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We deal with classical integrable systems adopting the following definition.

Let (M, PM) be a finite dimensional, connected, C∞ Poisson manifold, and H an

Abelian Poisson subalgebra of C∞(M) subject to the conditions:

1. As a commutative algebra of functions H has functional dimension ddim(H) = ℓ.

2. The Hamiltonian vector fields of the elements of H are complete and span an ℓ

dimensional subspace of the tangent space over a dense open subset of M.

3. The commutant F of H in C∞(M), which contains the joint constants of motion

of the Hamiltonians H ∈ H, has functional dimension ddim(F) = dim(M)− ℓ.

We refer to the quadruple (M, PM,H,F), or simply H, as a (degenerate) integrable

system of rank ℓ. The standard notion of Liouville integrability results if M is a

symplectic manifold and ℓ = dim(M)/2. Liouville integrability on Poisson manifolds

is the case for which ℓ = k, where k is half the dimension of the maximal symplectic

leaves. When ℓ < k, both on Poisson and symplectic manifolds, then one obtains

the case of degenerate integrability, alternatively called superintegrability. A single

Hamiltonian is called (super)integrable if it is a member of H obeying the definition.
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The basic idea

Suppose that on (M, PM) we have a proper and effective Hamiltonian action of a
‘generalized torus’

L = U(1)ℓ1 × Rℓ2, ℓ1 + ℓ2 = ℓ

with equivariant momentum map Φ : M → Rℓ. Then, the ‘collective Hamiltonians’

HΦ := {h ◦Φ | h ∈ C∞(Rℓ)}
form an integrable system, with F = C∞(M)L (the L-invariant functions). This holds
because ddim(C∞(M)L) = dim(M) − ℓ. The system is superintegrable if ℓ is small
relative to dim(M).

We wish to obtain interesting integrable systems by applying Hamiltonian reduction

to integrable master systems with large symmetries on higher dimensional phase

spaces. The master systems often come together with ‘generalized action variables’

that generate a ‘torus’ action on a dense open submanifold. Under certain conditions,

the torus action descends to yield generalized action variables for the reduced systems

(meaning that the Hamiltonians are members of Hred
Φ after some restriction), and this

implies their integrability. We developed sufficient conditions that ensure that this

mechanism works, and applied it to several examples.

A simple example with ℓ = 1 is when one starts with an unreduced Hamiltonian
circle action generated by a ‘periodic’ Hamiltonian. Starting with an isotropic har-
monic oscillator, Hamiltonian reduction explains the maximal superintegrability of
rational Calogero models in confining external potential and their various spin exten-
sions. This basically well-known result is elaborated with new applications in [L.F.,
arXiv:2409.19349].
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Our notion of generalized action variables

Consider an integrable system of rank ℓ on a connected Poisson manifold (M, PM)
given by the Abelian Poisson algebra H. Suppose that we have ℓ smooth functions
H1, . . . , Hℓ on a connected dense open submanifold M̌ ⊂ M subject to the properties:
(i) The map (H1, . . . , Hℓ) : M̌ → Rℓ is an equivariant momentum map for a proper
and effective action of an ℓ-dimensional ‘generalized torus’ U(1)ℓ1 × Rℓ2 on M̌.
(ii) The restriction of the elements of H on M̌ can be expressed in terms of H1, . . . , Hℓ

and the span of the exterior derivatives of the elements of H coincides with the span
of the exterior derivatives dH1, . . . , dHℓ at every point of M̌.
Then, we say that the functions H1, . . . , Hℓ are generalized action variables on M̌ for
the integrable system H.

Semi-locally, in a neighbourhood of any principal orbit of U(1)ℓ1 ×Rℓ2, the generalized
action variables are part of generalized action-angle coordinates. In the symplectic
case, this follows from generalizations of the classical Liouville–Arnold theorem due
to [Nekhoroshev, 1972] and [Fiorani and Sardanashvily, arXiv:math/0604104]. In the
Poisson case, with ℓ2 = 0, it follows from a similar result of [Laurent-Gengoux, Miranda

and Vanhaecke, arXiv:0805.1679].

Remark: One may allow disconnected M̌ in the definition, and require the conditions
separately on the connected components, with varying (ℓ1, ℓ2).

Reminder: Suppose that a Lie group G acts on a C∞ manifold Y and denote the
smooth action map G× Y → Y by juxtaposition (g, y) 7→ gy. This is a proper action
if for any sequence (gn, yn) (n ∈ N) for which both yn and gnyn converge, there exists
a convergent subsequence of the sequence gn.
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Our result about generalized action-angle coordinates

Theorem 0. Assume that (M, PM,H) is an integrable system on a connected smooth

Poisson manifold of dimension d that admits generalized action variables H1, . . . , Hℓ

on a connected dense open submanifold M̌. Let y0 be a point of M̌ with trivial

isotropy group for the generalized torus action, and put pi := Hi − Hi(y0). Then,

there exist a U(1)ℓ1 × Rℓ2-invariant open neighbourhood U ⊂ M around y0 and func-

tions θ1, . . . , θℓ, z1, . . . , zd−2ℓ : U → R that possess the following properties:

(i) The functions (eiθ1, . . . , eiθℓ1 , θℓ1+1, . . . , θℓ, p1, . . . , pℓ, z1, . . . , zd−2ℓ) define a diffeomor-

phism U −→ (U(1)ℓ1 × Rℓ2)× Cd−ℓ
ϵ for some ϵ > 0, with Cd−ℓ

ϵ denoting a hypercube of

dimemsion d− ℓ, and y0 corresponds to (e,0).

(ii) The Poisson structure can be written in terms of these coordinates as

PM
∣∣
U =

ℓ∑
i=1

∂

∂θi
∧

∂

∂pi
+

d−2ℓ∑
a,b=1
a<b

fab(z)
∂

∂za
∧

∂

∂zb
,

for some smooth functions fab depending only on z1, . . . , zd−2ℓ.

Moreover, U can be chosen in such a manner that the ‘action coordinates’ pi and

‘transversal coordinates’ za can be expressed in terms of restrictions of elements of

the Abelian Poisson algebra H and its constants of motion F, respectively.
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What kind of master systems do we reduce?

Let K be a (connected and simply connected) compact Lie group with simple Lie
algebra k. Denote kC and KC the complexifications, and define P := exp(ik) ⊂ KC.
Example: K = SU(n), KC = SL(n,C), P = {X ∈ SL(n,C) | X† = X, X positive}.
I. One has 3 ‘classical doubles’ of K:

Cotangent bundle T ∗K ≃ K × k∗ ≃ K × k

Heisenberg double KC ≃ K ×K∗ ≃ K ×P

Internally fused quasi-Poisson double D(K) = K ×K

The pull-backs of the relevant rings of invariants C∞(K)K, C∞(k)K, C∞(P)K give
rise to two ‘master integrable systems’ on each double. Reductions were analysed
before (see e.g. [LF, arXiv:2208.03728]), but open problems remained.

II. Let Σm,n be a surface of genus m with n holes. It is known from [Arthamonov and

Reshetikhin, arXiv:1909.08682] that the moduli space of flat principal K-connections,

identified as the character variety Hom(π1(Σm,n),K)/K, supports a plethora of su-

perintegrable systems. The commuting Hamiltonians of an integrable system arise

from the K-invariant functions of the holonomies along a collection of pairwise non-

intersecting and non-homotopic simple closed curves on Σm,n.

We can describe many of these systems, and get action variables for them, by applying

reduction to master systems living on the quasi-Poisson manifolds

Mm,n := D(K) ⊛ · · · ⊛ D(K) ⊛K ⊛ · · · ⊛K,

obtained from m copies of D(K) and n copies of K by successive fusion.
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Plan of the rest of the talk

• The simplest example

• A general scenario and its consequences

• (Examples based on Heisenberg doubles – maybe at the end)

• Quasi-Poisson basics (very briefly)

• The torus with one hole

• The sphere with four holes

• Further examples on character varieties – as time permits

• Concluding remarks
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The simplest example

We consider the cotangent bundle with its canonical Poisson (symplectic) structure

M := T ∗K = K × k = {(g, J) | g ∈ K, J ∈ k}.
The group K acts on M by the mapping

K ×M ∋ (η, (g, J)) 7→ (ηgη−1, ηJη−1) ∈ M.

This is a Hamiltonian action generated by the momentum map Φ(g, J) = J − g−1Jg.

Let pk : M → k and pK : M → K denote the natural projections, and consider the
K-invariant functions

φ ◦ pk, ∀φ ∈ C∞(k)K and χ ◦ pK, ∀χ ∈ C∞(K)K.

For an arbitrary initial value (g0, J0) ∈ M , the integral curve of the evolution equation
generated by the Hamiltonian φ ◦ pk is

(g(τ), J(τ)) = (exp (τdφ(J0)) g0, J0), ∀τ ∈ R,

and for the Hamiltonian χ ◦ pK it is

(g(τ), J(τ)) = (g0, J0 − τ∇χ(g0)), ∀τ ∈ R.

Thus, M carries the following two Abelian Poisson subalgebras of C∞(M)K having
complete flows,

H := p∗k(C
∞(k)K) and H̃ := p∗K(C∞(K)K),

and these represent two degenerate integrable systems on M .
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Lie algebraic preparations

Let T < K be a maximal torus, with Lie algebra t < k. Let us realize k as

k = spanR{ihαj
, (eα − e−α), i(eα + e−α) | αj ∈ ∆, α ∈ R+},

using a Weyl–Chevalley basis of kC:

eα, e−α, hαj
with α ∈ R+, j = 1, . . . , ℓ,

where ∆ = {α1, . . . , αℓ} is a base of the root system R of kC with respect to tC. Define
the open Weyl chamber C ⊂ it and the open Weyl alcove A ⊂ C ⊂ it as follows:

C := {X ∈ it | 0 < αj(X), ∀j = 1, . . . , ℓ},

A := {X ∈ it | 0 < αj(X), ∀j = 1, . . . , ℓ, and ϑ(X) < 2π},
where ϑ is the highest root with respect to the base ∆. Then, introduce the smooth
mappings φ : kreg → C and χ : Kreg → A by the following recipes:

φ(J) = ξ if iξ = AdΓ1(J)(J) ≡ Γ1(J)JΓ1(J)
−1 for some Γ1(J) ∈ K,

χ(g) = ξ if eiξ = Γ2(g)gΓ2(g)
−1 for some Γ2(g) ∈ K.

The formulae

φj := ⟨hαj
, φ⟩ and χj := ⟨hαj

, χ⟩, ∀j = 1, . . . , ℓ,

define real-analytic, K-invariant real functions φj on kreg and χj on Kreg, respectively.
They can be extended to globally continuous functions, but not to smooth functions.
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Action variables for the master systems

Consider the K-invariant dense open, connected submanifolds of M ,

Y := K × kreg and Ỹ := Kreg × k.

Using Hj := φj ◦ pk and H̃j := χj ◦ pK, Define the K-invariant mappings

(H1, . . . , Hℓ) : Y → Rℓ and (H̃1, . . . , H̃ℓ) : Ỹ → Rℓ.

Introduce also the diffeomorphisms T : Rℓ → t and T : Rℓ/(2πZ)ℓ → T:

T (τ) := −i
ℓ∑

j=1

τjhαj
and T (τ) := exp

(
−i

ℓ∑
j=1

τjhαj

)
, ∀τ = (τ1, . . . , τℓ) ∈ Rℓ.

Lemma 1. The map (H1, . . . , Hℓ) is the momentum map for the free Hamiltonian

action of the torus T on Y that works according to the formula

(T (τ), (g, J)) 7→ (Γ1(J)
−1T (τ)Γ1(J)g, J), ∀τ ∈ Rℓ, (g, J) ∈ Y.

The map (H̃1, . . . , H̃ℓ) serves as the momentum map generating the free and proper

Hamiltonian action of Rℓ on Ỹ that operates as

(τ , (g, J)) 7→ (g, J − Γ2(g)
−1T (τ)Γ2(g)), ∀τ ∈ Rℓ, (g, J) ∈ Ỹ .

These T- and Rℓ-actions commute with the K-actions restricted on Y and on Ỹ .

Over Y and Ỹ , respectively, the elements of H and H̃ can be expressed as functions
of the above momentum maps, which represent generalized action variables.
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The main result regarding the M = T ∗K example

Using the K-action, we apply Hamiltonian reduction to the Abelian Poisson algebras
of the globally smooth Hamiltonians, H and H̃, as well as to their action variables.

Let M∗ ⊂ M and Y 1
0 ⊂ Y be the principal orbit type submanifolds for the K-action,

and Y0 ⊂ Y the principal isotropy type submanifold for the action of K × T. The

principal isotropy groups are Z(K) and Z(K) × {e}. We have Y0 ⊂ Y 1
0 ⊂ Y ⊂ M and

Y 1
0 ⊂ M∗.

Theorem 1. The Abelian Poisson algebra H descends to an integrable system of

rank ℓ on the Poisson manifold M∗/K. The restrictions of this system to the Poisson

manifolds Y0/K and Y 1
0 /K possess action variables given by (H1, . . . , Hℓ), and the

corresponding Hamiltonian T-action is free on Y0/K. As a result, H induces integrable

systems of rank ℓ with action variables arising from (H1, . . . , Hℓ)

• on every sympectic leaf S ⊂ Y0/K;

• and on every such symplectic leaf S ⊂ Y 1
0 /K that intersects Y0/K.

The same statements hold if we replace (Y,H,K×T) by (Ỹ , H̃,K×Rℓ). Except for ℓ = 1

and a few very small symplectic leaves, all these reduced systems are superintegrable.

The physical interpretation of the reduced systems as trigonometric spin Sutherland
systems and rational spin Ruijsenaars type systems is well-known. Integrability
on generic symplectic leaves of the reduced phase space M/K has been shown
previously by Reshetikhin [arXiv:math/0202245] studying the algebras of constants of
motion, without using action variables.
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Now we formulate a scenario (a set of assumptions) leading to similar results that
we derived for the cotangent bundle. We have many realizations of this scenario.

Scenario. We have a manifold M equipped with a bivector PM and a smooth action

of a connected compact Lie group K fitting into one of the following three types:

• (M,PM) is a Poisson manifold with a K-invariant Poisson bivector field.

• (M,PM) is a Poisson manifold, K is a Poisson–Lie group and the action map

K ×M → M is Poisson.

• (M,PM ,K) is a quasi-Poisson manifold.

The following four conditions hold:

(1) M is equipped with an Abelian Poisson subalgebra H ⊂ C∞(M)K and the vector

fields VH, H ∈ H are all are complete.

(2) On a dense, open, connected K-invariant submanifold Y ⊂ M we have ℓ smooth

K-invariant functions H1, . . . , Hℓ ∈ C∞(Y )K that are independent at every point of Y ,

satisfy {Hi, Hj} = 0 and the vector fields VHi
(defined with the aid of the bivector PM)

generate a proper, effective action of a Lie group L = U(1)ℓ1 ×Rℓ2 (ℓ1+ ℓ2 = ℓ) on Y .

(3) The restriction of the elements of H on Y can be expressed in terms of H1, . . . , Hℓ

and the span of the exterior derivatives of the elements of H coincides with the span

of the exterior derivatives dH1, . . . , dHℓ at every point of Y .

(4) Denote by Y0 ⊂ Y the principal isotropy type submanifold for the combined action

of the direct product group G = K×L on Y . Then, for any y ∈ Y0 the isotropy group

Gy is equal to Ky × {e}.
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The first consequences of the Scenario

Consider the algebra of first integrals F := {F ∈ C∞(M) | {F ,H} = 0, ∀H ∈ H}, which
is closed under the bracket defined by PM .

Proposition 1. The Scenario implies the equality ddim(H) + ddim(F) = dim(M).

Therefore, (M,PM ,H,F) defines an integrable system of rank(ℓ) before reduction

(with the quoted definition applied to quasi-Poisson manifolds as well).

The functions H1, . . . , Hℓ on Y ⊂ M represent generalized action variables for the
integrable system (M,PM ,H,F) (with definition extended to the quasi-Poisson case).

Proposition 2. Suppose that the Scenario holds and denote by Y 1
0 and Y0 the

principal isotropy type submanifolds of Y with respect to the K and K × L-actions,

respectively. Then, the natural identifications

C∞(Y 1
0 /K) ≃ C∞(Y 1

0 )K and C∞(Y0/K) ≃ C∞(Y0)
K

induce Poisson structures on the smooth manifolds Y 1
0 /K and Y0/K. The L-action

descends to a proper and effective Hamiltonian action of the group L on the connected

Poisson manifold Y 1
0 /K, which is generated by the momentum map

(H1, . . . ,Hℓ) : Y 1
0 /K → Rℓ

defined by the relation Hi ◦ π1
0 = Hi on Y 1

0 , with the projection π1
0 : Y 1

0 → Y 1
0 /K. This

action restricts to a proper and free Hamiltonian action on the connected, dense

open submanifold Y0/K ⊂ Y 1
0 /K.
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The main consequence of the Scenario

Theorem 2 (main theorem). Suppose that the Scenario holds and let M∗ ⊂ M

be the principal isotropy type submanifold with respect to the K-action. Then, the

Abelian Poisson algebra H descends to an integrable system of rank ℓ on the Poisson

manifold M∗/K. The restrictions of the system to the Poisson manifolds Y0/K and

Y 1
0 /K possess action variables given by (H1, . . . ,Hℓ), and the corresponding Hamilto-

nian L-action (L = U(1)ℓ1 × Rℓ2) is free on Y0/K. As a result, H induces integrable

systems of rank ℓ with action variables defined by the restrictions of (H1, . . . ,Hℓ)

• on every sympectic leaf of Y0/K;

• and on every such symplectic leaf of Y 1
0 /K that intersects Y0/K.

In most examples, the systems described by Theorem 2 are superintegrable since ℓ is

small in comparison to the dimensions of the manifolds involved in our statements.

Recall that Y0/K ⊂ Y 1
0 /K ⊂ M∗/K are dense open submanifolds. Also, M∗/K ⊂ M/K

is a dense open subset, but M/K is not a smooth manifold in general. Generically, all
these subsets are (expected to be) proper subsets, and it is largely unexplored what
happens on the complements of the proper subsets.

When (M,PM) is a Poisson manifold, then the compactness of K was used only to
ensure that the action of K × L is proper if the L-action is proper.

From the next slide on, K is a connected and simply connected compact Lie group
with simple Lie algebra k.
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Examples based on the Heisenberg double M = KC

Let us decompose the real Lie algebra kC as the vector space direct sum kC = k + b
with the ‘Borel’ subalgebra

b = spanR{hαj
, eα, ieα | αj ∈ ∆, α ∈ R+}.

A well-known non-degenerate Poisson bracket on C∞(M) is given by

{F,H} := ⟨DF, ϱDH⟩I + ⟨D′F, ϱD′H⟩I with ϱ :=
1

2
(πk − πb) ,

where πk and πb are the projections from kC onto the subalgebras k and b. Here,
⟨−,−⟩I := ℑ⟨−,−⟩ is the imaginary part of the complex Killing form and the kC-valued
derivatives DF and D′F of any real function F ∈ C∞(M) are defined by

⟨Z1, DF (X)⟩I + ⟨Z2, D
′F (X)⟩I :=

d

dt

∣∣∣∣
t=0

F (etZ1XetZ2), ∀X ∈ M, Z1, Z2 ∈ kC.

Every element X ∈ KC admits the unique Iwasawa decompositions

X = gLb
−1
R = bLg

−1
R with gL, gR ∈ K, bL, bR ∈ B,

which define the smooth maps ΞL,ΞR : M → K and ΛL,ΛR : M → B by

ΞL(X) := gL, ΞR(X) := gR, ΛL(X) := bL, ΛR(X) := bR.

Then, Λ := ΛLΛR is a group valued Poisson–Lie momentum map, and it generates
an action of K on M . The pertinent action map reads

K ×M ∋ (η,X) 7→ ηXΞR(ηΛL(X)) ∈ M, ∀(η,X) ∈ K ×M,

and is a Poisson map w.r.t. the standard Poisson–Lie group structure on K. This is
the ‘quasi-adjoint action’ of K that first appeared in [Klimčı́k, arXiv:math-ph/0602048].
Note that in this example, and actually in all of our examples, the principal isotropy
group for the K-action on M is the center Z(K) < K.
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To continue, we need to introduce the closed submanifold P := exp(ik) ⊂ KC, and
the diffeomorphism P : B → P for which P(b) := bb†.

The group K acts on P by conjugations. Let Preg denote the dense open submanifold
of principal orbit type, which is diffeomorphic to kreg by the exponential map. On
Preg we define K-invariant smooth functions ϕj (j = 1, . . . , ℓ) by

ϕj(P ) :=
1

2
φj(i log(P )) using φj ∈ C∞(kreg)K introduced before.

Now, we obtain two Abelian subalgebras of C∞(M)K as follows:

H = (P ◦ ΛR)
∗(C∞(P)K) and H̃ = Ξ∗

R(C
∞(K)K).

Then, we introduce two K-invariant submanifolds of M ,

Y := (P ◦ ΛR)
−1(Preg) and Ỹ := Ξ−1

R (Kreg),

and define K-invariant maps (H1, . . . , Hℓ) : Y → Rℓ and (H̃1, . . . , H̃ℓ) : Ỹ → Rℓ by

Hj := ϕj ◦ P ◦ ΛR and H̃j := χj ◦ΞR with χj ∈ C∞(Kreg)K used before.

Theorem 3. The map (H1, . . . , Hℓ) is the momentum map for a free Hamiltonian

action of the maximal torus T < K on Y and the map (H̃1, . . . , H̃ℓ) is the momen-

tum map for a free and proper Hamiltonian action of the Abelian group Rℓ on Ỹ .

The explicit formulas of these actions can be used to verify that all assumptions of

the Scenario are satisfied by (KC, Y,H, H1, . . . , Hℓ) as well as by (KC, H̃, Ỹ , H̃1, . . . , H̃ℓ).

Consequently, the general Theorem 2 is applicable to both of these cases, in full

analogy to the cotangent bundle T ∗K. (This completes previous results of [L.F.

arXiv:1809.01529, arXiv:2208.03728, arXiv:2402.02990].)
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Quasi-Poisson basics [Alekseev et al, arXiv:math/0006168]

A quasi-Poisson K-manifold with momentum map Φ is given by (M,A,PM ,Φ), where
A is the action map A : K×M → M , PM is a K-invariant bivector field and Φ : M → K
is an equivariant map such that:
The Schouten bracket [PM , PM ] reads

[PM , PM ] = −
1

12
⟨[Ea, [Eb, Ec]⟩Ea

M ∧ Eb
M ∧ Ec

M .

Here, {Ea} and Eb are dual bases of k, ⟨Ea, Eb⟩ = δba, and Ea
M is the vector field on M

induced by exp(tEa) ∈ K.

The momentum map and the quasi-Poisson bracket are related by

{f, F ◦Φ} =
1

2
Ea

M [f ](EL
a + ER

a )[F ] ◦Φ, ∀f ∈ C∞(M), F ∈ C∞(K),

where EL
a [F ] and Ea

M [f ] denote the respective derivatives of the functions F and f .
Note that the ‘quasi-Poisson bracket’ and the ‘quasi-Hamiltonian vector’ field Vh are
defined by the formula {f, h} := PM(df, dh) =: Vh[f ] for all f, h ∈ C∞(M).

Then, C∞(M)K is a Poisson algebra. The momentum map is constant along the
integral curves of Vh for any invariant function h ∈ C∞(M)K, and these vector fields
can be projected onto the quotient Poisson space M/K.

The invariant functions of the form χ ◦Φ with χ ∈ C∞(K)K are in the center of the
Poisson algebra C∞(M)K, and Φ−1(O)/K is a (stratified) Poisson subspace of M/K
for any conjugacy class O ⊂ K for which Φ−1(O) is not empty.
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If (Mi, Ai, PMi
,Φi) for i = 1,2 are quasi-Poisson K-manifolds, then the direct product

M = M1 × M2 becomes such a manifold by using the diagonal K-action, generated
by the vector fields

Ea
M(x1, x2) = Ea

M1
(x1) + Ea

M2
(x2) using T(x1,x2)M = Tx1M1 + Tx2M2, ∀(x1, x2) ∈ M,

and the ‘fused bivector’

PM = PM1
+ PM2

+ Pfus with Pfus := −
1

2
Ea

M1
∧ EM2

a .

The momentum map Φ on M is the product Φ(x1, x2) = Φ1(x1)Φ2(x2). One denotes
M1 ×M2 with the fused quasi-Poisson structure as M1 ⊛M2.

The simplest example is (K,PK) with the conjugation action of K, PK = 1
2
ER

a ∧ Ea
L,

and identity map as the momentum map.

Another important example is the so-called internally fused double of K:

D(K) = K ×K = {(A,B)}
with the diagonal K-action, momentum map ΦD(K)(A,B) = ABA−1B−1 =: [A,B] and

PD(K) =
1

2

(
E(1),R

a ∧Ea
(1),L−E(2),R

a ∧Ea
(2),L+E(1),L

a ∧(Ea
(2),L+Ea

(2),R)+E(1),R
a ∧(Ea

(2),L−Ea
(2),R)

)
,

where E(1),L
a and Ea

(2),R are left- and right-invariant vector fields on the two factors.
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A few consequences of the definitions

(1) The commutant CH of H ∈ C∞(M)K is closed under the quasi-Poisson bracket.

(2) For χ ∈ C∞(K)K, the integral curve of the Hamiltonian χ ◦ Φ with initial value

X0 ∈ M is given by

A(exp(t∇χ(Φ(X0))), X0),

where A : K ×M → M is the action map. The function χ ◦Φ is in the center of the

Poisson algebra C∞(M)K; its flow becomes trivial after projection on M/K.

(3) Consider the fusion product M = M1 ⊛M2 and an invariant function of the form

H(X1, X2) = h(X1) for h ∈ C∞(M1)K. Then, the second component X2 is constant

along the integral curves of H, and the first component follows the integral curves of

h in the constituent quasi-Poisson manifold M1. A similar result holds for functions

depending on X2 as well as for multiple fusion products.

(4) Observe from the last property that the functions of the form χ ◦Φ1 and χ ◦Φ2,

χ ∈ C∞(K)K generate non-trivial dynamics on M1⊛M2, for which the explicit formula

follows from (2) and (3).

(5) The fusion of quasi-Poisson spaces enjoys the associativity property. It is com-

mutative up to a certain non-trivial diffeomorphism between M1 ×M2 and M2 ×M1.
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Examples based on moduli spaces of flat connections

Let Σm,n be a surface of genus m with n holes (boundary components). It is well-

known that the character variety, (Hom(π1(Σm,n),K))/K, is a stratified Poisson space.

There exist many interesting description of its Poisson structure. We prefer the one

developed in [Alekseev, Malkin and Meinrenken, arXiv:dg-ga/9707021] and [Alekseev,

Kosmann-Schwarzbach and Meinrenken, arXiv:math/0006168], which states that

Hom(π1(Σm,n),K)/K ≡ Mm,n//K := Φ−1
m,n(e)/K,

where Mm,n := D(K) ⊛ · · · ⊛ D(K) ⊛K ⊛ · · · ⊛K obtained by successive fusion.

As a manifold, Mm,n = K×(2m+n) = {X | X = (A1, B1, . . . , Am, Bm, C1, . . . , Cn)} and

Φm,n(X) = [A1, B1] · · · [Am, Bm]C1 · · ·Cn (where [A,B] := ABA−1B−1). We assume that

n ≥ 1, and eliminate Cn by the condition Φm,n(X) = e. This leads to the identification

C∞(Hom(π1(Σm,n),K))K = C∞(Mm,n−1)
K =: C∞(Mm,n−1/K).

We obtain (super)integrable systems from quasi-Hamiltonian systems on Mm,n−1.

The first building block is (K,PK) with the conjugation action of K and PK = 1
2
ER

a ∧Ea
L.

The second is the double D(K) = K×K = {(A,B)} with the diagonal K-action and

PD(K) =
1
2

(
E(1),R

a ∧Ea
(1),L−E(2),R

a ∧Ea
(2),L+E(1),L

a ∧(Ea
(2),L+Ea

(2),R)+E(1),R
a ∧(Ea

(2),L−Ea
(2),R)

)
,

where E(1),L
a and Ea

(2),R are left- and right-invariant vector fields on the factors.
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The case of the torus with one hole

We start with the internally fused double M := D(K) of the connected and simply
connected compact Lie group K. As a manifold M = K×K = {(A,B)}. We introduce
the Abelian Poisson subalgebras H and H̃ of the Poisson algebra C∞(M)K by

H := p∗1(C
∞(K)K) and H̃ := p∗2(C

∞(K)K),

where p1 and p2 denote the projections from M onto the first and second K-factors.

For any χ ∈ C∞(K)K, the integral curves of the quasi-Hamiltonian vector fields Vp∗
1χ

and Vp∗
2χ are, respectively,

(A(τ), B(τ)) = (A0, B0 exp(−τ∇χ(A0))) and (A(τ), B(τ)) = (A0 exp(τ∇χ(B0)), B0).

In this case, we define

Y := p−1
1 (Kreg) and Ỹ := p−1

2 (Kreg),

and the K-invariant maps

(H1, . . . , Hℓ) : Y → Rℓ and (H̃1, . . . , H̃ℓ) : Ỹ → Rℓ

with Hj := χj ◦ p1 and H̃j := χj ◦ p2 using χj ∈ C∞(Kreg)K introduced before.

The joint flows of (H1, . . . , Hℓ) generate a free action of the maximal torus T < K on
Y , and the flows of (H̃1, . . . , H̃ℓ) work similarly on Ỹ .

The principal isotropy group for the K-action on Y as well as for the K-action on Ỹ

is Z(K), and the principal isotropy group for the actions of G = K ×T is Z(K)×{e}.
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All assumptions of our general Scenario are satisfied and thus we obtain

Theorem 4. The Abelian Poisson algebra H descends to an integrable system of

rank ℓ on the Poisson manifold D(K)∗/K (for the principal orbit type submanifold

D(K)∗ ⊂ D(K)).

The restrictions of the system to the Poisson manifolds Y0/K and Y 1
0 /K (for Y ⊂ D(K)

and its principal isotropy submanifolds Y 1
0 and Y0 w.r.t the K- and G = K×T-actions)

possess action variables given by (H1, . . . , Hℓ), and the corresponding T-action is free

on Y0/K. As a result, H induces integrable systems of rank ℓ with action variables

given by the restriction of (H1, . . . , Hℓ) on every sympectic leaf of Y0/K and every

such symplectic leaf of Y 1
0 /K that intersects Y0/K.

Furthermore, the above statements hold if we replace (Y,H) by (Ỹ , H̃).

It would have been enough to consider only one of H, Y and H̃, Ỹ since they are

exchanged by the ‘duality automorphism’ S : (A,B) 7→ (B−1, B−1AB) of the double.

Without action variables, the integrability on D(K)∗ and on its maximal symplectic

leaves was shown previously in [L.F. arXiv:2208.03728, arXiv:2309.16245]. This is

degenerate integrabiliy except for K = SU(2).

The minimal symplectic leaves for K = SU(n) carry the compact(tified) trigonometric

Ruijseanaars–Schneider system, which is ‘only’ Liouville integrable [L.F. and Klimčı́k

arXiv:1101.1759, L.F. and Kluck, arXiv:1312.0400].

21



The sphere with four holes

Now our starting point is M0,3 = K ⊛K ⊛K = {(C1, C2, C3)}. We let H ⊂ C∞(M0,3)K

be the set of functions of the form

H(C1, C2, C3) = χ(C1C2), ∀χ ∈ C∞(K)K.

The integral curve of VH with initial value (c1, c2, c3) reads

(C1(τ), C2(τ), C3(τ)) = (eτ∇χ(c1c2)c1e
−τ∇χ(c1c2), eτ∇χ(c1c2)c2e

−τ∇χ(c1c2), c3).

We introduce the dense open, connected submanifold Y ⊂ M0,3 by

Y := {(C1, C2, C3) ∈ M0,3 | C1C2 ∈ Kreg}.

The form of the integral curves implies that instead of T < K now the adjoint torus
Tad = T/Z(K) acts. In fact, an action of Tad on Y is generated by the joint flows of
the Hamiltonians

(Had
1 , . . . , Had

ℓ ) : Y → Rℓ with Had
j (C1, C2, C3) := Ξj(C1C2),

where Ξj :=
∑

1≤k≤ℓQj,kχk using the transposed inverse Q of the Cartan matrix of kC.

Recall in passing that Tad is the quotient of t by 2πi-times the coweight lattice, and
T is the quotient of t by 2πi-times the coroot lattice. The fundamental coweights ω∨

j

satisfy αk(ω∨
j ) = δj,k and are related to the simple coroots hαk

by ω∨
j =

∑
k Qj,khαk

.
One has the diffeomorphism

Tω∨ : Rℓ/(2πZ)ℓ → Tad with Tω∨(τ) := exp
(
−i

ℓ∑
j=1

τjadω∨
j

)
for τ = (τ1, . . . , τℓ) ∈ Rℓ.
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It turns out that the principal isotropy group for the K×Tad action on Y is Z(K)×{e}
and our Scenario is again applicable. Thus, we obtain an integrable system of rank ℓ

on (M0,3)∗/K as well as on every symplectic leaf of Y0/K and on all such symplectic
leaves of Y 1

0 /K that intersect Y0. In short, Theorem 4 is word for word valid if we
replace D(K) by M0,3, and also replace T by Tad and (H1, . . . , Hℓ) by (Had

1 , . . . , Had
ℓ ).

An alternative approach to reduced integrability proceeds through an explicit descrip-
tion of the commutant of H in C∞(M)K, denoted FK. In our case, FK can be obtained
using the maps

Ψ1,2 : M0,3 → K ×K, Ψ1,2(C1, C2, C3) := (C1, C2),

Ψ(12),3 : M0,3 → K ×K, Ψ(12),3(C1, C2, C3) := (C1C2, C3),

which induce the constants of motion Ψ∗
1,2(C

∞(K ×K)K) and Ψ∗
(12),3(C

∞(K ×K)K).
The intersection of these two sets of constants of motion is H. One has

ddim
(
Ψ∗

1,2(C
∞(K ×K)K)

)
= ddim

(
Ψ∗

(12),3(C
∞(K ×K)K)

)
= dim(K)

and ddim(FK) + ddim(H) = 2dim(K) = dim((M0,3)∗/K).

Moreover, one easily calculates that the dimension of the generic symplectic leaves
of (M0,3)∗/K is 2 dim(K)− 4ℓ. Except for SU(2), we have

ddim(H) = ℓ < dim(K)− 2ℓ,

and this shows superintegrability on (M0,3)∗/K and on its generic symplectic leaves.

Our method based on action variables gave us stronger results.
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A conjecture motivated by [Chalykh and Ryan, arXiv:2410.23456]

Chalykh and Ryan identified the celebrated trigonometric, complex van Diejen system
with 5 independent parameters as a Liouville integrable system on a symplectic leaf
of dimension 2(n− 1) of the character variety

Hom(π1(Σ0,4),SL(2n,C))/SL(2n,C).

Their work combined DAHA techniques with the Fock–Rosly approach to moduli
spaces. The relevant small symplectic leaf arises from fixing the holonomies along
the 4 boundary componenst to special semisimple conjugacy classes.

A similar construction should work also in the compact setting, using SU(2n) and
fixing C1, C2, C3 and C4 = (C1C2C3)−1 to conjugacy classes having representatives
of the form

λ1 = diag(κ−1
0 , . . . , κ−1

0 , κ0, . . . , κ0),

λ2 = diag(v−1
0 , . . . , v−1

0 , v0, . . . , v0),

λ3 = diag(v−1
n , . . . , v−1

n , vn, . . . , vn),

λ4 = diag(κ−1
n , . . . , κ−1

n , κnT
−2, . . . , . . . , κnT

−2, κnT
2n−2),

where κ0, v0, vn, κn, T are generic parameters, all taken from U(1).

The resulting ‘compactified classical van Diejen systems’ should be related to the
quantum mechanical systems studied in [van Diejen and Stokman, arXiv:q-alg/9607003]
and in [van Diejen and Görbe, arXiv:2108.00499].
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The double torus with one hole

We take the quotient space of M := D(K)⊛D(K) = {X | X = (A1, B1, A2, B2) ∈ K4}.
We have five straightforward possibilities for defining the Abelian Poisson algebra H:

1. H1 consists of the functions

H(X) = χ(A1), ∀χ ∈ C∞(K)K.

2. H2 consists of the functions

H(X) = χ([A1, B1]), ∀χ ∈ C∞(K)K.

3. H3 contains all products and sums of the functions

H(X) = χ(A1) and H(X) = χ([A2, B2]), ∀χ ∈ C∞(K)K.

4. H4 consists of all products and sums of the functions

H(X) = χ(A1) and H(X) = χ(A2), ∀χ ∈ C∞(K)K.

5. H5 is obtained from the functions

H(X) = χ([A1, B1]) and H(X) = χ([A2, B2]), ∀χ ∈ C∞(K)K.

In all cases, Y ⊂ M is the submanifold, where the arguments of χ above belong to
Kreg. Torus actions are generated by using the functions (χ1, . . . , χℓ) and the functions
(Ξ1, . . . ,Ξℓ) when the argument of χ is A1, A2 or a group commutator, respectively.

Our general Scenario is applicable and leads to many superintegrable systems. These
are real forms of systems studied in [Arthamonov and Reshetikhin, arXiv:1909.08682].

Remark: There exist further possibilities, too. For example, H = ⟨H4,H5⟩ is also an
Abelian Poisson subalgebra of C∞(M)K. In this case, we have not yet investigated the
connectedness of Y and the principal isotropy group for the K×T×T×Tad×Tad-action.
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Construction of a general class of integrable systems

Consider Mm,n with generic non-negative integers m,n. We write the elements of
Mm,n as X = (A1, B1, . . . , Am, Bm, C1, . . . , Cn). Below, we specify an Abelian Poisson
subalgebra H(I, J) ⊂ C∞(Mm,n)K.

First, we select a subset

I := {i1, i2, . . . , ip} ⊂ {1,2, . . . ,m}, where i1 < i2 < · · · < ip.

We associate with the set I the Hamiltonians of the form

Hχ
iα
(X) := χ(Aiα) or Hχ

iα
(X) := χ([Aiα, Biα]) ∀χ ∈ C∞(K)K, ∀α = 1, . . . , p.

Second, we also fix a set of non-intersecting closed intervals

J := {[λ1, ρ1], [λ2, ρ2], . . . , [λq, ρq]},
such that the boundaries of the intervals are integers satisfying

1 ≤ λ1 < ρ1 < λ2 < ρ2 < · · · < λq < ρq ≤ n.

We associate with J the Hamiltonians

Hχ
[λβ,ρβ]

(X) := χ(Cλβ
Cλβ+1 · · ·Cρβ

), ∀χ ∈ C∞(K)K, ∀β = 1, . . . , q.

By definition, H(I, J) contains the arbitrary finite products and sums of these Hamil-
tonians. Then, we let Y be the dense open connected subspace of Mm,n where all
arguments of χ above belong to Kreg. We can generate an action of Tp−r × (Tad)q+r

on Y by using the sets of standard functions χj and Ξj (j = 1, . . . , ℓ) similarly as
before (r is the number of group commutators used). We proved that the Scenario
works in all these cases. For a few further possibilities, see our paper.
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Conclusion

We developed a general method for showing the superintegrability of Hamiltonian
systems constructed by generalized Poisson reduction. The point was that we utilized
‘torus’ actions whose invariants gave the required supply of constants of motion.

We applied our approach to several interesting examples, and there could be many
more applications.

For example, the method should be applicable to the spin Sutherland models found in
[L.F. and Pusztai, arXiv:math-ph/0609085] and to spin Calogero–Moser type models
obtained by Reshetikhin from cotangent bundles of Lie groups and symmetric spaces.

A strength of our method is that it delivers integrability not only on generic symplectic
leaves, but also on arbitrary symplectic leaves of a dense open subset of the smooth
component M∗/K of the full reduced phase space M/K. The key is that we utilized
action variables.

What happens outside those dense open subsets?

What happens outside the principal orbit type?

Before engaging oneself is speculations, examples should be explored in depth.
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