On the construction of hyperboloidal initial data without logarithmic singularities EPISODE II

ATTACK OF THE SINGULARITIES

Károly Zoltán Csukás

csukas.karoly@wigner.hu

HUN-REN Wigner Research Center for Physics

Gen Relativ Gravit **57**, 96 (2025), arXiv:2503.11804 joint work with István Rácz

Theoretical Department

Hyperboloidal initial data

Isolated systems

Physical intuition

- interesting dynamical system
- neglect effects from outside (except possibily incoming radiation)
- far away from the source we should approach Minkowski
- \bullet observer is infinitely far away \rightarrow observables are defined at "infinity"

Asymptotically simple spacetime (Penrose 1963)

- smooth physical spacetime (M, g_{ab})
- \bullet smooth unphysical spacetime $(\tilde{M},\tilde{g}_{ab})$ such that
 - \tilde{M} has boundary \mathscr{I}
 - M can be identified with interior of $ilde{M}$ in a way that
 - $\tilde{g}_{ab} = \Omega^2 g_{ab}$ in the interior
 - Ω is smooth boundary defining $(\Omega|_{\mathscr{I}} = 0 \text{ and } d\Omega|_{\mathscr{I}} \neq 0$ with $\Omega > 0$ in the interior)

(日) (四) (日) (日) (日)

Initial value problem

- (Σ, h_{ab}, K_{ab}) as a spacelike hypersurface within a to-be-constructed spacetime
- evolution generates both the spacetime *M* and the metric g_{ab}

Hyperboloidal initial data

- $\tilde{\Sigma}$ with boundary $\partial \tilde{\Sigma}$
- $\omega > 0$ in the interior, $\omega|_{\partial \tilde{\Sigma}} = 0$, $d\omega|_{\partial \tilde{\Sigma}} \neq 0$
- $\tilde{h}_{ab} = \omega^2 h_{ab}$ extends regularly
- trace of K_{ab} bounded away from 0 near $\partial \tilde{\Sigma}$
- trace-free part of K_{ab} extends regularly

Constraint equations

Projections of Einstein's equation

$$^{3)}R + K^2 - K_{ab}K^{ab} = 0, \qquad D^b \left[K_{ab} - h_{ab}K \right] = 0$$

with $K = K_{ab}h^{ab}$ and $D_ah_{bc} = 0$. Underdetermined system: 4 equations for 12 variables \rightarrow 4 constrained variables, 8 freely specifiable

Conformal method (Lichnerowicz, York)

$$(h_{ab}, K_{ab}) \quad \longleftrightarrow \quad (\phi, \tilde{h}_{ab}; K, \frac{X_a}{A}, \tilde{K}_{ab}^{[TT]})$$

$$h_{ab} = \phi^4 \,\widetilde{h}_{ab}, \qquad K_{ab} - \frac{1}{3} \,h_{ab}K = \phi^{-2} \,\widetilde{K}_{ab}, \qquad \widetilde{K}_{ab} = \widetilde{K}_{ab}^{[L]} + \widetilde{K}_{ab}^{[TT]}$$

Elliptic system, boundary conditions.

Evolutionary method (Rácz 2015)

Introduction in a few minutes... Evolutionary systems, initial data.

Logarithmic singularities

• Andersson and Chruściel 1993, 1994, 1996 (conformal framework): in general the solutions have poly-logarithmic expansion around $\partial \tilde{\Sigma}$ EVEN IF THE FREE DATA SMOOTHLY EXTENDS THERE

Reminder

$$C = C_0 + \sum_{i=1}^{\infty} \omega^i \left[C_i + \sum_{j=1}^{N_j} C_{i,j}^{[log]} \log^j \omega \right]$$

•
$$\lim_{\omega \to 0} \omega^a \log^b \omega = 0$$
 for $a > 0$

- even if the extension is continuous its derivative might not be
- is solution with logs relevant for physics?
- are there relevant systems that need logs?
- what are the relevant systems?

< < >>

Open questions

- Andersson and Chruściel 1993, 1994, 1996
 - constant mean curvature (K = const), conformal framework
 - constraints on the limits of some of the free data ensuring smooth extension
 - constraints on the limits of some of the free data ensuring that the development has smooth boundary
- Beyer and Ritchie 2022
 - asymptotically constant mean curvature $(K|_{\mathscr{I}} = 0)$, parabolic-hyperbolic formulation
 - if we ensure finite differentiability on \mathscr{I} (and some constraints on free data), then the solution is actually smooth
- Csukás and Rácz 2025
 - parabolic-hyperbolic formulation
 - we relax the conditions on the free data that B&R had
 - we show that if we require finite global energy and angular momentum, then the solutions fulfill the requirement on the finite differentiability

(日) (四) (日) (日) (日)

For $(h_{ab}; K_{ab})$ in Σ

$${}^{(3)}R + (K^{a}{}_{a})^{2} + K_{ab}K^{ab} = 0$$
$$D_{b}K^{b}{}_{a} - D_{a}K^{b}{}_{b} = 0$$

ASSUME: Σ can be foliated with S_{ρ} 1-parameter family of 2-surfaces

イロト イヨト イヨト イ

For $(h_{ab}; K_{ab})$ in Σ

$${}^{(3)}R + (K^{a}{}_{a})^{2} + K_{ab}K^{ab} = 0$$
$$D_{b}K^{b}{}_{a} - D_{a}K^{b}{}_{b} = 0$$

ASSUME: Σ can be foliated with S_{ρ} 1-parameter family of 2-surfaces • $\hat{n}_{a}, \hat{\gamma}_{ab} = h_{ab} - \hat{n}_{a}\hat{n}_{b}$

イロト イ団ト イヨト イヨト

For $(h_{ab}; K_{ab})$ in Σ

$${}^{(3)}R + (K^{a}{}_{a})^{2} + K_{ab}K^{ab} = 0$$
$$D_{b}K^{b}{}_{a} - D_{a}K^{b}{}_{b} = 0$$

ASSUME: Σ can be foliated with S_{ρ} 1-parameter family of 2-surfaces

• \hat{n}_{a} , $\hat{\gamma}_{ab} = h_{ab} - \hat{n}_{a}\hat{n}_{b}$ • ρ^{a} st. $\rho^{a}\partial_{a}\rho = 1$, and \hat{N} , \hat{N}^{a}

For $(h_{ab}; K_{ab})$ in Σ

$${}^{(3)}R + (K^{a}{}_{a})^{2} + K_{ab}K^{ab} = 0$$
$$D_{b}K^{b}{}_{a} - D_{a}K^{b}{}_{b} = 0$$

ASSUME: Σ can be foliated with S_{ρ} 1-parameter family of 2-surfaces

- $\widehat{n}_{a}, \ \widehat{\gamma}_{ab} = h_{ab} \widehat{n}_{a} \widehat{n}_{b}$
- ρ^a st. $\rho^a \partial_a \rho = 1$, and \widehat{N} , \widehat{N}^a
- introduce coordinates (ϑ, φ) and complex null dyad q^a (wrt. unit sphere metric q_{ab}) on some S_{ρ} and Lie-drag them along ρ^{a}

A B > A B > A

For $(h_{ab}; K_{ab})$ in Σ

$${}^{(3)}R + (K^{a}{}_{a})^{2} + K_{ab}K^{ab} = 0$$
$$D_{b}K^{b}{}_{a} - D_{a}K^{b}{}_{b} = 0$$

ASSUME: Σ can be foliated with S_{ρ} 1-parameter family of 2-surfaces

•
$$\hat{n}_a$$
, $\hat{\gamma}_{ab} = h_{ab} - \hat{n}_a \hat{n}_b$
• ρ^a st. $\rho^a \partial_a \rho = 1$, and \hat{N} , \hat{N}^a

• introduce coordinates (ϑ, φ) and complex null dyad q^a (wrt. unit sphere metric q_{ab}) on some S_{ρ} and Lie-drag them along ρ^a

$$\begin{split} \widehat{\mathbf{N}} &= \rho^{a} \widehat{n}_{a} & \mathbf{\kappa} = \widehat{n}^{a} \widehat{n}^{b} K_{ab} \\ \mathbf{N} &= q^{a} \widehat{\gamma}_{ab} \rho^{b} & \mathbf{k} = q^{a} \widehat{n}^{b} \widehat{\gamma}_{a}{}^{c} K_{bc} \\ \mathbf{a} &= \frac{1}{2} q^{a} \overline{q}^{b} \widehat{\gamma}_{ab} & \mathbf{K} = \widehat{\gamma}^{ab} K_{ab} \\ \mathbf{b} &= \frac{1}{2} q^{a} q^{b} \widehat{\gamma}_{ab} & \mathring{\mathbf{K}}_{qq} = q^{a} q^{b} \left(\widehat{\gamma}_{a}{}^{c} \widehat{\gamma}_{b}{}^{d} K_{cd} - \frac{1}{2} \widehat{\gamma}_{ab} \widehat{\gamma}^{cd} K_{cd} \right) \end{split}$$

A D > A A + A

For $(h_{ab}; K_{ab})$ in Σ

$${}^{(3)}R + (K^{a}{}_{a})^{2} + K_{ab}K^{ab} = 0$$
$$D_{b}K^{b}{}_{a} - D_{a}K^{b}{}_{b} = 0$$

ASSUME: Σ can be foliated with S_{ρ} 1-parameter family of 2-surfaces

•
$$\hat{n}_a$$
, $\hat{\gamma}_{ab} = h_{ab} - \hat{n}_a \hat{n}_b$
• ρ^a st. $\rho^a \partial_a \rho = 1$, and \hat{N} , \hat{N}^c

• introduce coordinates (ϑ, φ) and complex null dyad q^a (wrt. unit sphere metric q_{ab}) on some S_{ρ} and Lie-drag them along ρ^a

$$\begin{split} \widehat{\mathbf{N}} &= \rho^{a} \widehat{n}_{a} & \mathbf{\kappa} = \widehat{n}^{a} \widehat{n}^{b} K_{ab} \\ \mathbf{N} &= q^{a} \widehat{\gamma}_{ab} \rho^{b} & \mathbf{k} = q^{a} \widehat{n}^{b} \widehat{\gamma}_{a}{}^{c} K_{bc} \\ \mathbf{a} &= \frac{1}{2} q^{a} \overline{q}^{b} \widehat{\gamma}_{ab} & \mathbf{K} = \widehat{\gamma}^{ab} K_{ab} \\ \mathbf{b} &= \frac{1}{2} q^{a} q^{b} \widehat{\gamma}_{ab} & \mathring{\mathbf{K}}_{qq} = q^{a} q^{b} \left(\widehat{\gamma}_{a}{}^{c} \widehat{\gamma}_{b}{}^{d} K_{cd} - \frac{1}{2} \widehat{\gamma}_{ab} \widehat{\gamma}^{cd} K_{cd} \right) \end{split}$$

 $(h_{ab}; K_{ab}) \rightarrow (\widehat{N}, \mathbf{N}, \mathbf{a}, \mathbf{b}; \boldsymbol{\kappa}, \mathbf{k}, \mathbf{K}, \mathbf{K}_{qq})$

Parabolic-hyperbolic form of constraints

$$(h_{ab}; K_{ab}) \rightarrow (\widehat{N}, \mathbf{N}, \mathbf{a}, \mathbf{b}; \boldsymbol{\kappa}, \mathbf{k}, \mathbf{K}, \overset{\circ}{\mathbf{K}}_{qq})$$

• we can solve for $(\widehat{N}, \mathbf{k}, \mathbf{K})$, free to specify $(\mathbf{N}, \mathbf{a}, \mathbf{b}; \boldsymbol{\kappa}, \check{\mathbf{K}}_{qq})$ over Σ

- parabolic PDE for \widehat{N}
- $\bullet\,$ symmetric hyperbolic system for $({\bf k},{\bf K})$
- provide initial data on \mathcal{S}_0 , then integrate toward \mathscr{I}^+
- reduced to scalar equations
- adapted to geometry, not coordinates
- no direct control over the asymptotics of solution

Infinity

Asymptotically hyperboloidal data

Taking the geometric picture and using ω as a coordinate near ${\mathscr I}$

Falloff conditions

$\widehat{N} = \widehat{N}_1 \omega + \mathscr{O}(\omega^2),$	$\mathbf{N}=\mathscr{O}(\omega),$	
$\mathbf{a} = \omega^{-2} + \mathscr{O}(\omega^{-1}),$	$\mathbf{b} = \mathscr{O}(\omega^{-1}),$	
$\mathbf{K} = \mathbf{K}_0 + \mathscr{O}(\omega),$	$\mathbf{K} - 2\boldsymbol{\kappa} = \mathscr{O}(\omega),$	
$\mathbf{k}=\mathscr{O}(1),$	$\overset{\circ}{\mathbf{K}}_{qq} = \mathscr{O}(\omega^{-1}).$	

If all coefficients satisfy these conditions, and smoothly extend to \mathscr{I} , the solutions might still possess logarithmic terms in their asymptotic expansion.

Infinity

Asymptotic expansion of variables

Insert asymptotic expansion into the expressions and group different powers of ω and $\log\omega$

Free data extends smoothly

$$\begin{split} \mathbf{N} &= \mathbf{N}_{1}\,\omega + \mathbf{N}_{2}\,\omega^{2} + \mathscr{O}(\omega^{3}) \\ \mathbf{a} &= \omega^{-2} + \mathbf{a}_{(-1)}\,\omega^{-1} + \mathbf{a}_{0} + \mathbf{a}_{1}\,\omega + \mathbf{a}_{2}\,\omega^{2} + \mathscr{O}(\omega^{3}) \\ \mathbf{b} &= \mathbf{b}_{(-1)}\,\omega^{-1} + \mathbf{b}_{0} + \mathbf{b}_{1}\,\omega + \mathbf{b}_{2}\,\omega^{2} + \mathscr{O}(\omega^{3}) \\ \boldsymbol{\kappa} &= \boldsymbol{\kappa}_{0} + \boldsymbol{\kappa}_{1}\,\omega + \boldsymbol{\kappa}_{2}\,\omega^{2} + \mathscr{O}(\omega^{3}) \\ \overset{\circ}{\mathbf{K}}_{qq} &= \overset{\circ}{\mathbf{K}}_{qq(-1)}\,\omega^{-1} + \overset{\circ}{\mathbf{K}}_{qq0} + \overset{\circ}{\mathbf{K}}_{qq1}\,\omega + \overset{\circ}{\mathbf{K}}_{qq2}\,\omega^{2} + \mathscr{O}(\omega^{3}) \end{split}$$

Constrained data worst possible case

$$\widehat{N} = \sum_{i=1}^{\infty} \omega^{i} \left[\widehat{N}_{i} + \sum_{j=1}^{N_{j}} \widehat{N}_{i,j}^{[log]} \log^{j} \omega \right], \qquad \mathbf{K} = \mathbf{K}_{0} + \sum_{i=1}^{\infty} \omega^{i} \left[\mathbf{K}_{i} + \sum_{j=1}^{N_{j}} \mathbf{K}_{i,j}^{[log]} \log^{j} \omega \right]$$
$$\mathbf{k} = \mathbf{k}_{0} + \sum_{i=1}^{\infty} \omega^{i} \left[\mathbf{k}_{i} + \sum_{j=1}^{N_{j}} \mathbf{k}_{i,j}^{[log]} \log^{j} \omega \right], \text{ where } \widehat{N}_{1} = \mathbf{\kappa}_{0}^{-1}, \mathbf{K}_{0} = 2\mathbf{\kappa}_{0}, \mathbf{k}_{0} = \mathbf{\kappa}_{0}^{-1} \eth \mathbf{\kappa}_{0}$$

Károly Csukás (Wigner RCP)

10/31

Theorem I

- Choose generic free data (N, a, b, κ, K̃_{qq}) on Σ that satisfies the falloff conditions relevant for asymptotically hyperboloidal data.
- Suppose that (*N̂*, **K**, **k**) are smooth solutions of the parabolic-hyperbolic form of the constraints on Σ.
- $(\widehat{N}, \mathbf{K}, \mathbf{k})$ are also assumed to possesses the most general poly-logarithmic expansion near $\partial \Sigma$ as indicated above.
- Then the asymptotically hyperboloidal initial data set under consideration admits well-defined Bondi energy and angular momentum if and only if all coefficients of the logarithmic terms vanish up to order four and three for \hat{N} , K and k, respectively, and, in addition,

$$\overset{\circ}{\mathbf{K}}_{qq^{(-1)}} = 0, \quad \mathbf{b}_{(-1)} = 0, \quad \kappa_1 = 0.$$

Hawking energy

$$m_{H} = \sqrt{\frac{\mathcal{A}}{16\pi}} \left(1 + \frac{1}{16\pi} \int_{\mathscr{S}_{\rho}} \Theta^{(+)} \Theta^{(-)} \sqrt{\mathbf{d}} \, \hat{\boldsymbol{\epsilon}} \right)$$
$$\Theta^{(+)} \Theta^{(-)} = \mathbf{K}^{2} - \overset{*}{K^{2}} \widehat{N}^{-2}, \quad \overset{\circ}{\boldsymbol{\epsilon}} = \sin \vartheta \mathrm{d}\vartheta \wedge \mathrm{d}\varphi$$

• **K** and
$$\widehat{N}$$
 are involved
• $\mathcal{A} = \mathcal{O}(\omega^{-2}), \sqrt{\mathbf{d}} = \mathcal{O}(\omega^{-2})$ requires $\int_{\mathscr{S}_{\rho}} \Theta^{(+)} \Theta^{(-)} \sqrt{\mathbf{d}} \overset{\circ}{\boldsymbol{\epsilon}} = -16\pi + \mathcal{O}(\omega)$
• $\overset{*}{K} = \mathcal{O}(\omega)$, but $\mathbf{K} = \mathcal{O}(1)$

we need

$$\Theta^{(+)}\Theta^{(-)}\sqrt{\mathbf{d}} = f_{(-2)}\omega^{-2} + f_{(-1)}\omega^{-1} + f_0 + f_1\omega + \mathcal{O}(\omega^2)$$

with $f_{(-2)}=f_{(-1)}=0$, $f_0=-4$, and f_1 will determine the limit

2

イロト イヨト イヨト イヨト

Finite limit of Hawking energy

inserting ansatz into expression gives for all $j=1,2,\ldots,\mathcal{N}_j$

$$\begin{split} \widehat{N}_{1,j}^{[log]} &= \widehat{N}_{2,j}^{[log]} = \mathbf{K}_{1,j}^{[log]} = 0\\ \mathbf{K}_{2,i}^{[log]} &= \mathbf{K}_0 \left(2 \,\mathbf{K}_{3,i}^{[log]} + \mathbf{K}_0^2 \, \widehat{N}_{4,i}^{[log]} \right) \cdot \left[\mathbf{a}_{(-1)} \,\mathbf{K}_0 + 4 \,\mathbf{K}_1 \right]^{-1}\\ \widehat{N}_{3,i}^{[log]} &= -2 \left(2 \,\mathbf{K}_{3,i}^{[log]} + \mathbf{K}_0^2 \, \widehat{N}_{4,i}^{[log]} \right) \cdot \left(\mathbf{K}_0 \left[\mathbf{a}_{(-1)} \,\mathbf{K}_0 + 4 \,\mathbf{K}_1 \right] \right)^{-1} \end{split}$$

and

$$\widehat{N}_1 = 2 \, \mathbf{K}_0^{-1}, \quad \widehat{N}_2 = - \left[\, \mathbf{a}_{\scriptscriptstyle (-1)} \, \mathbf{K}_0 + 2 \, \mathbf{K}_1 \, \right] \mathbf{K}_0^{-2}$$

$$\begin{split} \widehat{N}_3 &= \left(2\left(\mathbf{K}_1^2 - 2\right) + \mathbf{K}_0 \left[\mathbf{a}_{(-1)} \mathbf{K}_1 - 2 \mathbf{K}_2 \right] \\ &- \mathbf{K}_0^2 \left(2 \mathbf{a}_0 - \mathbf{a}_{(-1)}^2 - \mathbf{b}_{(-1)} \overline{\mathbf{b}_{(-1)}} + \frac{1}{2} \left[\overline{\partial} \overline{\mathbf{N}}_1 + \overline{\partial} \mathbf{N}_1 \right] \right) \right) \mathbf{K}_0^{-3} \end{split}$$

æ

イロト イ団ト イヨト イヨト

Angular momentum

- details of the construction in arXiv:2401.14251
- for any axial vector field ϕ^a

$$J[\phi] = -(8\pi)^{-1} \int_{\mathscr{S}_{\rho}} (\phi^a \overline{q}_a \mathbf{k} + cc.) \sqrt{\mathbf{d}} \, \mathring{\boldsymbol{\epsilon}}$$

• with $\phi_{(i)}{}^a$ being a basis finiteness must hold for each component • since $\sqrt{A} = \mathcal{O}(\sqrt{-2})$ we need

- since $\sqrt{\mathbf{d}} = \mathcal{O}(\omega^{-2})$ we need
 - $\mathbf{k}_{1,j}^{[log]} = \mathbf{k}_{2,j}^{[log]} = 0$ for all $j = 1, 2, \dots, \mathcal{N}_j$, and
 - \mathbf{k}_0 and \mathbf{k}_1 being either 0 or total divergence (come back later), and
 - k₂ will determine the limit

(日) (四) (日) (日) (日)

Constraints

• update ansatz and insert into constraints

• for all $j = 1, 2, \ldots, \mathcal{N}_j$

$$\widehat{N}_{3,j}^{[log]} = \widehat{N}_{4,j}^{[log]} = \mathbf{k}_{3,j}^{[log]} = \mathbf{K}_{2,j}^{[log]} = \mathbf{K}_{3,j}^{[log]} = \mathbf{K}_{4,j}^{[log]} = 0$$

$$\begin{split} \widehat{N}_0 &= 0, & \widehat{N}_1 = {\kappa_0}^{-1}, & \widehat{N}_2 = \dots, & \widehat{N}_3 = \dots, \\ \mathbf{K}_0 &= 2\kappa_0, & \mathbf{K}_1 = \mathbf{K}_1, & \mathbf{K}_2 = \dots, \\ \mathbf{k}_0 &= \frac{\eth \kappa_0}{\kappa_0}, & \mathbf{k}_1 = \dots, & \mathbf{k}_2 = \mathbf{k}_2, & \kappa_1 = 0. \end{split}$$

• for
$$f_0=-4$$
 to hold $\overset{\circ}{{f K}}_{qq(-1)}+{f b}_{(-1)}{m \kappa}_0=0$

- \mathbf{k}_0 is already a gradient
- $\bullet\,$ for ${\bf k}_1$ to be a gradient we need $\overset{\,\,{}_\circ}{{\bf K}}_{qq(-1)}=0$

subitem1

< □ > < 同 > < 回 > < 回 >

Theorem II

- Choose generic free data (N, a, b, κ, K_{qq}) on Σ that satisfies the falloff conditions relevant for asymptotically hyperboloidal data with κ₀ being a strictly positive smooth function on ∂Σ.
- Suppose that $(\hat{N}, \mathbf{K}, \mathbf{k})$ are **smooth** [i.e., of class $C^{\infty}((0, \omega_0), C^{\infty}(\mathbb{S}^2))$], solutions of the parabolic-hyperbolic system on Σ such that $\hat{N} > 0$ there.
- Then, the constrained fields $(\widehat{N}, \mathbf{K}, \mathbf{k})$ are also of class $C^{\infty}([0, \omega_0), C^{\infty}(\mathbb{S}^2))$ on the whole of $\widetilde{\Sigma} = \Sigma \cup \partial \Sigma$, i.e., no logarithmic singularities occur, if and only if the asymptotically hyperboloidal initial data set under consideration admits well-defined Bondi mass and angular momentum and also the following two relations

 $\mathbf{a}_{^{(-1)}} = const \quad \text{and} \quad \mathbf{K}_{qq0} = \frac{1}{2} \, \mathbf{\kappa}_0 \cdot \eth \eth \, \mathbf{\kappa}_0^{-2}$ hold on $\partial \widetilde{\Sigma}$.

Algebraic relations

• Using the smoothness properties found in our first theorem, replace the constrained variables in the parabolic-hyperbolic system with their respective Taylor series:

•
$$\widehat{N} \longrightarrow \widehat{N}_0 + \widehat{N}_1 \,\omega + \widehat{N}_2 \,\omega^2 + \widehat{N}_3 \,\omega^3 + \widehat{N}_4 \,\omega^4 + \omega^4 w_{\widehat{N}}(\omega)$$

•
$$\mathbf{K} \longrightarrow \mathbf{K}_0 + \mathbf{K}_1 \,\omega + \mathbf{K}_2 \,\omega^2 + \mathbf{K}_3 \,\omega^3 + \mathbf{K}_4 \,\omega^4 + \omega^4 w_{\mathbf{K}}(\omega)$$

•
$$\mathbf{k} \longrightarrow \mathbf{k}_0 + \mathbf{k}_1 \,\omega + \mathbf{k}_2 \,\omega^2 + \mathbf{k}_3 \,\omega^3 + \omega^3 w_{\mathbf{k}}(\omega)$$

• • • • • • • • • • •

Algebraic relations

• Using the smoothness properties found in our first theorem, replace the constrained variables in the parabolic-hyperbolic system with their respective Taylor series:

•
$$\widehat{N} \longrightarrow \widehat{N}_0 + \widehat{N}_1 \,\omega + \widehat{N}_2 \,\omega^2 + \widehat{N}_3 \,\omega^3 + \widehat{N}_4 \,\omega^4 + \omega^4 w_{\widehat{N}}(\omega)$$

•
$$\mathbf{K} \longrightarrow \mathbf{K}_0 + \mathbf{K}_1 \omega + \mathbf{K}_2 \omega^2 + \mathbf{K}_3 \omega^3 + \mathbf{K}_4 \omega^4 + \omega^4 w_{\mathbf{K}}(\omega)$$

•
$$\mathbf{k} \longrightarrow \mathbf{k}_0 + \mathbf{k}_1 \,\omega + \mathbf{k}_2 \,\omega^2 + \mathbf{k}_3 \,\omega^3 + \omega^3 w_{\mathbf{k}}(\omega)$$

• $w_{\widehat{N}}(\omega), w_{\mathbf{K}}(\omega), w_{\mathbf{k}}(\omega)$, are of class $C^0([0, \omega_0), C^{\infty}(\mathbb{S}^2))$ and vanish at $\partial \widetilde{\Sigma}$, thus they can represent **higher-order log-terms** that may still occur.

A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Algebraic relations

• Using the smoothness properties found in our first theorem, replace the constrained variables in the parabolic-hyperbolic system with their respective Taylor series:

•
$$\widehat{N} \longrightarrow \widehat{N}_0 + \widehat{N}_1 \,\omega + \widehat{N}_2 \,\omega^2 + \widehat{N}_3 \,\omega^3 + \widehat{N}_4 \,\omega^4 + \omega^4 w_{\widehat{N}}(\omega)$$

•
$$\mathbf{K} \longrightarrow \mathbf{K}_0 + \mathbf{K}_1 \omega + \mathbf{K}_2 \omega^2 + \mathbf{K}_3 \omega^3 + \mathbf{K}_4 \omega^4 + \omega^4 w_{\mathbf{K}}(\omega)$$

•
$$\mathbf{k} \longrightarrow \mathbf{k}_0 + \mathbf{k}_1 \,\omega + \mathbf{k}_2 \,\omega^2 + \mathbf{k}_3 \,\omega^3 + \omega^3 w_{\mathbf{k}}(\omega)$$

- $w_{\widehat{N}}(\omega), w_{\mathbf{K}}(\omega), w_{\mathbf{k}}(\omega)$, are of class $C^0([0, \omega_0), C^{\infty}(\mathbb{S}^2))$ and vanish at $\partial \widetilde{\Sigma}$, thus they can represent **higher-order log-terms** that may still occur.
- All the "coefficients in black" can be derived from the free data and the coefficients $(\widehat{N}_4, \mathbf{k}_2, \mathbf{K}_1)$ which represent the asymptotic degrees of freedom.

Algebraic relations

• Using the smoothness properties found in our first theorem, replace the constrained variables in the parabolic-hyperbolic system with their respective Taylor series:

•
$$\widehat{N} \longrightarrow \widehat{N}_0 + \widehat{N}_1 \,\omega + \widehat{N}_2 \,\omega^2 + \widehat{N}_3 \,\omega^3 + \widehat{N}_4 \,\omega^4 + \omega^4 w_{\widehat{N}}(\omega)$$

•
$$\mathbf{K} \longrightarrow \mathbf{K}_0 + \mathbf{K}_1 \omega + \mathbf{K}_2 \omega^2 + \mathbf{K}_3 \omega^3 + \mathbf{K}_4 \omega^4 + \omega^4 w_{\mathbf{K}}(\omega)$$

•
$$\mathbf{k} \longrightarrow \mathbf{k}_0 + \mathbf{k}_1 \,\omega + \mathbf{k}_2 \,\omega^2 + \mathbf{k}_3 \,\omega^3 + \omega^3 w_{\mathbf{k}}(\omega)$$

- $w_{\widehat{N}}(\omega), w_{\mathbf{K}}(\omega), w_{\mathbf{k}}(\omega)$, are of class $C^0([0, \omega_0), C^{\infty}(\mathbb{S}^2))$ and vanish at $\partial \widetilde{\Sigma}$, thus they can represent **higher-order log-terms** that may still occur.
- All the "coefficients in black" can be derived from the free data and the coefficients $(\widehat{N}_4, \mathbf{k}_2, \mathbf{K}_1)$ which represent the asymptotic degrees of freedom.
- If the last two algebraic conditions hold, then the following Fuchsian-type (singular) equation holds for the vector-valued variable $\underline{W} = (w_{\widehat{N}}, w_{\mathbf{K}}, w_{\mathbf{k}})^T$, comprised of the residuals, for every $p \in \mathscr{S}^2$ and for every $0 < \omega < \omega_0$:

$$\begin{split} \partial_{\omega}\underline{W}(\omega,p) &= \frac{1}{\omega}diag(0,-3,-1)\,\underline{W}(\omega,p) \\ &+ \underline{H}\left(\omega,p;\widehat{N}_{4}(p),\mathbf{k}_{2}(p),\mathbf{K}_{1}(p),\underline{W}(\omega,p),\eth\underline{\partial}\underline{W},\bar{\eth}\underline{\partial}\underline{W},\eth\bar{\eth}\underline{\partial}\underline{W}\right)_{\Xi} \quad (*) \\ &= (*)$$

Algebraic relations

• Using the smoothness properties found in our first theorem, replace the constrained variables in the parabolic-hyperbolic system with their respective Taylor series:

•
$$\widehat{N} \longrightarrow \widehat{N}_0 + \widehat{N}_1 \,\omega + \widehat{N}_2 \,\omega^2 + \widehat{N}_3 \,\omega^3 + \widehat{N}_4 \,\omega^4 + \omega^4 w_{\widehat{N}}(\omega)$$

•
$$\mathbf{K} \longrightarrow \mathbf{K}_0 + \mathbf{K}_1 \omega + \mathbf{K}_2 \omega^2 + \mathbf{K}_3 \omega^3 + \mathbf{K}_4 \omega^4 + \omega^4 w_{\mathbf{K}}(\omega)$$

•
$$\mathbf{k} \longrightarrow \mathbf{k}_0 + \mathbf{k}_1 \,\omega + \mathbf{k}_2 \,\omega^2 + \mathbf{k}_3 \,\omega^3 + \omega^3 w_{\mathbf{k}}(\omega)$$

- $w_{\widehat{N}}(\omega), w_{\mathbf{K}}(\omega), w_{\mathbf{k}}(\omega)$, are of class $C^0([0, \omega_0), C^{\infty}(\mathbb{S}^2))$ and vanish at $\partial \widetilde{\Sigma}$, thus they can represent **higher-order log-terms** that may still occur.
- All the "coefficients in black" can be derived from the free data and the coefficients $(\widehat{N}_4, \mathbf{k}_2, \mathbf{K}_1)$ which represent the asymptotic degrees of freedom.
- If the last two algebraic conditions hold, then the following Fuchsian-type (singular) equation holds for the vector-valued variable $\underline{W} = (w_{\widehat{N}}, w_{\mathbf{K}}, w_{\mathbf{k}})^T$, comprised of the residuals, for every $p \in \mathscr{S}^2$ and for every $0 < \omega < \omega_0$:

$$\begin{aligned} \partial_{\omega}\underline{W}(\omega,p) &= \frac{1}{\omega}diag(0,-3,-1)\,\underline{W}(\omega,p) \\ &+ \underline{H}\left(\omega,p;\widehat{N}_{4}(p),\mathbf{k}_{2}(p),\mathbf{K}_{1}(p),\underline{W}(\omega,p),\eth\underline{\partial}\underline{W},\bar{\eth}\underline{\partial}\underline{W},\eth\bar{\eth}\underline{\partial}\underline{W}\right)_{\Xi} \quad (*) \\ &= (*) \\$$

17/31

Smoothness

$$\begin{split} \partial_{\omega}\underline{W}(\omega,p) &= \frac{1}{\omega}diag(0,-3,-1)\,\underline{W}(\omega,p) \\ &\quad + \underline{H}(\omega,p;\widehat{N}_{4}(p),\mathbf{k}_{2}(p),\mathbf{K}_{1}(p),\underline{W}(\omega,p),\eth\underline{W},\eth\underline{\delta}\underline{W},\eth\underline{\delta}\underline{W}) \quad (*) \end{split}$$

$$\bullet \text{ The solution can then be given as}$$

$$\underline{W}(\omega, p) = diag\left[\omega^{-3}, \omega^{-1}, 1\right] \times \int_0^\omega diag\left[s^3, s, 1\right] \times \underline{H}(s, p) \,\mathrm{d}s \qquad (**)$$

э.

・ロト ・回ト ・ヨト ・ヨト

Smoothness

1

$$\begin{split} \partial_{\omega}\underline{W}(\omega,p) &= \frac{1}{\omega}diag(0,-3,-1)\,\underline{W}(\omega,p) \\ &\quad + \underline{H}(\omega,p;\widehat{N}_{4}(p),\mathbf{k}_{2}(p),\mathbf{K}_{1}(p),\underline{W}(\omega,p),\eth\underline{W},\bar{\eth}\underline{W},\eth\bar{\eth}\underline{W}) \quad (*) \\ \bullet \text{ The solution can then be given as} \end{split}$$

$$\underline{W}(\omega, p) = diag[\omega^{-3}, \omega^{-1}, 1] \times \int_{0}^{\omega} diag[s^{3}, s, 1] \times \underline{H}(s, p) \,\mathrm{d}s \qquad (**)$$

• Since the integrand regularly extends to s = 0, we can perform the integral transformation by replacing s with the product $\omega \cdot \tau$, which yields

$$\frac{1}{\omega} \underline{W}(\omega, p) = \int_0^1 diag \left[\tau^3, \tau, 1\right] \times \underline{H}(\omega \cdot \tau, p) \,\mathrm{d}\tau \qquad (***)$$

イロト イボト イヨト イヨ

Smoothness

1

$$\begin{aligned} \partial_{\omega}\underline{W}(\omega,p) &= \frac{1}{\omega}diag(0,-3,-1)\,\underline{W}(\omega,p) \\ &\quad + \underline{H}(\omega,p;\widehat{N}_{4}(p),\mathbf{k}_{2}(p),\mathbf{K}_{1}(p),\underline{W}(\omega,p),\eth\underline{W},\bar{\eth}\underline{W},\eth\bar{\eth}\underline{W}) \quad (*) \end{aligned}$$

$$\bullet \text{ The solution can then be given as} \end{aligned}$$

$$\underline{W}(\omega, p) = diag[\omega^{-3}, \omega^{-1}, 1] \times \int_{0}^{\omega} diag[s^{3}, s, 1] \times \underline{H}(s, p) \,\mathrm{d}s \qquad (**)$$

• Since the integrand regularly extends $to^0 s = 0$, we can perform the integral transformation by replacing s with the product $\omega \cdot \tau$, which yields

$$\frac{1}{\omega} \underline{W}(\omega, p) = \int_0^1 diag \left[\tau^3, \tau, 1 \right] \times \underline{H}(\omega \cdot \tau, p) \, \mathrm{d}\tau \qquad (* * *)$$

 Since the integrand on the right-hand side is regular over the entire Σ, the left-hand side must also be regular there.

A D > A B > A B > A

Smoothness

1

$$\partial_{\omega} \underline{W}(\omega, p) = \frac{1}{\omega} diag(0, -3, -1) \underline{W}(\omega, p) \\ + \underline{H}(\omega, p; \widehat{N}_{4}(p), \mathbf{k}_{2}(p), \mathbf{K}_{1}(p), \underline{W}(\omega, p), \overline{\eth}\underline{W}, \overline{\eth}\underline{\eth}\underline{W}, \eth\overline{\eth}\underline{W}) \quad (*)$$
• The solution can then be given as

$$\underline{W}(\omega, p) = diag[\omega^{-3}, \omega^{-1}, 1] \times \int_{0}^{\omega} diag[s^{3}, s, 1] \times \underline{H}(s, p) \,\mathrm{d}s \qquad (**)$$

• Since the integrand regularly extends $to^0 s = 0$, we can perform the integral transformation by replacing s with the product $\omega \cdot \tau$, which yields

$$\frac{1}{\omega}\underline{W}(\omega,p) = \int_{0}^{1} diag[\tau^{3},\tau,1] \times \underline{H}(\omega\cdot\tau,p) \,\mathrm{d}\tau \qquad (***)$$

- Since the integrand on the right-hand side is regular over the entire Σ, the left-hand side must also be regular there.
- This then implies that both terms on the right hand side of (*) are regular on $\tilde{\Sigma}$, and, in turn, the first order ω -derivative $\partial_{\omega} \underline{W}$ of the vector-valued variable of the residuals $\underline{W}(\omega, p) = \left(w_{\mathbf{K}}(\omega, p), w_{\mathbf{k}}(\omega, p), w_{\widehat{N}}(\omega, p)\right)^{T}$ is also regular at $\omega = 0$.

Smoothness

1

$$\partial_{\omega} \underline{W}(\omega, p) = \frac{1}{\omega} diag(0, -3, -1) \underline{W}(\omega, p) \\ + \underline{H}(\omega, p; \widehat{N}_{4}(p), \mathbf{k}_{2}(p), \mathbf{K}_{1}(p), \underline{W}(\omega, p), \overline{\partial}\underline{W}, \overline{\partial}\overline{\underline{W}}, \overline{\partial}\overline{\underline{\partial}}\underline{W}) \qquad (*)$$
• The solution can then be given as

$$\underline{W}(\omega, p) = diag[\omega^{-3}, \omega^{-1}, 1] \times \int_{0}^{\omega} diag[s^{3}, s, 1] \times \underline{H}(s, p) \,\mathrm{d}s \qquad (**)$$

 Since the integrand regularly extends to s = 0, we can perform the integral transformation by replacing s with the product ω · τ, which yields

$$\frac{1}{\omega}\underline{W}(\omega,p) = \int_{0}^{1} diag[\tau^{3},\tau,1] \times \underline{H}(\omega\cdot\tau,p) \,\mathrm{d}\tau \qquad (***)$$

- Since the integrand on the right-hand side is regular over the entire Σ, the left-hand side must also be regular there.
- This then implies that both terms on the right hand side of (*) are regular on $\tilde{\Sigma}$, and, in turn, the first order ω -derivative $\partial_{\omega} \underline{W}$ of the vector-valued variable of the residuals $\underline{W}(\omega, p) = \left(w_{\mathbf{K}}(\omega, p), w_{\mathbf{k}}(\omega, p), w_{\widehat{N}}(\omega, p)\right)^{T}$ is also regular at $\omega = 0$.
- By repeating this process inductively we can also prove that the ω -derivatives of the vector-valued variable $\underline{W}(\omega, p)$ up to arbitrary order extend regularly to $\partial \widetilde{\Sigma}$, thereby, the constrained variables $(\widehat{N}, \mathbf{K}, \mathbf{k})$ extend smoothly to $\partial \widetilde{\Sigma}$,

Károly Csukás (Wigner RCP)

18/31

Energy, angular momentum, and asymptotic freedom

• Bondi energy is given by background and the pair $(\mathbf{K}_1,\widehat{N}_4)$

$$\begin{split} m_B &= \frac{1}{32\pi} \int_{\partial \widetilde{\Sigma}} \left[\frac{\mathbf{K}_1^3}{\kappa_0} + 8\,\widehat{N}_4\,\kappa_0^3 - 4\,\kappa_0\,\kappa_3 + 12\,\mathbf{a}_1\,\kappa_0^2 - 2\,\mathbf{K}_1\left[\kappa_0^{-1} + 3\,\mathbf{a}_0\,\kappa_0 - 4\,\kappa_2\right] \right. \\ &\left. - \left\{ \kappa_0^5\,\mathbf{N}_1^{-1/2}\,\overline{\eth}\,\left(\mathbf{N}_1^{3/2}\kappa_0^{-4}\mathbf{K}_1\right) + 2\,\kappa_0\,\mathbf{N}_2^{\,2}\,\overline{\eth}\left(\mathbf{N}_2^{-1}\kappa_0\right) + \frac{1}{4}\,\kappa_0^5\,\eth\overline{\eth}\,\left(\kappa_0^{-6}\,\mathbf{K}_1\right) \right. \\ &\left. - \frac{3}{2}\,\kappa_0^{-2}\,\mathbf{K}_1\,\eth\overline{\eth}\,\kappa_0 + \frac{1}{4}\,\kappa_0\,\eth\overline{\eth}\,\mathbf{K}_1 + \text{``cc''} \right\} \right] \overset{\circ}{\mathbf{\epsilon}}. \end{split}$$

 ${\ensuremath{\bullet}}$ angular momentum is given by ${\ensuremath{\mathbf{k}}}_2$ and background

$$J_B[\phi] = -(16\pi)^{-1} \int_{\partial \widetilde{\Sigma}} \left[(\phi^a \overline{q}_a) \, \mathbf{k}_2 + (\phi^a q_a) \, \overline{\mathbf{k}}_2 \right] \boldsymbol{\epsilon}_q$$

 \bullet all asymptotic quantity is given by $({\bf K}_1,{\bf k}_2,\widehat{N}_4)$ and background

Setup

- hyperboloidal slice of Kerr
- free data is Kerr
- initial data is Kerr + (not necessarily small) perturbation
- solve for the perturbation directly
- spin-weighted spherical harmonic expansion in the angular sector
- 4th order adaptive stepper in r
- integrate from $r=1 \ {\rm to} \ r=10^5$
- $^{(\Delta)}\mathbf{K}|_{r=1} = 10 \cdot Y_2^0$

Kerr

æ –

イロト イヨト イヨト イヨト

Leading order behaviour of ${\bf K}$

Károly Csukás (Wigner RCP)

Numerical experiments

Leading order behaviour of $\Re \mathbf{k}$

Károly Csukás (Wigner RCP)

23/31

Leading order behaviour of $\Im \mathbf{k}$

Károly Csukás (Wigner RCP)

Numerical experiments

Leading order behaviour of \hat{N}

Károly Csukás (Wigner RCP)

25/31

Combinations

Károly Csukás (Wigner RCP)

26/31

Hawking energy comparison

Károly Csukás (Wigner RCP)

Hawking energy

Károly Csukás (Wigner RCP)

28/31

- We give a substantial generalization of the results of Beyer&Ritchie.
- Involving the Bondi energy and angular momentum we argue that physically meaningful solutions are smooth (if we use the parabolic-hyperbolic formulation).
- The restrictions from having finite Bondi energy also ensure that the development of the data has smooth conformal boundary.

< □ > < 同 >

Accessibility

- arXiv:2503.11804, also OA at Gen Relativ Gravit 57, 96 (2025)
- https://gitlab.wigner.hu/csukas.karoly/constraintsolver
- code archive: https://doi.org/10.5281/zenodo.14778802
- data and script: https://doi.org/10.5281/zenodo.14779011

Image: A matrix

Summary

Angular momentum

