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“hyperboloidal initial data without logarithmic singularities”:

Gravitational field in the radiation regime: the expected behavior

In the early 60’s, Bondi, Sachs, and Penrose proposed a set of boundary
conditions that are appropriate for gravitational fields in the radiation regime.

A somewhat simplified way to introduce their conditions is to assume the
existence of “asymptotically quasi-Minkowskian coordinates”
(xν) = (t, x, y, z) in which

gµν − ηµν =
f
(1)
µν (t− r, θ, ϕ)

r
+

f
(2)
µν (t− r, θ, ϕ)

r2
+ . . .

where ηµν is the Minkowski metric diag(−1, 1, 1, 1), while (r, θ, ϕ) stand for
the standard spherical coordinates on R3.

The expansion above has to hold at, say, fixed value of t− r, while r → ∞.

As we will see later, there are results that support these expectations.

In the mid-1990s, it was discovered that the above formula may not give the
generic asymptotic behavior for radiative vacuum solutions.
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“hyperboloidal initial data without logarithmic singularities”:

Gravitational field in the radiation regime: with polyhomogeneous expansions

Indeed, many results from the mid-90’s demonstrated that the correct formula,
instead of

gµν − ηµν = ω f (1)
µν (u, θ, ϕ) + ω2 f (2)

µν (u, θ, ϕ) + . . .

where the replacements ω = r−1 and u = t− r were used,

may be of the form,
involving a lot of logarithmic terms,

gµν − ηµν = ω
{
f (1)
µν +

[
h(1,1)
µν · logω + h(1,2)

µν · log2 ω + . . .
]}

+ ω2
{
f (2)
µν +

[
h(2,1)
µν · logω + h(2,2)

µν · log2 ω + . . .
]}

+ . . .

where the coefficients are assumed to be smooth functions of (u, θ, ϕ).

Using the l’Hopital rule:

lim
ω→0

ωa logb ω = lim
ω→0

logb ω

ω−a
= lim

ω→0

∂ω logb ω

∂ωω−a
= −

b

a
lim
ω→0

ωa logb−1 ω = · · · = 0 (!)

But
∂ω

(
ω logω

)
= logω + 1

which is unbounded in the ω → 0 limit!
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“hyperboloidal initial data without logarithmic singularities”:

Einstein’s equations & the Cauchy problem

Spacetime: (M, gab) smooth manifold M ... with a smooth metric gab ...

Einstein’s equations: Eab = Gab − Gab = 0 ∇aGab = 0

In a more conventional setup: [Rab − 1
2
gab R] + Λ gab = 8π Tab

where the energy-momentum tensor is Tab and Λ is the cosmological constant:
Gab = 8π Tab − Λ gab (!) matter fields satisfying their field equations...

Yvonne Choquet-Bruhat (1952): Einstein’s equations as a coupled set of
quasi-linear wave equations: local existence & uniqueness of solutions...with Geroch
(1969) the existence of a maximal Cauchy development unique up to diffeos

the initial value problem is well-posed: ∃ a map so that it is “one-to-one” &
continuous & causal

the space of

the space of
initial data

EVOLUTION

solutions

a continuous mapping

[S]J

p

(p)

S

(p) UΣ   i
nitial data surface

J

J
Σ   

+

− 

− 

future
Cauchy development

D
+
[Σ]

István Rácz (Wigner RCP) Wigner RCP, June 6, 2025 4 / 20



“hyperboloidal initial data without logarithmic singularities”:

Einstein’s equations & the Cauchy problem

Spacetime: (M, gab) smooth manifold M ... with a smooth metric gab ...

Einstein’s equations: Eab = Gab − Gab = 0 ∇aGab = 0

In a more conventional setup: [Rab − 1
2
gab R] + Λ gab = 8π Tab

where the energy-momentum tensor is Tab and Λ is the cosmological constant:
Gab = 8π Tab − Λ gab (!) matter fields satisfying their field equations...

Yvonne Choquet-Bruhat (1952): Einstein’s equations as a coupled set of
quasi-linear wave equations: local existence & uniqueness of solutions...with Geroch
(1969) the existence of a maximal Cauchy development unique up to diffeos

the initial value problem is well-posed: ∃ a map so that it is “one-to-one” &
continuous & causal

the space of

the space of
initial data

EVOLUTION

solutions

a continuous mapping

[S]J

p

(p)

S

(p) UΣ   i
nitial data surface

J

J
Σ   

+

− 

− 

future
Cauchy development

D
+
[Σ]
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István Rácz (Wigner RCP) Wigner RCP, June 6, 2025 4 / 20



“hyperboloidal initial data without logarithmic singularities”:

Since there is no fixed background in GR, the topology of M is not necessarily R4

Cauchy problem: M is constructed together with the metric.

Initial data surface: Spacetime:
(Σ, hij ,Kij) (M, gab)

(satisfying the constraints) (satisfying the Einstein equations)

n

n
n

a

a

a

n
a

n
a

n
a

Σ ϕ[Σ]

ϕ

(hij ,Kij) −→ ϕ∗ −→
(
ϕ∗hij= πi

aπj
bgab, ϕ∗Kij= πi

aπj
b∇anb

)
(induced metric, extrinsic curvature)

The constraints are projections: nanbEab = 0 & πi
anbEab = 0

(Gab = 0)
(3)

R+
(
Kijh

ij
)2 −KijK

ij = 0 & Di
[
Kij − hij

(
Kefh

ef
)]

= 0 Di...
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“hyperboloidal initial data without logarithmic singularities”:

Could we work cleverly with the boundary at infinity?

In 1963, Penrose introduced such a geometric treatment of generic, isolated,
self-gravitating systems that replaces the r →∞ limit with an ω → 0 limit.

To understand this, let us first look at Schwarzschild spacetime as a simple example.

ds2 = −
(
1− 2M

r

)
dt2 +

(
1− 2M

r

)−1
dr2 + r2

(
dθ2 + sin2θ dϕ2)

By introducing the retarded time coordinate u = t− r − 2M log(r − 2M) we
obtain

ds2 = −
(
1− 2M

r

)
du2 − 2 dudr + r2

(
dθ2 + sin2θ dϕ2)

Choosing Ω = r−1 = w the conformally rescaled “nonphysical” metric reads as

ds̃ 2 = Ω2ds2 = −
(
w2 − 2Mw3) du2 + 2 dudw +

(
dθ2 + sin2θ dϕ2)
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“hyperboloidal initial data without logarithmic singularities”:

Asymptotically simple spacetimes & conformal compactification

Consider a smooth spacetime (M, g) representing an isolated self-gravitating
system.

Such a spacetime is called asymptotically simple if there exists a
smooth spacetime (M̃, g̃) with non-empty boundary I ̸= ∅ such that M

can be diffeomorphically identified with the interior, M̃ \ I , of M̃ so that

g̃ = Ω2g on M

where Ω is a smooth boundary defining function on M̃ , i.e.

Ω > 0 on M̃ \ I and Ω = 0 & dΩ ̸= 0 on I

All the g-null geodesics are complete in the directions as they approach I .

This characterization does not refer to special coordinate systems.

It brings I to a finite place in the non-physical spacetime.

The degree of smoothness of the non-physical metric g̃ is critical, since
the decay of the physical fields depends on this smoothness.
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István Rácz (Wigner RCP) Wigner RCP, June 6, 2025 7 / 20



“hyperboloidal initial data without logarithmic singularities”:

How large is the space of asymptotically simple spacetimes?
Are the applied conditions compatible with the asymptotic behavior of a
“sufficiently large” class of physically realistic spacetimes?

One approach is to use the hyperboloidal initial value problem, where the initial
data are prescribed on a hypersurface Σ with boundary ∂Σ, which is conceived as
a hypersurface in an asymptotically simple spacetime. This hypersurface intersects
future null infinity I + in ∂Σ, and is spacelike everywhere.

In the mid 80’s Friedrich developed a powerful formalism for studying
asymptotically simple spacetimes. His conformal field equations were used to study
the evolution of suitably regular hyperboloidal initial data.

Friedrich proved that sufficiently smooth data evolve into solutions that satisfy the
requirements in the definition of asymptotically simple spacetimes. Moreover, these
developments admit a conformally regular point i+, analogous to the i+ (timelike
infinity) of Minkowski spacetime, provided that the initial data are sufficiently close
to Minkowskian hyperboloidal data.
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István Rácz (Wigner RCP) Wigner RCP, June 6, 2025 8 / 20



“hyperboloidal initial data without logarithmic singularities”:

How large is the space of asymptotically simple spacetimes?
Are the applied conditions compatible with the asymptotic behavior of a
“sufficiently large” class of physically realistic spacetimes?

One approach is to use the hyperboloidal initial value problem, where the initial
data are prescribed on a hypersurface Σ with boundary ∂Σ, which is conceived as
a hypersurface in an asymptotically simple spacetime. This hypersurface intersects
future null infinity I + in ∂Σ, and is spacelike everywhere.

In the mid 80’s Friedrich developed a powerful formalism for studying
asymptotically simple spacetimes. His conformal field equations were used to study
the evolution of suitably regular hyperboloidal initial data.

Friedrich proved that sufficiently smooth data evolve into solutions that satisfy the
requirements in the definition of asymptotically simple spacetimes. Moreover, these
developments admit a conformally regular point i+, analogous to the i+ (timelike
infinity) of Minkowski spacetime, provided that the initial data are sufficiently close
to Minkowskian hyperboloidal data.
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“hyperboloidal initial data with logarithmic singularities”

Solving the constraints:

For those interested in solving the conformal field equations, the first challenge is
acquiring as large variety of hyperboloidal initial data sets as possible and also
characterizing the space of initial data: in the vacuum case for (hij ,Kij) on Σ

(3)

R+
(
Kijh

ij
)2 −KijK

ij = 0 & Di
[
Kij − hij

(
Kefh

ef
)]

= 0

It is an underdetermined system, 4 equations for the 12 variables: (hij ,Kij)

Andersson & Chruściel ’93, ’94, ’96: log-terms entered the discussion

(hij ,Kij) ←→ (ϕ, h̃ij ;K
l
l, Xi, K̃

[TT ]
ij ) (the conformal (elliptic) method)

hij = ϕ4 h̃ij & Kij − 1
3
hijK = ϕ−2 K̃ij & K̃ij = K̃

[L]
ij + K̃

[TT ]
ij

Andersson and Chruściel proved that even if the free data is smooth,

(1) in general, the constrained fields have poly-logarithmic expansions in
ω ∼ r−1, where r denotes the ”distance” from the isolated system

C = C0 + C1ω + C2ω2 + . . . C = C0 +
∑∞

i=1 ω
i
[
Ci +

∑Nj

j=1 C
[log]
i,j logj ω

]
(2) in non-generic cases, the initial data can be smooth (i.e., free of log-terms)

if certain tensorial expressions derived from the free data vanish at ∂Σ.
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Andersson & Chruściel ’93, ’94, ’96: log-terms entered the discussion

(hij ,Kij) ←→ (ϕ, h̃ij ;K
l
l, Xi, K̃

[TT ]
ij ) (the conformal (elliptic) method)

hij = ϕ4 h̃ij & Kij − 1
3
hijK = ϕ−2 K̃ij & K̃ij = K̃

[L]
ij + K̃

[TT ]
ij
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Andersson and Chruściel proved that even if the free data is smooth,

(1) in general, the constrained fields have poly-logarithmic expansions in
ω ∼ r−1, where r denotes the ”distance” from the isolated system

C = C0 + C1ω + C2ω2 + . . . C = C0 +
∑∞

i=1 ω
i
[
Ci +

∑Nj

j=1 C
[log]
i,j logj ω

]
(2) in non-generic cases, the initial data can be smooth (i.e., free of log-terms)

if certain tensorial expressions derived from the free data vanish at ∂Σ.
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Facing the problems:

These conclusions were disappointing because they implied that the initial data
constructed by the conformal method is generally not regular enough for use in
Friedrich’s existence theorems.

Andersson and Chruściel also showed that if the initial data involves logarithmic
terms, then the evolving metric will also contain log-terms.

=⇒ In general, we cannot decompose the physical metric into a sufficiently smooth
non-physical metric and a sufficiently smooth conformal factor.

Given the definition of asymptotically simple spacetimes, it is natural to ask
whether Einstein’s equations can be used to verify the smoothness assumptions.

The question is not whether C∞ should be replaced by Ck for sufficiently large k in
the context of the physical spacetime. Rather, the question is whether solutions to
the field equations admit conformal extensions of class Ck, where k can be chosen
large enough to make the concept of asymptotically simple spacetimes meaningful.

The positivists approach 1.:

Friedrich emphasized that “ before we can arrive at a conclusion we need to answer
the following questions:

[∇̃eKabc
e = 0 & Kabc

e = Ω−1Cabc
e]

what physical relevance do the data with logarithmic terms have,
are they needed to model the systems of interest, and
which are the systems of interest ? ”
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István Rácz (Wigner RCP) Wigner RCP, June 6, 2025 10 / 20



Facing the problems:

These conclusions were disappointing because they implied that the initial data
constructed by the conformal method is generally not regular enough for use in
Friedrich’s existence theorems.
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“hyperboloidal initial data without logarithmic singularities”

At the stage of this difficulty Beyer and Ritchie [CQG,39,145012,(2022)]

came up with an interesting result:

Assume that there exist smooth global solutions to the parabolic-hyperbolic
form of the constraints on a ”hyperboloidal initial data surface” Σ. If these
solutions extend regularly up to some finite order to ∂Σ, then they extend
smoothly to ∂Σ.

“The main thing we establish is that any solution that satisfies these a priori
regularity assumptions extends smoothly to ∂Σ. This is important because it
means that such solutions are free of all log-terms in their expansions.”

Beyer and Ritchie introduced an impressive Fuchsian-type argument, but

they also made very strong assumptions about both the constrained and
the free data that went largely uncommented. In this way, Beyer and
Ritchie’s results came close to Andersson and Chruściel’s second claim on the
non-generic case.
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“hyperboloidal initial data without logarithmic singularities”

The parabolic-hyperbolic form of the constraints & the spin-weighted variables

For (hij ,Kij) on Σ (3)R+ (Kj
j)

2 −KijK
ij = 0

DjK
j
i −DiK

j
j = 0

ASSUME: Σ can be foliated by a one-parameter family of topological two-spheres

ρ : Σ→ R: ∂iρ a.n. vanishes, n̂i ∼ ∂iρ, γ̂i
j = δi

j − n̂in̂
j , hij = γ̂ij + n̂in̂j

Choose a flow ρa such that ρa∂aρ = 1 and such that its integral curves intersect
each of the ρ = const level surfaces precisely once: ρi = N̂ n̂i + N̂ i

introduce spherical coordinates (θ, ϕ) and complex null dyad qa: qab = q(aq̄b) on
some ρ = const and Lie-drag them along the flow ρa

THEN: N̂ = (n̂iρ
i) κ = (n̂in̂jKij)

N = qi(γ̂ijρ
j) k = qi(n̂j γ̂i

eKje)

a = 1
2
qiqj γ̂ij K = Kij γ̂

ij

b = 1
2
qiqj γ̂ij

◦
Kqq = qiqj

(
γ̂i

eγ̂j
fKef − 1

2
γ̂ij [Kef γ̂

ef ]
)

(hab,Kab) ←→ spin-weighted variables: (N̂,N,a,b;κ,k,K,
◦
Kqq)
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“hyperboloidal initial data without logarithmic singularities”

Parabolic-hyperbolic form of constraints: (hij ;Kij) ↔ (N̂,N,a,b;κ,k,K,
◦
Kqq)

constrained fields (N̂,k,K); free data on Σ: (N,a,b;κ,
◦
Kqq)

[the coefficients]

parabolic PDE for N̂
symmetric hyperbolic system for (k,K)

require initial data for (N̂,k,K) on S0, then integrate toward I +

no direct control over the asymptotics apart from the falloff of the free data

Asymptotically hyperboloidal data

Andersson and Chruściel introduced the notion of asymptotically hyperboloidal
data, comprised by (Σ, hij ,Kij), which is not necessarily a solution to the
constraints, by requiring the following behavior close to the boundary:

Σ is the interior of a compact manifold Σ̃ = Σ ∪ ∂Σ
if ω is a defining function for ∂Σ then ω2hij and ω(Kij − 1

3
hijKl

l) extend
regularly to ∂Σ,
the trace K = Kijh

ij is bounded away from zero near ∂Σ

A data set (Σ, hij ,Kij) is an asymptotically hyperboloidal one if the following
falloff conditions hold for the spin-weighted variables: ω ∼ ρ−1

N̂ = N̂1ω + O(ω2) K− 2κ = O(ω) k = O(1)

a = ω−2 + O(ω−1) b = O(ω−1) N = O(ω)
◦
Kqq = O(ω−1)
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István Rácz (Wigner RCP) Wigner RCP, June 6, 2025 13 / 20



“hyperboloidal initial data without logarithmic singularities”

Parabolic-hyperbolic form of constraints: (hij ;Kij) ↔ (N̂,N,a,b;κ,k,K,
◦
Kqq)

constrained fields (N̂,k,K); free data on Σ: (N,a,b;κ,
◦
Kqq) [the coefficients]

parabolic PDE for N̂
symmetric hyperbolic system for (k,K)

require initial data for (N̂,k,K) on S0, then integrate toward I +

no direct control over the asymptotics apart from the falloff of the free data

Asymptotically hyperboloidal data
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The main strategy we used in our investigations:

The free data is assumed to be smooth on Σ ∪ ∂Σ: C∞(
[0, ω0), C

∞(S2)
)

N = N1 ω +N2 ω
2 + O(ω3)

a = ω−2 + a(−1) ω−1 + a0 + a1 ω + a2 ω
2 + O(ω3)

b = b(−1) ω−1 + b0 + b1 ω + b2 ω
2 + O(ω3)

κ = κ0 + κ1 ω + κ2 ω
2 + O(ω3)

◦
Kqq =

◦
Kqq(−1) ω−1 +

◦
Kqq0 +

◦
Kqq1 ω +

◦
Kqq2 ω

2 + O(ω3)

Use the most general poly-logarithmic form of the constrained fields (N̂,K,k):

N̂ =
∞∑
i=1

ωi [ N̂i +

Nj∑
j=1

N̂
[log]
i,j logj ω

]
, K = K0 +

∞∑
i=1

ωi [Ki +

Nj∑
j=1

K
[log]
i,j logj ω

]
k = k0 +

∞∑
i=1

ωi [ki +

Nj∑
j=1

k
[log]
i,j logj ω

]
,where N̂1 = κ−1

0 ,K0 = 2κ0,k0 = κ−1
0 ðκ0

We determined the restrictions on the coefficients, used in the above
asymptotic expansions, that follow from the assumptions that the system
admits well-defined Bondi mass and angular momentum, and that the
parabolic-hyperbolic form of the constraint equations holds.
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Our first main result: Theorem I.

Choose generic free data (N,a,b,κ,
◦
Kqq) on Σ that satisfies the falloff

conditions relevant for asymptotically hyperboloidal data.

Suppose that (N̂,K,k) are smooth solutions of the parabolic-hyperbolic form of
the constraints on Σ.

(N̂,K,k) are also assumed to possesses the most general poly-logarithmic
expansion near ∂Σ as indicated above.

Then the asymptotically hyperboloidal initial data set under consideration admits
well-defined Bondi mass and angular momentum if and only if all coefficients of
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Kqq(−1) = 0 , b(−1) = 0 , κ1 = 0 .
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The finiteness of the Bondi mass (energy):

The Bondi mass can be given as the ρ→∞ limit of the Hawking mass

mH =

√
A
16π

(
1 +

1

16π

∫
Sρ

Θ(+)Θ(−) ϵ̂

)
& Θ(±) = K±

⋆

KN̂−1 & A =

∫
Sρ

ϵ̂ ∼ ρ2

It can be finite, and thus well-defined, if and only if for the expansion coefficients the
following relations hold

N̂1 = 2K
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[
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K
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2 (K
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a(−1)K1 − 2K2

]
− K

2
0

(
2 a0 − a
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·
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3,i +K2
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[log]
4,i
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·
(
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a(−1) K0 + 4K1
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The finiteness of the Bondi angular momentum: arXiv: 2401.14251

The Bondi angular momentum cannot be finite, and thus well-defined, unless for all
j = 1, 2, . . . ,Nj

k
[log]
1,j = k

[log]
2,j = 0

(
J [ϕ] = −(8π)−1

∫
Sρ

ϕaka ϵ̂

)
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To obtain the desired restrictions, we substitute the updated form of the asymptotic
expansions into the parabolic-hyperbolic system and sort the terms with respect to
powers of ρ−1 and also of log ρ.

=⇒
N̂

[log]
1,j = N̂

[log]
2,j = N̂

[log]
3,j = N̂

[log]
4,j = 0

k
[log]
1,j = k

[log]
2,j = k

[log]
3,j = 0 , K

[log]
1,j = K

[log]
2,j = K

[log]
3,j = K

[log]
4,j = 0

Our second main result: Theorem II.

Choose generic free data (N,a,b,κ,
◦
Kqq) on Σ that satisfies the falloff

conditions relevant for asymptotically hyperboloidal data with κ0 being a strictly
positive smooth on ∂Σ̃.

Suppose that (N̂,K,k) are smooth [i.e., of class C∞((0, ω0), C
∞(S2)

)
], solutions

on Σ such that N̂ > 0 there.

Then, the constrained fields (N̂,K,k) are also of class C∞([0, ω0), C
∞(S2)

)
on

the whole of Σ̃ = Σ ∪ ∂Σ, i.e., no logarithmic singularities occur, if and only if
the asymptotically hyperboloidal initial data set under consideration admits
well-defined Bondi mass and angular momentum, and, in addition,

◦
Kqq(−1) = 0 & b(−1) = 0 & κ1 = 0

and also the following two relations

a(−1) = const &
◦
Kqq0 = 1

2
κ0 · ððκ−2

0

hold on ∂Σ̃.
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The key steps in the Fuchsian argument I.

Using the smoothness properties found in our first theorem, replace the constrained
variables in the parabolic-hyperbolic system with their respective Taylor series:

N̂ −→ N̂0 + N̂1 ω + N̂2 ω
2 + N̂3 ω

3 + N̂4 ω
4 + ω4wN̂(ω)

K −→ K0 +K1 ω +K2 ω
2 +K3 ω

3 +K4 ω
4 + ω4wK(ω)

k −→ k0 + k1 ω + k2 ω
2 + k3 ω

3 + ω3wk(ω)

wN̂(ω), wK(ω), wk(ω), are of class C0
(
[0, ω0), C

∞(S2)
)
and vanish at ∂Σ̃, thus

they can represent higher-order log-terms that may still occur.

All the “coefficients in black” can be derived from the free data and the
coefficients (N̂4,k2,K1) which represent the asymptotic degrees of freedom.

If the last two algebraic conditions hold, then the following Fuchsian-type
(singular) equation holds for the vector-valued variable W = (wN̂, wK, wk)

T ,
comprised of the residuals, for every p ∈S 2 and for every 0 < ω < ω0:

∂ωW (ω, p) =
1

ω
diag(0,−3,−1)W (ω, p)

+H
(
ω, p; N̂4(p),k2(p),K1(p),W (ω, p), ðW, ð̄W, ðð̄W

)
(∗)

where H is a (lengthy, but explicitly known) vector-valued function that is smooth
in each of its arguments, and regularly extends to ω = 0.
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The key steps in the Fuchsian argument I.
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K −→ K0 +K1 ω +K2 ω
2 +K3 ω

3 +K4 ω
4 + ω4wK(ω)

k −→ k0 + k1 ω + k2 ω
2 + k3 ω
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wN̂(ω), wK(ω), wk(ω), are of class C0
(
[0, ω0), C

∞(S2)
)
and vanish at ∂Σ̃, thus

they can represent higher-order log-terms that may still occur.

All the “coefficients in black” can be derived from the free data and the
coefficients (N̂4,k2,K1) which represent the asymptotic degrees of freedom.
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The key steps in the Fuchsian argument II.

∂ωW (ω, p) =
1

ω
diag(0,−3,−1)W (ω, p)

+H(ω, p; N̂4(p),k2(p),K1(p),W (ω, p), ðW, ð̄W, ðð̄W ) (∗)

The solution can then be given as

W (ω, p) = diag
[
ω−3, ω−1, 1

]
×
∫ ω

0

diag
[
s3, s, 1

]
×H(s, p) ds (∗∗)

Since the integrand regularly extends to s = 0, we can perform the integral
transformation by replacing s with the product ω · τ , which yields

1

ω
W (ω, p) =

∫ 1

0

diag
[
τ3, τ, 1

]
×H(ω · τ, p) dτ (∗ ∗ ∗)

Since the integrand on the right-hand side is regular over the entire Σ̃, the left-hand
side must also be regular there.

This then implies that both terms on the right hand side of (*) are regular on Σ̃,
and, in turn, the first order ω-derivative ∂ωW of the vector-valued variable of the

residuals W (ω, p) =
(
wK(ω, p), wk(ω, p), wN̂(ω, p)

)T
is also regular at ω = 0.

By repeating this process inductively we can also prove that the ω-derivatives of
the vector-valued variable W (ω, p) up to arbitrary order extend regularly to ∂Σ̃,

thereby, the constrained variables (N̂,K,k) extend smoothly to ∂Σ̃.
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Summary:

We proved that the existence of well-defined Bondi mass and angular
momentum, together with some mild restrictions on the free data, implies
that the generic solutions of the parabolic-hyperbolic form of the constraint
equations are smooth and entirely free of logarithmic singularities. This result
is a substantial generalization of a recent result of Beyer and Ritchie.

Combining these results with those of the corresponding hyperboloidal initial
value problem [Friedrich,Frauendiener,Kroon,...] we can conclude that the
Cauchy developments of the corresponding asymptotically hyperboloidal
initial data specifications must admit smooth conformal boundary as assumed
in the original definition of asymptotically simple spacetimes by Penrose.

Hopefully, these results will spark the interest of experts who can prove the
existence of global solutions to the evolutionary form of constraint equations.

Thanks for your attention
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