1}$

Parabolic-hyperbolic form of constraints: $(h_{ij}; K_{ij}) \leftrightarrow (\widehat{\mathbf{N}}, \mathbf{N}, \mathbf{a}, \mathbf{b}; \kappa, \mathbf{k}, \mathbf{K}, \widecheck{\mathbf{K}}_{qq})$

- constrained fields $(\widehat{\mathbf{N}}, \mathbf{k}, \mathbf{K})$; free data on Σ : $(\mathbf{N}, \mathbf{a}, \mathbf{b}; \boldsymbol{\kappa}, \mathbf{K}_{qq})$ [the coefficients]
 - parabolic PDE for N
 - $\bullet\,$ symmetric hyperbolic system for $({\bf k},{\bf K})$
- \bullet require initial data for $(\widehat{\mathbf{N}},\mathbf{k},\mathbf{K})$ on \mathscr{S}_0 , then integrate toward \mathscr{I}^+
- no direct control over the asymptotics apart from the falloff of the free data

Asymptotically hyperboloidal data

- Andersson and Chruściel introduced the notion of asymptotically hyperboloidal data, comprised by (Σ, h_{ij}, K_{ij}) , which is not necessarily a solution to the constraints, by requiring the following behavior close to the boundary:
 - Σ is the interior of a compact manifold $\widetilde{\Sigma} = \Sigma \cup \partial \Sigma$
 - if ω is a defining function for $\partial \Sigma$ then $\omega^2 h_{ij}$ and $\omega (K_{ij} \frac{1}{3}h_{ij}K_l^{\ l})$ extend regularly to $\partial \Sigma$,
 - the trace $K=K_{ij}h^{ij}$ is bounded away from zero near $\partial\Sigma$

• A data set (Σ, h_{ij}, K_{ij}) is an asymptotically hyperboloidal one if the following falloff conditions hold for the spin-weighted variables: $\omega \sim \rho^{-1}$

Parabolic-hyperbolic form of constraints: $(h_{ij}; K_{ij}) \leftrightarrow (\widehat{\mathbf{N}}, \mathbf{N}, \mathbf{a}, \mathbf{b}; \kappa, \mathbf{k}, \mathbf{K}, \widecheck{\mathbf{K}}_{qq})$

- constrained fields $(\widehat{\mathbf{N}}, \mathbf{k}, \mathbf{K})$; free data on Σ : $(\mathbf{N}, \mathbf{a}, \mathbf{b}; \boldsymbol{\kappa}, \mathbf{K}_{qq})$ [the coefficients]
 - parabolic PDE for N
 - $\bullet\,$ symmetric hyperbolic system for $({\bf k},{\bf K})$
- \bullet require initial data for $(\widehat{\mathbf{N}},\mathbf{k},\mathbf{K})$ on $\mathscr{S}_0,$ then integrate toward \mathscr{I}^+
- no direct control over the asymptotics apart from the falloff of the free data

- Andersson and Chruściel introduced the notion of asymptotically hyperboloidal data, comprised by (Σ, h_{ij}, K_{ij}) , which is not necessarily a solution to the constraints, by requiring the following behavior close to the boundary:
 - Σ is the interior of a compact manifold $\widetilde{\Sigma} = \Sigma \cup \partial \Sigma$
 - if ω is a defining function for $\partial \Sigma$ then $\omega^2 h_{ij}$ and $\omega (K_{ij} \frac{1}{3}h_{ij}K_l^l)$ extend regularly to $\partial \Sigma$,
 - the trace $K = K_{ij} h^{ij}$ is bounded away from zero near $\partial \Sigma$
- A data set (Σ, h_{ij}, K_{ij}) is an asymptotically hyperboloidal one if the following falloff conditions hold for the spin-weighted variables: $\omega \sim \rho^{-1}$

Parabolic-hyperbolic form of constraints: $(h_{ij}; K_{ij}) \leftrightarrow (\widehat{\mathbf{N}}, \mathbf{N}, \mathbf{a}, \mathbf{b}; \kappa, \mathbf{k}, \mathbf{K}, \widecheck{\mathbf{K}}_{qq})$

- constrained fields $(\widehat{\mathbf{N}}, \mathbf{k}, \mathbf{K})$; free data on Σ : $(\mathbf{N}, \mathbf{a}, \mathbf{b}; \boldsymbol{\kappa}, \mathbf{K}_{qq})$ [the coefficients]
 - parabolic PDE for N
 - $\bullet\,$ symmetric hyperbolic system for $({\bf k},{\bf K})$
- \bullet require initial data for $(\widehat{\mathbf{N}},\mathbf{k},\mathbf{K})$ on \mathscr{S}_0 , then integrate toward \mathscr{I}^+
- no direct control over the asymptotics apart from the falloff of the free data

Asymptotically hyperboloidal data

- Andersson and Chruściel introduced the notion of asymptotically hyperboloidal data, comprised by (Σ, h_{ij}, K_{ij}) , which is not necessarily a solution to the constraints, by requiring the following behavior close to the boundary:
 - Σ is the interior of a compact manifold $\widetilde{\Sigma} = \Sigma \cup \partial \Sigma$
 - if ω is a defining function for $\partial \Sigma$ then $\omega^2 h_{ij}$ and $\omega (K_{ij} \frac{1}{3}h_{ij}K_l^l)$ extend regularly to $\partial \Sigma$,
 - the trace $K = K_{ij} h^{ij}$ is bounded away from zero near $\partial \Sigma$
- A data set (Σ, h_{ij}, K_{ij}) is an asymptotically hyperboloidal one if the following falloff conditions hold for the spin-weighted variables: $\omega \sim \rho^{-1}$

$$\begin{split} &\widehat{\mathbf{N}} = \widehat{\mathbf{N}}_1 \omega + \mathscr{O}(\omega^2) & \mathbf{K} - 2\,\mathbf{\kappa} = \mathscr{O}(\omega) & \mathbf{k} = \mathscr{O}(1) \\ &\mathbf{a} = \omega^{-2} + \mathscr{O}(\omega^{-1}) & \mathbf{b} = \mathscr{O}(\omega^{-1}) & \mathbf{N} = \mathscr{O}(\omega) & \overset{\circ}{\mathbf{K}}_{qq} = \mathscr{O}(\omega^{-1}) \end{split}$$

István Rácz (Wigner RCP)

Wigner RCP, June 6, 2025

The main strategy we used in our investigations:

The free data is assumed to be smooth on $\Sigma \cup \partial \Sigma$: $C^{\infty}([0, \omega_0), C^{\infty}(\mathbb{S}^2))$

$$\begin{split} \mathbf{N} &= \mathbf{N}_{1}\,\omega + \mathbf{N}_{2}\,\omega^{2} + \mathscr{O}(\omega^{3})\\ \mathbf{a} &= \omega^{-2} + \mathbf{a}_{(-1)}\,\omega^{-1} + \mathbf{a}_{0} + \mathbf{a}_{1}\,\omega + \mathbf{a}_{2}\,\omega^{2} + \mathscr{O}(\omega^{3})\\ \mathbf{b} &= \mathbf{b}_{(-1)}\,\omega^{-1} + \mathbf{b}_{0} + \mathbf{b}_{1}\,\omega + \mathbf{b}_{2}\,\omega^{2} + \mathscr{O}(\omega^{3})\\ \boldsymbol{\kappa} &= \boldsymbol{\kappa}_{0} + \boldsymbol{\kappa}_{1}\,\omega + \boldsymbol{\kappa}_{2}\,\omega^{2} + \mathscr{O}(\omega^{3})\\ \overset{\circ}{\mathbf{K}}_{qq} &= \overset{\circ}{\mathbf{K}}_{qq(-1)}\,\omega^{-1} + \overset{\circ}{\mathbf{K}}_{qq0} + \overset{\circ}{\mathbf{K}}_{qq1}\,\omega + \overset{\circ}{\mathbf{K}}_{qq2}\,\omega^{2} + \mathscr{O}(\omega^{3}) \end{split}$$

Use the most general poly-logarithmic form of the constrained fields (N, K, k):

$$\begin{split} \widehat{\mathbf{N}} &= \sum_{i=1}^{\infty} \omega^{i} \left[\widehat{\mathbf{N}}_{i} + \sum_{j=1}^{\mathcal{N}_{j}} \widehat{\mathbf{N}}_{i,j}^{[log]} \log^{j} \omega \right], \qquad \mathbf{K} = \mathbf{K}_{0} + \sum_{i=1}^{\infty} \omega^{i} \left[\mathbf{K}_{i} + \sum_{j=1}^{\mathcal{N}_{j}} \mathbf{K}_{i,j}^{[log]} \log^{j} \omega \right] \\ \mathbf{k} &= \mathbf{k}_{0} + \sum_{i=1}^{\infty} \omega^{i} \left[\mathbf{k}_{i} + \sum_{j=1}^{\mathcal{N}_{j}} \mathbf{k}_{i,j}^{[log]} \log^{j} \omega \right], \text{where} \quad \widehat{\mathbf{N}}_{1} = \kappa_{0}^{-1}, \mathbf{K}_{0} = 2\kappa_{0}, \mathbf{k}_{0} = \kappa_{0}^{-1} \eth \kappa_{0} \end{split}$$

We determined the **restrictions on the coefficients**, used in the above asymptotic expansions, that follow from the assumptions that the system **admits well-defined Bondi mass and angular momentum**, and that the **parabolic-hyperbolic form** of the constraint equations holds.

István Rácz (Wigner RCP)

The main strategy we used in our investigations:

The free data is assumed to be smooth on $\Sigma \cup \partial \Sigma$: $C^{\infty}([0, \omega_0), C^{\infty}(\mathbb{S}^2))$

$$\begin{split} \mathbf{N} &= \mathbf{N}_{1}\,\omega + \mathbf{N}_{2}\,\omega^{2} + \mathscr{O}(\omega^{3})\\ \mathbf{a} &= \omega^{-2} + \mathbf{a}_{(-1)}\,\omega^{-1} + \mathbf{a}_{0} + \mathbf{a}_{1}\,\omega + \mathbf{a}_{2}\,\omega^{2} + \mathscr{O}(\omega^{3})\\ \mathbf{b} &= \mathbf{b}_{(-1)}\,\omega^{-1} + \mathbf{b}_{0} + \mathbf{b}_{1}\,\omega + \mathbf{b}_{2}\,\omega^{2} + \mathscr{O}(\omega^{3})\\ \boldsymbol{\kappa} &= \boldsymbol{\kappa}_{0} + \boldsymbol{\kappa}_{1}\,\omega + \boldsymbol{\kappa}_{2}\,\omega^{2} + \mathscr{O}(\omega^{3})\\ \overset{\circ}{\mathbf{K}}_{qq} &= \overset{\circ}{\mathbf{K}}_{qq(-1)}\,\omega^{-1} + \overset{\circ}{\mathbf{K}}_{qq0} + \overset{\circ}{\mathbf{K}}_{qq1}\,\omega + \overset{\circ}{\mathbf{K}}_{qq2}\,\omega^{2} + \mathscr{O}(\omega^{3}) \end{split}$$

Use the most general poly-logarithmic form of the constrained fields (N, K, k):

$$\begin{split} \widehat{\mathbf{N}} &= \sum_{i=1}^{\infty} \omega^{i} \left[\, \widehat{\mathbf{N}}_{i} + \sum_{j=1}^{\mathcal{N}_{j}} \widehat{\mathbf{N}}_{i,j}^{[log]} \log^{j} \omega \, \right], \qquad \mathbf{K} = \mathbf{K}_{0} + \sum_{i=1}^{\infty} \omega^{i} \left[\, \mathbf{K}_{i} + \sum_{j=1}^{\mathcal{N}_{j}} \mathbf{K}_{i,j}^{[log]} \log^{j} \omega \, \right] \\ \mathbf{k} &= \mathbf{k}_{0} + \sum_{i=1}^{\infty} \omega^{i} \left[\, \mathbf{k}_{i} + \sum_{j=1}^{\mathcal{N}_{j}} \mathbf{k}_{i,j}^{[log]} \log^{j} \omega \, \right], \text{where} \quad \widehat{\mathbf{N}}_{1} = \boldsymbol{\kappa}_{0}^{-1}, \mathbf{K}_{0} = 2\boldsymbol{\kappa}_{0}, \mathbf{k}_{0} = \boldsymbol{\kappa}_{0}^{-1} \eth \boldsymbol{\kappa}_{0} \end{split}$$

We determined the **restrictions on the coefficients**, used in the above asymptotic expansions, that follow from the assumptions that the system **admits well-defined Bondi mass and angular momentum**, and that the **parabolic-hyperbolic form** of the constraint equations holds.

István Rácz (Wigner RCP)

The main strategy we used in our investigations:

The free data is assumed to be smooth on $\Sigma \cup \partial \Sigma$: $C^{\infty}([0, \omega_0), C^{\infty}(\mathbb{S}^2))$

$$\begin{split} \mathbf{N} &= \mathbf{N}_{1}\,\omega + \mathbf{N}_{2}\,\omega^{2} + \mathscr{O}(\omega^{3})\\ \mathbf{a} &= \omega^{-2} + \mathbf{a}_{(-1)}\,\omega^{-1} + \mathbf{a}_{0} + \mathbf{a}_{1}\,\omega + \mathbf{a}_{2}\,\omega^{2} + \mathscr{O}(\omega^{3})\\ \mathbf{b} &= \mathbf{b}_{(-1)}\,\omega^{-1} + \mathbf{b}_{0} + \mathbf{b}_{1}\,\omega + \mathbf{b}_{2}\,\omega^{2} + \mathscr{O}(\omega^{3})\\ \boldsymbol{\kappa} &= \boldsymbol{\kappa}_{0} + \boldsymbol{\kappa}_{1}\,\omega + \boldsymbol{\kappa}_{2}\,\omega^{2} + \mathscr{O}(\omega^{3})\\ \overset{\circ}{\mathbf{K}}_{qq} &= \overset{\circ}{\mathbf{K}}_{qq(-1)}\,\omega^{-1} + \overset{\circ}{\mathbf{K}}_{qq0} + \overset{\circ}{\mathbf{K}}_{qq1}\,\omega + \overset{\circ}{\mathbf{K}}_{qq2}\,\omega^{2} + \mathscr{O}(\omega^{3}) \end{split}$$

Use the most general poly-logarithmic form of the constrained fields (N, K, k):

$$\begin{split} \widehat{\mathbf{N}} &= \sum_{i=1}^{\infty} \omega^{i} \left[\widehat{\mathbf{N}}_{i} + \sum_{j=1}^{\mathcal{N}_{j}} \widehat{\mathbf{N}}_{i,j}^{[log]} \log^{j} \omega \right], \qquad \mathbf{K} = \mathbf{K}_{0} + \sum_{i=1}^{\infty} \omega^{i} \left[\mathbf{K}_{i} + \sum_{j=1}^{\mathcal{N}_{j}} \mathbf{K}_{i,j}^{[log]} \log^{j} \omega \right] \\ \mathbf{k} &= \mathbf{k}_{0} + \sum_{i=1}^{\infty} \omega^{i} \left[\mathbf{k}_{i} + \sum_{j=1}^{\mathcal{N}_{j}} \mathbf{k}_{i,j}^{[log]} \log^{j} \omega \right], \text{where} \quad \widehat{\mathbf{N}}_{1} = \boldsymbol{\kappa}_{0}^{-1}, \mathbf{K}_{0} = 2\boldsymbol{\kappa}_{0}, \mathbf{k}_{0} = \boldsymbol{\kappa}_{0}^{-1} \eth \boldsymbol{\kappa}_{0} \end{split}$$

We determined the **restrictions on the coefficients**, used in the above asymptotic expansions, that follow from the assumptions that the system **admits well-defined Bondi mass and angular momentum**, and that the **parabolic-hyperbolic form** of the constraint equations holds.

István Rácz (Wigner RCP)

Our first main result: Theorem I.

- Choose generic free data (N, a, b, κ, K_{qq}) on Σ that satisfies the falloff conditions relevant for asymptotically hyperboloidal data.
- Suppose that $(\widehat{N}, \mathbf{K}, \mathbf{k})$ are smooth solutions of the parabolic-hyperbolic form of the constraints on Σ .
- $(\widehat{\mathbf{N}}, \mathbf{K}, \mathbf{k})$ are also assumed to possesses the most general poly-logarithmic expansion near $\partial \Sigma$ as indicated above.
- Then the asymptotically hyperboloidal initial data set under consideration admits well-defined Bondi mass and angular momentum if and only if all coefficients of the logarithmic terms vanish up to order four and three for \widehat{N} , K and k, respectively, and, in addition,

$$\overset{\circ}{\mathbf{K}}_{qq(-1)} = 0, \quad \mathbf{b}_{(-1)} = 0, \quad \kappa_1 = 0.$$

• • • • • • • • • •

The Bondi mass can be given as the $ho
ightarrow \infty$ limit of the Hawking mass

$$m_{H} = \sqrt{\frac{\mathcal{A}}{16\pi}} \left(1 + \frac{1}{16\pi} \int_{\mathscr{S}_{\rho}} \Theta^{(+)} \Theta^{(-)} \widehat{\boldsymbol{\epsilon}} \right) \& \Theta^{(\pm)} = \mathbf{K} \pm \mathbf{K} \widehat{\mathbf{N}}^{-1} \& \mathcal{A} = \int_{\mathscr{S}_{\rho}} \widehat{\boldsymbol{\epsilon}} \sim \rho^{2}$$

The finiteness of the Bondi angular momentum: arXiv: 2401.14251

The Bondi angular momentum cannot be finite, and thus well-defined, unless for all $j = 1, 2, ..., N_j$

The Bondi mass can be given as the $ho
ightarrow \infty$ limit of the Hawking mass

$$m_{H} = \sqrt{\frac{\mathcal{A}}{16\pi}} \left(1 + \frac{1}{16\pi} \int_{\mathscr{S}_{\rho}} \Theta^{(+)} \Theta^{(-)} \widehat{\boldsymbol{\epsilon}} \right) \& \Theta^{(\pm)} = \mathbf{K} \pm \mathbf{K} \widehat{\mathbf{N}}^{-1} \& \mathcal{A} = \int_{\mathscr{S}_{\rho}} \widehat{\boldsymbol{\epsilon}} \sim \rho^{2}$$

It can be finite, and thus well-defined, if and only if for the expansion coefficients the following relations hold

The finiteness of the Bondi angular momentum: arXiv: 2401.14251

The Bondi angular momentum cannot be finite, and thus well-defined, unless for all $j = 1, 2, ..., N_j$

The Bondi mass can be given as the $ho
ightarrow \infty$ limit of the Hawking mass

$$m_{H} = \sqrt{\frac{\mathcal{A}}{16\pi}} \left(1 + \frac{1}{16\pi} \int_{\mathscr{S}_{\rho}} \Theta^{(+)} \Theta^{(-)} \widehat{\boldsymbol{\epsilon}} \right) \& \Theta^{(\pm)} = \mathbf{K} \pm \mathbf{K} \widehat{\mathbf{N}}^{-1} \& \mathcal{A} = \int_{\mathscr{S}_{\rho}} \widehat{\boldsymbol{\epsilon}} \sim \rho^{2}$$

It can be finite, and thus well-defined, if and only if for the expansion coefficients the following relations hold

$$\widehat{\mathbf{N}}_1 = 2 \, \mathbf{K}_0^{-1} \quad \widehat{\mathbf{N}}_2 = - \left[\mathbf{a}_{(-1)} \, \mathbf{K}_0 + 2 \, \mathbf{K}_1 \right] \mathbf{K}_0^{-2}$$

$$\widehat{\mathbf{N}}_{3} = \left(2\left(\mathbf{K}_{1}^{2}-2\right) + \mathbf{K}_{0}\left[\left.\mathbf{a}_{\left(-1\right)}\mathbf{K}_{1}-2\,\mathbf{K}_{2}\right] - \mathbf{K}_{0}^{2}\left(\left.2\,\mathbf{a}_{0}-\mathbf{a}_{\left(-1\right)}^{2}-\mathbf{b}_{\left(-1\right)}\overline{\mathbf{b}_{\left(-1\right)}} + \frac{1}{2}\left[\left.\overline{\mathbf{\partial}}\overline{\mathbf{N}}_{1}+\overline{\mathbf{\partial}}\mathbf{N}_{1}\right]\right)\right)\mathbf{K}_{0}^{-3}$$

The finiteness of the Bondi angular momentum: arXiv: 2401.14251

The Bondi angular momentum cannot be finite, and thus well-defined, unless for all $j = 1, 2, ..., N_j$

The Bondi mass can be given as the $ho
ightarrow \infty$ limit of the Hawking mass

$$m_{H} = \sqrt{\frac{\mathcal{A}}{16\pi}} \left(1 + \frac{1}{16\pi} \int_{\mathscr{S}_{\rho}} \Theta^{(+)} \Theta^{(-)} \widehat{\boldsymbol{\epsilon}} \right) \& \Theta^{(\pm)} = \mathbf{K} \pm \mathbf{K} \widehat{\mathbf{N}}^{-1} \& \mathcal{A} = \int_{\mathscr{S}_{\rho}} \widehat{\boldsymbol{\epsilon}} \sim \rho^{2}$$

It can be finite, and thus well-defined, if and only if for the expansion coefficients the following relations hold $\widehat{\mathbf{W}} = 0 \mathbf{W}^{-1} \cdot \widehat{\mathbf{W}} = (\mathbf{W} + 0 \mathbf{W})^{-2}$

$$\mathbf{K}_{1} = 2\mathbf{K}_{0} \quad \mathbf{N}_{2} = -[\mathbf{a}_{(-1)} \mathbf{K}_{0} + 2\mathbf{K}_{1}] \mathbf{K}_{0}$$

$$\mathbf{a}_{3} = \left(2(\mathbf{K}_{1}^{2} - 2) + \mathbf{K}_{0} [\mathbf{a}_{(-1)} \mathbf{K}_{1} - 2\mathbf{K}_{2}] - \mathbf{K}_{0}^{2} (2\mathbf{a}_{0} - \mathbf{a}_{(-1)}^{2} - \mathbf{b}_{(-1)} \overline{\mathbf{b}_{(-1)}} + \frac{1}{2} [\overline{\mathbf{o}} \overline{\mathbf{N}}_{1} + \overline{\mathbf{o}} \mathbf{N}_{1}])\right) \mathbf{K}_{0}^{-3}$$
also for all $i = 1, 2$

$$\mathcal{N}_{i}$$

$$\begin{split} \widehat{\mathbf{N}}_{1,j}^{[log]} &= \widehat{\mathbf{N}}_{2,j}^{[log]} = \mathbf{K}_{1,j}^{[log]} = 0\\ \mathbf{K}_{2,i}^{[log]} &= \mathbf{K}_0 \left(2 \, \mathbf{K}_{3,i}^{[log]} + \mathbf{K}_0^2 \, \widehat{\mathbf{N}}_{4,i}^{[log]} \right) \cdot \left[\mathbf{a}_{(-1)} \, \mathbf{K}_0 + 4 \, \mathbf{K}_1 \right]^{-1}\\ \widehat{\mathbf{N}}_{3,i}^{[log]} &= -2 \left(2 \, \mathbf{K}_{3,i}^{[log]} + \mathbf{K}_0^2 \, \widehat{\mathbf{N}}_{4,i}^{[log]} \right) \cdot \left(\mathbf{K}_0 \, \left[\mathbf{a}_{(-1)} \, \mathbf{K}_0 + 4 \, \mathbf{K}_1 \right] \right)^{-1} \end{split}$$

The finiteness of the Bondi angular momentum: arXiv: 2401.14251

The Bondi angular momentum cannot be finite, and thus well-defined, unless for all $j = 1, 2, ..., N_j$

$$\mathbf{k}_{1,j}^{[log]} = \mathbf{k}_{2,j}^{[log]} = 0$$

$$J[\phi] = -(8\pi)^{-1} \int_{\mathscr{S}_a} \phi^a \mathbf{k}_a \, \tilde{\mathbf{k}}_a$$

ন and

The Bondi mass can be given as the $\rho \rightarrow \infty$ limit of the Hawking mass

$$m_{H} = \sqrt{\frac{\mathcal{A}}{16\pi}} \left(1 + \frac{1}{16\pi} \int_{\mathscr{S}_{\rho}} \Theta^{(+)} \Theta^{(-)} \widehat{\boldsymbol{\epsilon}} \right) \& \Theta^{(\pm)} = \mathbf{K} \pm \mathbf{K} \widehat{\mathbf{N}}^{-1} \& \mathcal{A} = \int_{\mathscr{S}_{\rho}} \widehat{\boldsymbol{\epsilon}} \sim \rho^{2}$$

It can be finite, and thus well-defined, if and only if for the expansion coefficients the following relations hold $\widehat{\mathbf{N}} = 2\mathbf{K}^{-1}$ $\widehat{\mathbf{N}}_{2} = [\mathbf{n} + \mathbf{K}_{2} + 2\mathbf{K}_{2}]\mathbf{K}^{-2}$

$$\widehat{\mathbf{N}}_{3} = \left({}^{2}(\mathbf{K}_{1}^{2}-2) + \mathbf{K}_{0} \left[\mathbf{a}_{(-1)}\mathbf{K}_{1} - 2\mathbf{K}_{2} \right] - \mathbf{K}_{0}^{2} \left({}^{2}\mathbf{a}_{0} - \mathbf{a}_{(-1)}^{2} - \mathbf{b}_{(-1)} \overline{\mathbf{b}_{(-1)}} + \frac{1}{2} \left[\overline{\partial}\overline{\mathbf{N}}_{1} + \overline{\partial}\mathbf{N}_{1} \right] \right) \right) \mathbf{K}_{0}^{-3}$$

and also for all $j = 1, 2, \dots, \mathcal{N}_{j}$

$$\begin{split} \widehat{\mathbf{N}}_{1,j}^{[log]} &= \widehat{\mathbf{N}}_{2,j}^{[log]} = \mathbf{K}_{1,j}^{[log]} = 0\\ \mathbf{K}_{2,i}^{[log]} &= \mathbf{K}_0 \left(2 \, \mathbf{K}_{3,i}^{[log]} + \mathbf{K}_0^2 \, \widehat{\mathbf{N}}_{4,i}^{[log]} \right) \cdot \left[\mathbf{a}_{(-1)} \, \mathbf{K}_0 + 4 \, \mathbf{K}_1 \right]^{-1}\\ \widehat{\mathbf{N}}_{3,i}^{[log]} &= -2 \left(2 \, \mathbf{K}_{3,i}^{[log]} + \mathbf{K}_0^2 \, \widehat{\mathbf{N}}_{4,i}^{[log]} \right) \cdot \left(\mathbf{K}_0 \, \left[\mathbf{a}_{(-1)} \, \mathbf{K}_0 + 4 \, \mathbf{K}_1 \right] \right)^{-1} \end{split}$$

The finiteness of the Bondi angular momentum: arXiv: 2401.14251

The Bondi angular momentum cannot be finite, and thus well-defined, unless for all $j = 1, 2, \ldots, \mathcal{N}_j$ $\left(J[\phi] = -(8\pi)^{-1} \int_{\mathscr{A}_{\circ}} \phi^{a} \mathbf{k}_{a} \,\widehat{\boldsymbol{\epsilon}}\right)$ $\mathbf{k}_{1,j}^{[log]} = \mathbf{k}_{2,j}^{[log]} = 0$

 $\widehat{\mathbf{N}}_{2}$

16/20

To obtain the desired restrictions, we substitute the updated form of the asymptotic expansions into the parabolic-hyperbolic system and sort the terms with respect to powers of ρ^{-1} and also of log ρ .

Our second main result: Theorem II

- Choose generic free data (N, a, b, κ, K_{qq}) on Σ that satisfies the falloff conditions relevant for asymptotically hyperboloidal data with κ₀ being a strictly positive smooth on ∂Σ.
- Suppose that (N, K, k) are smooth [i.e., of class C[∞]((0, ω₀), C[∞](S²))], solutions on Σ such that N > 0 there.
- Then, the constrained fields $(\tilde{\mathbf{N}}, \mathbf{K}, \mathbf{k})$ are also of class $C^{\infty}([0, \omega_0), C^{\infty}(\mathbb{S}^2))$ on the whole of $\tilde{\Sigma} = \Sigma \cup \partial \Sigma$, i.e., no logarithmic singularities occur, if and only if the asymptotically hyperboloidal initial data set under consideration admits well-defined Bondi mass and angular momentum, and, in addition,

$$\mathbf{K}_{qq(-1)} = 0$$
 & $\mathbf{b}_{(-1)} = 0$ & $\kappa_1 = 0$

Our second main result: Theorem II

- Choose generic free data (N, a, b, κ, K_{qq}) on Σ that satisfies the falloff conditions relevant for asymptotically hyperboloidal data with κ₀ being a strictly positive smooth on ∂Σ.
- Suppose that (N, K, k) are smooth [i.e., of class C[∞]((0, ω₀), C[∞](S²))], solutions on Σ such that N > 0 there.
- Then, the constrained fields $(\tilde{\mathbf{N}}, \mathbf{K}, \mathbf{k})$ are also of class $C^{\infty}([0, \omega_0), C^{\infty}(\mathbb{S}^2))$ on the whole of $\tilde{\Sigma} = \Sigma \cup \partial \Sigma$, i.e., no logarithmic singularities occur, if and only if the asymptotically hyperboloidal initial data set under consideration admits well-defined Bondi mass and angular momentum, and, in addition,

$$\mathbf{K}_{qq(-1)} = 0$$
 & $\mathbf{b}_{(-1)} = 0$ & $\kappa_1 = 0$

Our second main result: Theorem II.

- Choose generic free data (N, a, b, κ, K_{qq}) on Σ that satisfies the falloff conditions relevant for asymptotically hyperboloidal data with κ₀ being a strictly positive smooth on ∂Σ.
- Suppose that (Î, K, k) are smooth [i.e., of class C[∞]((0, ω₀), C[∞](S²))], solutions on Σ such that Î > 0 there.
- Then, the constrained fields $(\widehat{\mathbf{N}}, \mathbf{K}, \mathbf{k})$ are also of class $C^{\infty}([0, \omega_0), C^{\infty}(\mathbb{S}^2))$ on the whole of $\widetilde{\Sigma} = \Sigma \cup \partial \Sigma$, i.e., no logarithmic singularities occur, if and only if the asymptotically hyperboloidal initial data set under consideration admits well-defined Bondi mass and angular momentum, and, in addition,

 $\mathbf{K}_{qq(-1)} = 0$ & $\mathbf{b}_{(-1)} = 0$ & $\kappa_1 = 0$

Our second main result: Theorem II.

- Choose generic free data (N, a, b, κ, K_{qq}) on Σ that satisfies the falloff conditions relevant for asymptotically hyperboloidal data with κ₀ being a strictly positive smooth on ∂Σ̃.
- Suppose that (Î, K, k) are smooth [i.e., of class C[∞]((0, ω₀), C[∞](S²))], solutions on Σ such that Î > 0 there.

• Then, the constrained fields $(\widehat{\mathbf{N}}, \mathbf{K}, \mathbf{k})$ are also of class $C^{\infty}([0, \omega_0), C^{\infty}(\mathbb{S}^2))$ on the whole of $\widetilde{\Sigma} = \Sigma \cup \partial \Sigma$, i.e., no logarithmic singularities occur, if and only if the asymptotically hyperboloidal initial data set under consideration admits well-defined Bondi mass and angular momentum, and, in addition,

 $\mathbf{K}_{qq(-1)} = 0$ & $\mathbf{b}_{(-1)} = 0$ & $\mathbf{\kappa}_1 = 0$

Our second main result: Theorem II.

- Choose generic free data (N, a, b, κ, K_{qq}) on Σ that satisfies the falloff conditions relevant for asymptotically hyperboloidal data with κ₀ being a strictly positive smooth on ∂Σ.
- Suppose that $(\widehat{\mathbf{N}}, \mathbf{K}, \mathbf{k})$ are smooth [i.e., of class $C^{\infty}((0, \omega_0), C^{\infty}(\mathbb{S}^2))$], solutions on Σ such that $\widehat{\mathbf{N}} > 0$ there.

• Then, the constrained fields $(\widehat{\mathbf{N}}, \mathbf{K}, \mathbf{k})$ are also of class $C^{\infty}([0, \omega_0), C^{\infty}(\mathbb{S}^2))$ on the whole of $\widetilde{\Sigma} = \Sigma \cup \partial \Sigma$, i.e., no logarithmic singularities occur, if and only if the asymptotically hyperboloidal initial data set under consideration admits well-defined Bondi mass and angular momentum, and, in addition,

 $\mathbf{K}_{qq(-1)} = 0$ & $\mathbf{b}_{(-1)} = 0$ & $\kappa_1 = 0$

Our second main result: Theorem II.

- Choose generic free data (N, a, b, κ, K_{qq}) on Σ that satisfies the falloff conditions relevant for asymptotically hyperboloidal data with κ₀ being a strictly positive smooth on ∂Σ.
- Suppose that (Î, K, k) are smooth [i.e., of class C[∞]((0, ω₀), C[∞](S²))], solutions on Σ such that Î > 0 there.
- Then, the constrained fields $(\widehat{\mathbf{N}}, \mathbf{K}, \mathbf{k})$ are also of class $C^{\infty}([0, \omega_0), C^{\infty}(\mathbb{S}^2))$ on the whole of $\widetilde{\Sigma} = \Sigma \cup \partial \Sigma$, i.e., no logarithmic singularities occur, if and only if the asymptotically hyperboloidal initial data set under consideration admits well-defined Bondi mass and angular momentum, and, in addition,

$$\check{\mathbf{K}}_{qq(-1)} = 0$$
 & $\mathbf{b}_{(-1)} = 0$ & $\kappa_1 = 0$

Our second main result: Theorem II.

- Choose generic free data (N, a, b, κ, K_{qq}) on Σ that satisfies the falloff conditions relevant for asymptotically hyperboloidal data with κ₀ being a strictly positive smooth on ∂Σ.
- Suppose that $(\widehat{\mathbf{N}}, \mathbf{K}, \mathbf{k})$ are smooth [i.e., of class $C^{\infty}((0, \omega_0), C^{\infty}(\mathbb{S}^2))$], solutions on Σ such that $\widehat{\mathbf{N}} > 0$ there.
- Then, the constrained fields $(\widehat{\mathbf{N}}, \mathbf{K}, \mathbf{k})$ are also of class $C^{\infty}([0, \omega_0), C^{\infty}(\mathbb{S}^2))$ on the whole of $\widetilde{\Sigma} = \Sigma \cup \partial \Sigma$, i.e., no logarithmic singularities occur, if and only if the asymptotically hyperboloidal initial data set under consideration admits well-defined Bondi mass and angular momentum, and, in addition,

$$\check{\mathbf{K}}_{qq(-1)} = 0 \quad \& \quad \mathbf{b}_{(-1)} = 0 \quad \& \quad \kappa_1 = 0$$

and also the following two relations

$$\mathbf{a}_{(-1)} = const \quad \& \quad \mathbf{\breve{K}}_{qq0} = \frac{1}{2} \,\boldsymbol{\kappa}_0 \cdot \eth \eth \,\boldsymbol{\kappa}_0^{-2}$$

hold on $\partial \widetilde{\Sigma}$.

17/20

- Using the smoothness properties found in our first theorem, replace the constrained variables in the parabolic-hyperbolic system with their respective Taylor series:
 - $\mathbf{N} \longrightarrow \mathbf{N}_0 + \mathbf{N}_1 \, \omega + \mathbf{N}_2 \, \omega^2 + \mathbf{N}_3 \, \omega^3 + \mathbf{N}_4 \, \omega^4 + \omega^4 w_{\widehat{\mathbf{N}}}(\omega)$
 - $\mathbf{K} \longrightarrow \mathbf{K}_0 + \mathbf{K}_1 \, \omega + \mathbf{K}_2 \, \omega^2 + \mathbf{K}_3 \, \omega^3 + \mathbf{K}_4 \, \omega^4 + \omega^4 w_{\mathbf{K}}(\omega)$
 - $\mathbf{k} \longrightarrow \mathbf{k}_0 + \mathbf{k}_1 \, \omega + \mathbf{k}_2 \, \omega^2 + \mathbf{k}_3 \, \omega^3 + \omega^3 w_{\mathbf{k}}(\omega)$
- $w_{\widehat{\mathbf{N}}}(\omega), w_{\mathbf{K}}(\omega), w_{\mathbf{k}}(\omega)$, are of class $C^0([0, \omega_0), C^{\infty}(\mathbb{S}^2))$ and vanish at $\partial \widetilde{\Sigma}$, thus they can represent higher-order log-terms that may still occur.
- All the "coefficients in black" can be derived from the free data and the coefficients $(\widehat{N}_4, k_2, K_1)$ which represent the asymptotic degrees of freedom.
- If the last two algebraic conditions hold, then the following Fuchsian-type (singular) equation holds for the vector-valued variable $\underline{W} = (w_{\widehat{\mathbf{N}}}, w_{\mathbf{K}}, w_{\mathbf{k}})^T$, comprised of the residuals, for every $p \in \mathscr{S}^2$ and for every $0 < \omega < \omega_0$:

$$\partial_{\omega} \underline{W}(\omega, p) = \frac{1}{\omega} diag(0, -3, -1) \underline{W}(\omega, p) + \underline{H}\left(\omega, p; \widehat{\mathbf{N}}_{4}(p), \mathbf{k}_{2}(p), \mathbf{K}_{1}(p), \underline{W}(\omega, p), \eth \underline{W}, \eth \underline{\delta} \underline{W}, \eth \overline{\delta} \underline{W}\right)$$

•
$$\widehat{\mathbf{N}} \longrightarrow \widehat{\mathbf{N}}_0 + \widehat{\mathbf{N}}_1 \, \omega + \widehat{\mathbf{N}}_2 \, \omega^2 + \widehat{\mathbf{N}}_3 \, \omega^3 + \widehat{\mathbf{N}}_4 \, \omega^4 + \omega^4 w_{\widehat{\mathbf{N}}}(\omega)$$

•
$$\mathbf{K} \longrightarrow \mathbf{K}_0 + \mathbf{K}_1 \,\omega + \mathbf{K}_2 \,\omega^2 + \mathbf{K}_3 \,\omega^3 + \mathbf{K}_4 \,\omega^4 + \omega^4 w_{\mathbf{K}}(\omega)$$

•
$$\mathbf{k} \longrightarrow \mathbf{k}_0 + \mathbf{k}_1 \,\omega + \mathbf{k}_2 \,\omega^2 + \mathbf{k}_3 \,\omega^3 + \omega^3 w_{\mathbf{k}}(\omega)$$

- $w_{\widehat{\mathbf{N}}}(\omega), w_{\mathbf{K}}(\omega), w_{\mathbf{k}}(\omega)$, are of class $C^0([0, \omega_0), C^{\infty}(\mathbb{S}^2))$ and vanish at $\partial \widetilde{\Sigma}$, thus they can represent higher-order log-terms that may still occur.
- All the "coefficients in black" can be derived from the free data and the coefficients $(\widehat{N}_4, \mathbf{k}_2, \mathbf{K}_1)$ which represent the asymptotic degrees of freedom.
- If the last two algebraic conditions hold, then the following Fuchsian-type (singular) equation holds for the vector-valued variable $\underline{W} = (w_{\widehat{\mathbf{N}}}, w_{\mathbf{K}}, w_{\mathbf{k}})^T$, comprised of the residuals, for every $p \in \mathscr{S}^2$ and for every $0 < \omega < \omega_0$:

$$\partial_{\omega} \underline{W}(\omega, p) = \frac{1}{\omega} diag(0, -3, -1) \underline{W}(\omega, p) + \underline{H}\left(\omega, p; \widehat{\mathbf{N}}_{4}(p), \mathbf{k}_{2}(p), \mathbf{K}_{1}(p), \underline{W}(\omega, p), \overline{\partial} \underline{W}, \overline{\partial} \underline{W}, \overline{\partial} \overline{\underline{W}}\right)$$

•
$$\widehat{\mathbf{N}} \longrightarrow \widehat{\mathbf{N}}_0 + \widehat{\mathbf{N}}_1 \, \omega + \widehat{\mathbf{N}}_2 \, \omega^2 + \widehat{\mathbf{N}}_3 \, \omega^3 + \widehat{\mathbf{N}}_4 \, \omega^4 + \omega^4 w_{\widehat{\mathbf{N}}}(\omega)$$

•
$$\mathbf{K} \longrightarrow \mathbf{K}_0 + \mathbf{K}_1 \, \omega + \mathbf{K}_2 \, \omega^2 + \mathbf{K}_3 \, \omega^3 + \mathbf{K}_4 \, \omega^4 + \omega^4 w_{\mathbf{K}}(\omega)$$

•
$$\mathbf{k} \longrightarrow \mathbf{k}_0 + \mathbf{k}_1 \,\omega + \mathbf{k}_2 \,\omega^2 + \mathbf{k}_3 \,\omega^3 + \omega^3 w_{\mathbf{k}}(\omega)$$

- $w_{\widehat{\mathbf{N}}}(\omega), w_{\mathbf{K}}(\omega), w_{\mathbf{k}}(\omega)$, are of class $C^0([0, \omega_0), C^{\infty}(\mathbb{S}^2))$ and vanish at $\partial \widetilde{\Sigma}$, thus they can represent higher-order log-terms that may still occur.
- All the "coefficients in black" can be derived from the free data and the coefficients (\widehat{N}_4,k_2,K_1) which represent the asymptotic degrees of freedom.
- If the last two algebraic conditions hold, then the following Fuchsian-type (singular) equation holds for the vector-valued variable $\underline{W} = (w_{\widehat{N}}, w_{\mathbf{K}}, w_{\mathbf{k}})^T$, comprised of the residuals, for every $p \in \mathscr{S}^2$ and for every $0 < \omega < \omega_0$:

$$\partial_{\omega} \underline{W}(\omega, p) = \frac{1}{\omega} diag(0, -3, -1) \underline{W}(\omega, p) + \underline{H}\left(\omega, p; \widehat{\mathbf{N}}_{4}(p), \mathbf{k}_{2}(p), \mathbf{K}_{1}(p), \underline{W}(\omega, p), \eth \underline{W}, \eth \underline{\eth} \underline{W}, \eth \overline{\eth} \underline{W}\right)$$

•
$$\widehat{\mathbf{N}} \longrightarrow \widehat{\mathbf{N}}_0 + \widehat{\mathbf{N}}_1 \, \omega + \widehat{\mathbf{N}}_2 \, \omega^2 + \widehat{\mathbf{N}}_3 \, \omega^3 + \widehat{\mathbf{N}}_4 \, \omega^4 + \omega^4 w_{\widehat{\mathbf{N}}}(\omega)$$

•
$$\mathbf{K} \longrightarrow \mathbf{K}_0 + \mathbf{K}_1 \, \omega + \mathbf{K}_2 \, \omega^2 + \mathbf{K}_3 \, \omega^3 + \mathbf{K}_4 \, \omega^4 + \omega^4 w_{\mathbf{K}}(\omega)$$

•
$$\mathbf{k} \longrightarrow \mathbf{k}_0 + \mathbf{k}_1 \,\omega + \mathbf{k}_2 \,\omega^2 + \mathbf{k}_3 \,\omega^3 + \omega^3 w_{\mathbf{k}}(\omega)$$

- $w_{\widehat{\mathbf{N}}}(\omega), w_{\mathbf{K}}(\omega), w_{\mathbf{k}}(\omega)$, are of class $C^0([0, \omega_0), C^{\infty}(\mathbb{S}^2))$ and vanish at $\partial \widetilde{\Sigma}$, thus they can represent higher-order log-terms that may still occur.
- All the "coefficients in black" can be derived from the free data and the coefficients (\hat{N}_4, k_2, K_1) which represent the asymptotic degrees of freedom.
- If the last two algebraic conditions hold, then the following Fuchsian-type (singular) equation holds for the vector-valued variable $\underline{W} = (w_{\widehat{\mathbf{N}}}, w_{\mathbf{K}}, w_{\mathbf{k}})^T$, comprised of the residuals, for every $p \in \mathscr{S}^2$ and for every $0 < \omega < \omega_0$:

$$\partial_{\omega} \underline{W}(\omega, p) = \frac{1}{\omega} diag(0, -3, -1) \underline{W}(\omega, p) + \underline{H}\left(\omega, p; \widehat{\mathbf{N}}_{4}(p), \mathbf{k}_{2}(p), \mathbf{K}_{1}(p), \underline{W}(\omega, p), \eth \underline{W}, \eth \underline{\eth} \underline{W}, \eth \overline{\eth} \underline{W}\right)$$

•
$$\widehat{\mathbf{N}} \longrightarrow \widehat{\mathbf{N}}_0 + \widehat{\mathbf{N}}_1 \, \omega + \widehat{\mathbf{N}}_2 \, \omega^2 + \widehat{\mathbf{N}}_3 \, \omega^3 + \widehat{\mathbf{N}}_4 \, \omega^4 + \omega^4 w_{\widehat{\mathbf{N}}}(\omega)$$

•
$$\mathbf{K} \longrightarrow \mathbf{K}_0 + \mathbf{K}_1 \,\omega + \mathbf{K}_2 \,\omega^2 + \mathbf{K}_3 \,\omega^3 + \mathbf{K}_4 \,\omega^4 + \omega^4 w_{\mathbf{K}}(\omega)$$

•
$$\mathbf{k} \longrightarrow \mathbf{k}_0 + \mathbf{k}_1 \,\omega + \mathbf{k}_2 \,\omega^2 + \mathbf{k}_3 \,\omega^3 + \omega^3 w_{\mathbf{k}}(\omega)$$

- $w_{\widehat{\mathbf{N}}}(\omega), w_{\mathbf{K}}(\omega), w_{\mathbf{k}}(\omega)$, are of class $C^0([0, \omega_0), C^{\infty}(\mathbb{S}^2))$ and vanish at $\partial \widetilde{\Sigma}$, thus they can represent higher-order log-terms that may still occur.
- All the "coefficients in black" can be derived from the free data and the coefficients (\hat{N}_4, k_2, K_1) which represent the asymptotic degrees of freedom.
- If the last two algebraic conditions hold, then the following Fuchsian-type (singular) equation holds for the vector-valued variable $\underline{W} = (w_{\widehat{\mathbf{N}}}, w_{\mathbf{K}}, w_{\mathbf{k}})^T$, comprised of the residuals, for every $p \in \mathscr{S}^2$ and for every $0 < \omega < \omega_0$:

$$\partial_{\omega} \underline{W}(\omega, p) = \frac{1}{\omega} diag(0, -3, -1) \underline{W}(\omega, p) + \underline{H}\left(\omega, p; \widehat{\mathbf{N}}_{4}(p), \mathbf{k}_{2}(p), \mathbf{K}_{1}(p), \underline{W}(\omega, p), \overline{\partial}\underline{W}, \overline{\partial}\underline{W}, \overline{\partial}\overline{\partial}\underline{W}\right) \qquad (*)$$

• Using the smoothness properties found in our first theorem, replace the constrained variables in the parabolic-hyperbolic system with their respective Taylor series:

•
$$\widehat{\mathbf{N}} \longrightarrow \widehat{\mathbf{N}}_0 + \widehat{\mathbf{N}}_1 \, \omega + \widehat{\mathbf{N}}_2 \, \omega^2 + \widehat{\mathbf{N}}_3 \, \omega^3 + \widehat{\mathbf{N}}_4 \, \omega^4 + \omega^4 w_{\widehat{\mathbf{N}}}(\omega)$$

•
$$\mathbf{K} \longrightarrow \mathbf{K}_0 + \mathbf{K}_1 \,\omega + \mathbf{K}_2 \,\omega^2 + \mathbf{K}_3 \,\omega^3 + \mathbf{K}_4 \,\omega^4 + \omega^4 w_{\mathbf{K}}(\omega)$$

•
$$\mathbf{k} \longrightarrow \mathbf{k}_0 + \mathbf{k}_1 \,\omega + \mathbf{k}_2 \,\omega^2 + \mathbf{k}_3 \,\omega^3 + \omega^3 w_{\mathbf{k}}(\omega)$$

- $w_{\widehat{\mathbf{N}}}(\omega), w_{\mathbf{K}}(\omega), w_{\mathbf{k}}(\omega)$, are of class $C^0([0, \omega_0), C^{\infty}(\mathbb{S}^2))$ and vanish at $\partial \widetilde{\Sigma}$, thus they can represent higher-order log-terms that may still occur.
- All the "coefficients in black" can be derived from the free data and the coefficients (\hat{N}_4, k_2, K_1) which represent the asymptotic degrees of freedom.
- If the last two algebraic conditions hold, then the following Fuchsian-type (singular) equation holds for the vector-valued variable $\underline{W} = (w_{\widehat{\mathbf{N}}}, w_{\mathbf{K}}, w_{\mathbf{k}})^T$, comprised of the residuals, for every $p \in \mathscr{S}^2$ and for every $0 < \omega < \omega_0$:

$$\partial_{\omega} \underline{W}(\omega, p) = \frac{1}{\omega} diag(0, -3, -1) \underline{W}(\omega, p) + \underline{H}\left(\omega, p; \widehat{\mathbf{N}}_{4}(p), \mathbf{k}_{2}(p), \mathbf{K}_{1}(p), \underline{W}(\omega, p), \overline{\partial}\underline{W}, \overline{\partial}\underline{W}, \overline{\partial}\overline{\partial}\underline{W}\right) \qquad (*)$$

where <u>H</u> is a (lengthy, but explicitly known) vector-valued function that is smooth in each of its arguments, and regularly extends to $\omega = 0$.

18 / 20

$$\partial_{\omega}\underline{W}(\omega,p) = \frac{1}{\omega}diag(0,-3,-1)\,\underline{W}(\omega,p)$$

 $+ \underline{H}(\omega, p; \widehat{\mathbf{N}}_4(p), \mathbf{k}_2(p), \mathbf{K}_1(p), \underline{W}(\omega, p), \eth \underline{W}, \eth \overline{\eth} \underline{W}, \eth \overline{\eth} \underline{W}) \qquad (*)$

• The solution can then be given as

$$\underline{W}(\omega, p) = diag[\omega^{-3}, \omega^{-1}, 1] \times \int_{0}^{\omega} diag[s^{3}, s, 1] \times \underline{H}(s, p) \,\mathrm{d}s \qquad (**)$$

• Since the integrand regularly extends to s = 0, we can perform the integral transformation by replacing s with the product $\omega \cdot \tau$, which yields

$$\frac{1}{\omega}\underline{W}(\omega,p) = \int_0^1 diag[\tau^3,\tau,1] \times \underline{H}(\omega \cdot \tau,p) \,\mathrm{d}\tau \qquad (***)$$

- Since the integrand on the right-hand side is regular over the entire Σ , the left-hand side must also be regular there.
- This then implies that both terms on the right hand side of (*) are regular on $\tilde{\Sigma}$, and, in turn, the first order ω -derivative $\partial_{\omega} \underline{W}$ of the vector-valued variable of the residuals $\underline{W}(\omega, p) = (w_{\mathbf{K}}(\omega, p), w_{\mathbf{k}}(\omega, p), w_{\widehat{\mathbf{N}}}(\omega, p))^T$ is also regular at $\omega = 0$.
- By repeating this process inductively we can also prove that the ω-derivatives of the vector-valued variable <u>W</u>(ω, p) up to arbitrary order extend regularly to ∂Σ̃, thereby, the constrained variables (Ñ, K, k) extend smoothly to ∂Σ̃.

$$\partial_{\omega}\underline{W}(\omega,p) = \frac{1}{\omega}diag(0,-3,-1)\,\underline{W}(\omega,p)$$

 $+ \underline{H}(\omega, p; \widehat{\mathbf{N}}_4(p), \mathbf{k}_2(p), \mathbf{K}_1(p), \underline{W}(\omega, p), \eth \underline{W}, \eth \underline{\eth} \underline{W}, \eth \overline{\eth} \underline{W}) \qquad (*)$

• The solution can then be given as

$$\underline{W}(\omega, p) = diag[\omega^{-3}, \omega^{-1}, 1] \times \int_0^\omega diag[s^3, s, 1] \times \underline{H}(s, p) \,\mathrm{d}s \qquad (**)$$

• Since the integrand regularly extends to s = 0, we can perform the integral transformation by replacing s with the product $\omega \cdot \tau$, which yields

$$\frac{1}{\omega}\underline{W}(\omega,p) = \int_0^1 diag[\tau^3,\tau,1] \times \underline{H}(\omega \cdot \tau,p) \,\mathrm{d}\tau \qquad (***)$$

- Since the integrand on the right-hand side is regular over the entire Σ , the left-hand side must also be regular there.
- This then implies that both terms on the right hand side of (*) are regular on $\tilde{\Sigma}$, and, in turn, the first order ω -derivative $\partial_{\omega} \underline{W}$ of the vector-valued variable of the residuals $\underline{W}(\omega, p) = (w_{\mathbf{K}}(\omega, p), w_{\mathbf{k}}(\omega, p), w_{\widehat{\mathbf{N}}}(\omega, p))^T$ is also regular at $\omega = 0$.
- By repeating this process inductively we can also prove that the ω-derivatives of the vector-valued variable <u>W</u>(ω, p) up to arbitrary order extend regularly to ∂Σ̃, thereby, the constrained variables (Ñ, K, k) extend smoothly to ∂Σ̃.

$$\partial_{\omega}\underline{W}(\omega,p) = \frac{1}{\omega}diag(0,-3,-1)\,\underline{W}(\omega,p)$$

 $+ \underline{H}(\omega, p; \widehat{\mathbf{N}}_4(p), \mathbf{k}_2(p), \mathbf{K}_1(p), \underline{W}(\omega, p), \eth \underline{W}, \eth \underline{\eth} \underline{W}, \eth \overline{\eth} \underline{W})$ (*)

• The solution can then be given as

$$\underline{W}(\omega, p) = diag[\omega^{-3}, \omega^{-1}, 1] \times \int_0^\omega diag[s^3, s, 1] \times \underline{H}(s, p) \,\mathrm{d}s \qquad (**)$$

• Since the integrand regularly extends to s = 0, we can perform the integral transformation by replacing s with the product $\omega \cdot \tau$, which yields

$$\frac{1}{\omega}\underline{W}(\omega,p) = \int_0^1 diag[\tau^3,\tau,1] \times \underline{H}(\omega \cdot \tau,p) \,\mathrm{d}\tau \qquad (***)$$

• Since the integrand on the right-hand side is regular over the entire Σ , the left-hand side must also be regular there.

• This then implies that both terms on the right hand side of (*) are regular on $\tilde{\Sigma}$, and, in turn, the first order ω -derivative $\partial_{\omega} \underline{W}$ of the vector-valued variable of the residuals $\underline{W}(\omega, p) = (w_{\mathbf{K}}(\omega, p), w_{\mathbf{k}}(\omega, p), w_{\widehat{\mathbf{N}}}(\omega, p))^T$ is also regular at $\omega = 0$.

 By repeating this process inductively we can also prove that the ω-derivatives of the vector-valued variable <u>W</u>(ω, p) up to arbitrary order extend regularly to ∂Σ̃, thereby, the constrained variables (Ñ, K, k) extend smoothly to ∂Σ̃.
The key steps in the Fuchsian argument II.

$$\partial_{\omega}\underline{W}(\omega,p) = \frac{1}{\omega}diag(0,-3,-1)\,\underline{W}(\omega,p)$$

 $+ \underline{H}(\omega, p; \widehat{\mathbf{N}}_4(p), \mathbf{k}_2(p), \mathbf{K}_1(p), \underline{W}(\omega, p), \eth \underline{W}, \eth \underline{\eth} \underline{W}, \eth \overline{\eth} \underline{W}) \qquad (*)$

• The solution can then be given as

$$\underline{W}(\omega, p) = diag[\omega^{-3}, \omega^{-1}, 1] \times \int_0^\omega diag[s^3, s, 1] \times \underline{H}(s, p) \,\mathrm{d}s \qquad (**)$$

• Since the integrand regularly extends to s = 0, we can perform the integral transformation by replacing s with the product $\omega \cdot \tau$, which yields

$$\frac{1}{\omega}\underline{W}(\omega,p) = \int_0^1 diag[\tau^3,\tau,1] \times \underline{H}(\omega \cdot \tau,p) \,\mathrm{d}\tau \qquad (***)$$

- Since the integrand on the right-hand side is regular over the entire $\widetilde{\Sigma}$, the left-hand side must also be regular there.
- This then implies that both terms on the right hand side of (*) are regular on $\tilde{\Sigma}$, and, in turn, the first order ω -derivative $\partial_{\omega} \underline{W}$ of the vector-valued variable of the residuals $\underline{W}(\omega, p) = (w_{\mathbf{K}}(\omega, p), w_{\mathbf{k}}(\omega, p), w_{\widehat{\mathbf{N}}}(\omega, p))^T$ is also regular at $\omega = 0$.
- By repeating this process inductively we can also prove that the ω-derivatives of the vector-valued variable <u>W</u>(ω, p) up to arbitrary order extend regularly to ∂Σ̃, thereby, the constrained variables (Ñ, K, k) extend smoothly to ∂Σ̃.

The key steps in the Fuchsian argument II.

$$\partial_{\omega}\underline{W}(\omega,p) = \frac{1}{\omega}diag(0,-3,-1)\,\underline{W}(\omega,p)$$

 $+ \underline{H}(\omega, p; \widehat{\mathbf{N}}_4(p), \mathbf{k}_2(p), \mathbf{K}_1(p), \underline{W}(\omega, p), \eth \underline{W}, \eth \underline{\eth} \underline{W}, \eth \overline{\eth} \underline{W}) \qquad (*)$

• The solution can then be given as

$$\underline{W}(\omega, p) = diag[\omega^{-3}, \omega^{-1}, 1] \times \int_0^\omega diag[s^3, s, 1] \times \underline{H}(s, p) \,\mathrm{d}s \qquad (**)$$

• Since the integrand regularly extends to s = 0, we can perform the integral transformation by replacing s with the product $\omega \cdot \tau$, which yields

$$\frac{1}{\omega}\underline{W}(\omega,p) = \int_0^1 diag[\tau^3,\tau,1] \times \underline{H}(\omega \cdot \tau,p) \,\mathrm{d}\tau \qquad (***)$$

- Since the integrand on the right-hand side is regular over the entire Σ, the left-hand side must also be regular there.
- This then implies that both terms on the right hand side of (*) are regular on $\tilde{\Sigma}$, and, in turn, the first order ω -derivative $\partial_{\omega} \underline{W}$ of the vector-valued variable of the residuals $\underline{W}(\omega, p) = (w_{\mathbf{K}}(\omega, p), w_{\mathbf{k}}(\omega, p), w_{\widehat{\mathbf{N}}}(\omega, p))^T$ is also regular at $\omega = 0$.

• By repeating this process inductively we can also prove that the ω -derivatives of the vector-valued variable $\underline{W}(\omega, p)$ up to arbitrary order extend regularly to $\partial \widetilde{\Sigma}$, thereby, the constrained variables $(\widehat{\mathbf{N}}, \mathbf{K}, \mathbf{k})$ extend smoothly to $\partial \widetilde{\Sigma}$.

The key steps in the Fuchsian argument II.

$$\partial_{\omega}\underline{W}(\omega,p) = \frac{1}{\omega}diag(0,-3,-1)\,\underline{W}(\omega,p)$$

 $+ \underline{H}(\omega, p; \widehat{\mathbf{N}}_4(p), \mathbf{k}_2(p), \mathbf{K}_1(p), \underline{W}(\omega, p), \eth \underline{W}, \eth \underline{\eth} \underline{W}, \eth \overline{\eth} \underline{W})$ (*)

• The solution can then be given as

$$\underline{W}(\omega, p) = diag[\omega^{-3}, \omega^{-1}, 1] \times \int_{0}^{\omega} diag[s^{3}, s, 1] \times \underline{H}(s, p) \,\mathrm{d}s \qquad (**)$$

• Since the integrand regularly extends to s = 0, we can perform the integral transformation by replacing s with the product $\omega \cdot \tau$, which yields

$$\frac{1}{\omega} \underline{W}(\omega, p) = \int_0^1 diag[\tau^3, \tau, 1] \times \underline{H}(\omega \cdot \tau, p) \,\mathrm{d}\tau \qquad (***)$$

- Since the integrand on the right-hand side is regular over the entire $\widetilde{\Sigma}$, the left-hand side must also be regular there.
- This then implies that both terms on the right hand side of (*) are regular on $\tilde{\Sigma}$, and, in turn, the first order ω -derivative $\partial_{\omega} \underline{W}$ of the vector-valued variable of the residuals $\underline{W}(\omega, p) = (w_{\mathbf{K}}(\omega, p), w_{\mathbf{k}}(\omega, p), w_{\widehat{\mathbf{N}}}(\omega, p))^T$ is also regular at $\omega = 0$.
- By repeating this process inductively we can also prove that the ω -derivatives of the vector-valued variable $\underline{W}(\omega, p)$ up to arbitrary order extend regularly to $\partial \widetilde{\Sigma}$, thereby, the constrained variables $(\widehat{\mathbf{N}}, \mathbf{K}, \mathbf{k})$ extend smoothly to $\partial \widetilde{\Sigma}$.

19 / 20

- We proved that the existence of well-defined Bondi mass and angular momentum, together with some mild restrictions on the free data, implies that the generic solutions of the parabolic-hyperbolic form of the constraint equations are smooth and entirely free of logarithmic singularities. This result is a substantial generalization of a recent result of Beyer and Ritchie.
- Combining these results with those of the corresponding hyperboloidal initial value problem [Friedrich, Frauendiener, Kroon,...] we can conclude that the Cauchy developments of the corresponding asymptotically hyperboloidal initial data specifications must admit smooth conformal boundary as assumed in the original definition of asymptotically simple spacetimes by Penrose.
- Hopefully, these results will spark the interest of experts who can prove the existence of global solutions to the evolutionary form of constraint equations.

・ロト ・ 同ト ・ ヨト ・

- We proved that the existence of well-defined Bondi mass and angular momentum, together with some mild restrictions on the free data, implies that the generic solutions of the parabolic-hyperbolic form of the constraint equations are smooth and entirely free of logarithmic singularities. This result is a substantial generalization of a recent result of Beyer and Ritchie.
- Combining these results with those of the corresponding hyperboloidal initial value problem [Friedrich, Frauendiener, Kroon,...] we can conclude that the Cauchy developments of the corresponding asymptotically hyperboloidal initial data specifications must admit smooth conformal boundary as assumed in the original definition of asymptotically simple spacetimes by Penrose.
- Hopefully, these results will spark the interest of experts who can prove the existence of global solutions to the evolutionary form of constraint equations.

イロト イヨト イヨト イ

- We proved that the existence of well-defined Bondi mass and angular momentum, together with some mild restrictions on the free data, implies that the generic solutions of the parabolic-hyperbolic form of the constraint equations are smooth and entirely free of logarithmic singularities. This result is a substantial generalization of a recent result of Beyer and Ritchie.
- Combining these results with those of the corresponding hyperboloidal initial value problem [Friedrich, Frauendiener, Kroon,...] we can conclude that the Cauchy developments of the corresponding asymptotically hyperboloidal initial data specifications must admit smooth conformal boundary as assumed in the original definition of asymptotically simple spacetimes by Penrose.
- Hopefully, these results will spark the interest of experts who can prove the existence of global solutions to the evolutionary form of constraint equations.

・ロト ・ 日 ・ ・ 日 ・ ・ 日

- We proved that the existence of well-defined Bondi mass and angular momentum, together with some mild restrictions on the free data, implies that the generic solutions of the parabolic-hyperbolic form of the constraint equations are smooth and entirely free of logarithmic singularities. This result is a substantial generalization of a recent result of Beyer and Ritchie.
- Combining these results with those of the corresponding hyperboloidal initial value problem [Friedrich, Frauendiener, Kroon,...] we can conclude that the Cauchy developments of the corresponding asymptotically hyperboloidal initial data specifications must admit smooth conformal boundary as assumed in the original definition of asymptotically simple spacetimes by Penrose.
- Hopefully, these results will spark the interest of experts who can prove the existence of global solutions to the evolutionary form of constraint equations.

Image: A matching of the second se

- We proved that the existence of well-defined Bondi mass and angular momentum, together with some mild restrictions on the free data, implies that the generic solutions of the parabolic-hyperbolic form of the constraint equations are smooth and entirely free of logarithmic singularities. This result is a substantial generalization of a recent result of Beyer and Ritchie.
- Combining these results with those of the corresponding hyperboloidal initial value problem [Friedrich, Frauendiener, Kroon, ...] we can conclude that the Cauchy developments of the corresponding asymptotically hyperboloidal initial data specifications must admit smooth conformal boundary as assumed in the original definition of asymptotically simple spacetimes by Penrose.
- Hopefully, these results will spark the interest of experts who can prove the existence of global solutions to the evolutionary form of constraint equations.

Thanks for your attention

(日)