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Outline

Tests of the Standard Model

W physics before 2021: Tevatron, LEP

The 2021 CDF result

Tests at the LHC: ATLAS and LHCb

CMS: the one muon method

Results and conclusion

Breakthrough Prize 2025
USD 3 million to ALICE, ATLAS, CMS, and LHCb for
Standard Model studies in Run2 of the CERN LHC

(going to the CERN & Society Foundation)
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CERN LEP: Tests of the Standard Model
σ(e+e−→Z→qq)

Note the agreement between theory and all experiments
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CERN LHC: Higgs boson, 2012-18

Two of the Higgs boson mass spectra measured by CMS at

13 TeV p-p collisions: H → γγ and H → ZZ* → 4ℓ±

Horváth, Dezső: W mass Wigner RCP and UBB, 2025 Slide 3 – p. 4/34



Standard
Model fitting,

2018

Expt – theory

uncertainty

Measurements by

all experiments

Global EW fit

All within statistics

J. Haller et al,

arXiv:1803.01853
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Standard Model
fitting, 2018

Expt – theory

uncertainty

Measurements by all

experiments

Fit w/o measured value of

given parameter

How well the parameter is

determined by the SM?

All within statistics

J. Haller et al,

arXiv:1803.01853
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Why to measure the W mass?
Directly determines the charged weak (β±) decay

Predicted to ±6MeV by the BEH-mechanism in the Standard Model

Deviation from the SM can lead to new physics

Neutron decay in

the Standard Model

MW= 80 GeV

m

M (n) – M (p) = 1.3 MeV

No wonder it is slow!
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LEP studies: e+e−→W+W−

46% qqqq, 44% qqℓν, 10% ℓνℓν

LEP: ∼ 12000 WW per experiment (5 million Z!)
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Typical
OPAL event

ECM = 161 GeV

e+e− → W+W−

⇓
4 quarks

⇓
4 hadron jets

⇓
75 charged particles

80 particles in
calorimeters
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e+e−→W+W−: production

Non-abelian
interaction

γ → WW
and

Z → WW

⇓

Interference
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e+e−→W+W−: W-mass

Invariant mass:
M2

12 = 2E1E2(1 − cosΘ12)

Kinematic fit:
5 constraints for qqqq

E, p conserved, M12 = M34

But: pairing uncert.,
gluon may give 5th hadron jet
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WW → qqℓν: 2 constraints

fit missing pν

⇓

E(e+e−) =

E(W+W−)

M12 = M34

Missing energy,

but unambiguous

hadron jets
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W mass at LEP (2006!?)

W → qqℓν and ℓνℓν W → qqqq

Two channels: 20% correlation!
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W: mass and width (SM fit, 2014)

With no MW measurement

With no MW and MH measurement

Average measured values

ΓW measurement

4 LEP and 2 Tevatron

experiments

Theoretical calculation
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W mass: systematic uncertainties

colour

reconnection

Bose-

Einstein

correlation
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Main sources of W mass uncertainties

e+e−→W+W−

qqℓν qqqq Combined

ISR/FSR 8 10 8

Hadronisation 26 23 24

LEP energy 17 17 17

Colour reconn. — 50 13

Bose-Einstein — 25 7

Total syst. 35 64 36

Stat. ≈ 38 34 30

The LEP measurement was systematically limited
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Tevatron: W mass

Tevatron, Fermilab, 1.96 TeV p − p collisions: 2001–2011

Hadron collider: big hadron showers (jets)

Rely on leptons (ℓ = e±, µ±)

Measured transverse momentum pℓ
T

of the

charged lepton and missing transverse

momentum pmiss
T

= −
∑

all pT for the neutrino.

MW≈80 GeV shared between ℓ and ν

⇒ Jacobian peaks for both around

pT ≈ MW/2 CDF event: 4 jets +

missing momentum

Transverse mass: MW
T

=
√

2pℓ
Tp

miss
T (1 − cos∆Φ) (depends on pW)

∆Φ = Φ(pℓ

T
) − Φ(pmiss

T
): azimuth angle diff.
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Tevatron W mass: CDF, D0

Main experiments: CDF, D0. Evolution of M (W):

CDF, 2012 (2.2 fb−1 eν, µν):
80 387 ± 12 (stat) ± 15 (syst) = 80 387 ± 19 MeV

D0, 2012 (4.3 fb−1 eν):
80 367 ± 13 (stat) ± 22 (syst) = 80 367 ± 26 MeV

CDF + D0, 2014 (same data):
80 387 ± 16 MeV;

CDF + D0 + LEP, 2014:
80 385 ± 15 MeV

CDF, 2021 (8.8 fb−1 eν, µν)
80 433.5 ± 6.4 (stat) ± 6.9 (syst) = 80 433.5 ± 9.4 MeV
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W mass, 2022

CDF, 2021: 7σ deviation from the standard model!
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W mass, 2022
What is so much better at 10 years after the stop of the Tevatron?

CDF, 2012 (2.2 fb−1 eν, µν):

80 387 ± 12 (stat) ± 15 (syst) = 80 387 ± 19 MeV

CDF, 2022 (8.8 fb−1 eν, µν):

80 433.5 ± 6.4 (stat) ± 6.9 (syst) = 80 433.5 ± 9.4 MeV

Luminosity 4X higher, 4.2 million W bosons

Detector calibration, simulation improved

Parton density function in proton–antiproton:

syst. contribution 10 MeV → 3.9 MeV

Not everybody agrees. D0: no new analysis

ATLAS, 2017 (7 TeV p-p): agrees with previous:

80370 ± 7 (stat.) ± 11 (exp. syst.) ± 14 (mod. syst.) MeV

ATLAS, 2024 (7 TeV p-p): new analysis, same result

80366.5 ± 9.8 (stat.) ± 12.5 (syst.) MeV = 80366.5 ± 15.9 MeV.
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Compact Muon Solenoid (CMS)

The fast muon flies through every part of the detector. The tracker follows

its orbit in the 3.8 T magnetic field. The muons are selected by a muon

trigger, but their transverse mmentum is measured by their orbit curvature

using the silicon pixel and strips tracker.
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W mass, 2024: LHC, 13 TeV

Huge data set at 13 TeV, but 50 . . . 60 p-p collisions in every event (pileup).

78 identified vertices in one CMS event (bunch crossing!). Increased data

quantity, but more involved analysis. Hard to use hadronic decays and to

measure missing momentum for semileptonic ones.
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W mass, CMS, 13 TeV: single muons!

CMS decided to use single muon pµ

T
for measuring the W

mass

Most precise determination of pµ

T
by the curved muon

trajectory in the tracker

Fit the pT distribution with MW as parameter.

MW
T

is less useful at the LHC due to the pileup, particles

from previous and succeding beam crossings (±25 ns).
⇒ Missing momentum is less precise.

p
µ

T
calibration by µ+µ− decays of J/Ψ = [cc], Υ = [bb]

mesons, and of the Z boson.
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Muons in CMS at 13 TeV

Characteristic signatures, parameters:

transverse momentum, pµ

T
,

exit angle θ of the muon to the beam direction (using
pseudorapidity η = − ln tan(Θ/2)),

the charge of the muon.

In 3D histogram, the first 2 measured in a very fine grid, the
third is a sign.

117 million events selected of the 16.8 fb−1 luminosity data
set collected in 2016.

CMS Collaboration: High-precision measurement of the W boson mass

with the CMS experiment at the LHC,

arXiv:2412.13872, submitted to Nature
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CMS: Dimuon event detected at 13 TeV
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W mass: Single muon (pµ
T, ηµ)

2D (pµ
T, ηµ) rolled-out distributions for positive (upper) and negative

(lower) muons. Note the good fitting.
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W mass: Single muon pµ
T

MW= 80 360.2 ± 2.4 (stat) ± 9.6 (syst) = 80 360.2 ± 9.9 MeV.
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Validation: Z mass from Z → µµ

Mµµ
Z − MPDG

Z
=

−2, 2 ± 4, 8 MeV

Correlated with MPDG
Z

for systematics, not a new

measurement

Validates our theoretical

(modelling) assumptions

and the simulation.

Reflects the uncertainty

of the pµ
T calibration
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Validation: Z mass from Z → µµ, W-like

W-like analysis with single muons of

the same Z → µµ data:

MW
Z

− MPDG
Z

=

−6 ± 7(stat) ± 12(syst) MeV =

−6 ± 14 MeV

Within 1σ (one uncertainty)!

Validates the analysis method

including modelling uncertainties..
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Validation: MW
T
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Systematics studies

for the mZ and MW analyses

Event selection with modelling algorithms

Efficiency corrections, scale factors from simulation

Hadronic recoil calibration (acts on pW
T

)

Background simulation

Muon momentum calibration (±4.8 MeV)

Modelling of pW
T

and pZ
T

distributions

Modelling of leptonic decays of W and Z (angular distr.)

Parton distribution functions (7 sets compared)

Higher-order electroweak corrections

Fitting MW with less model assumptions (new physics?)
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Systematic uncertainties
for the W-like mZ and MW analyses

Nominal (CMS): individual contributions summed with correlations. Global

(ATLAS): effects of changes to all other parameters. Same total.
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W mass, 2024: CMS, 13 TeV
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Conclusion

W mass is an important fundamental constant.

It is measured and calculated very precisely.

The 2021 CDF result with much higher precision
disagrees with the theory and all previous
measurements.

The 2024 CMS result has a similar precision and
confirms the Standard Model.
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