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What is a Quantum Circuit?

A quantum circuit describes a computation using:
o Qubits (quantum bits)
o Gates (operations)

Gates are arranged in time from left to right.
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Multi-qubit gates create entanglement, linking qubit behavior.
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A simple quantum circuit acting on 3 qubits drawn with 3 rendering modes of
Qiskit: graphical, latex/latex source and text:.
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Why Are Circuits Hard to Simulate?

Each qubit doubles the size of the quantum state.
A system of n qubits requires 2" complex numbers.

Multi-qubit gates act on large blocks of this state.

Simulation becomes expensive as circuits grow.

If we can break a large circuit into smaller independent pieces, we can
often simulate or optimize each piece more efficiently.
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Partitioning: The High-Level Idea

@ Partitioning identifies subcircuits that can be:
e Simulated separately
o Optimized independently
o Fused into larger operations
@ Helps reduce complexity in:
e Simulation (CPU/GPU)
e Decomposition and synthesis
e Distributed or parallel execution
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Example 5-qubit circuit of Perfect Code Encoder into 3 4-qubit Partitions
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Where Partitioning Is Used Today

In simulation:
o Find blocks that can be fused into large unitary operations.
@ Used in GPU simulators for speed.
In compilation:
o |dentify subcircuits to decompose or synthesize.
e Simplify mapping to hardware with limited connectivity.
In distributed computing:
@ Split a circuit among multiple processors.

@ Reduce expensive communication or teleportation.

LIN @=0
& »

SQUANCZ

Morse, G. (ELTE & Wigner) QC Partitioning LMSP’25 5/73



Heuristics in Use Today

Qiskit: “Collect multi-qubit blocks” (greedy).

BQSK:it: Quick, Scan, Cluster, Greedy.

Clark et al. (2023): Tree-based DAG method.

Fang et al. (2022): Acyclic graph partitioning for simulation.
Xu et al. (2024): ILP assignment of blocks to GPUs (ATLAS).
Kaur et al. (2025): Distributed partitioning over processors.

Observe

These methods work well in practice, but they rely on heuristics rather
than global optimality.
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Limitations of Current Methods

Hard to know how good a heuristic really is.
No widely available “gold standard” for optimal partitions.

Some techniques work well only for certain hardware models.

Others struggle with:
e Deep circuits
e High entanglement
e Large numbers of qubits

We want a method that is exact and still practical, so we can set
benchmarks for the field.
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Our Idea in short

@ Reformulate partitioning as a set cover problem.

@ Use modern ILP solvers to find the globally optimal solution.
@ Add structural ideas to make it scale:

e Collapse long single-qubit chains
e Enumerate only convex, qubit-aware subcircuits
e Exclude cycle-forming solutions iteratively

@ Result:

e Optimal partitions for circuits up to 100,000 gates
e Solve times on the order of minutes
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Why This Matters

Enables the first “ground truth” dataset for QC partitioning.

Lets us measure how far heuristics are from optimal.

Helps guide:
o Better fusion strategies for simulators
o Better decomposition strategies for compilers
o Better cost models for distributed execution

Provides a foundation for principled quantum compiler design.
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Big Picture of the Algorithm

Goal: Compute globally optimal partitions of a quantum circuit DAG.

O Preprocess the circuit
e Contract simple single-qubit chains.
@ Enumerate candidate partitions

e Use qubit-aware reachability.
e Enumerate convex subcircuits.

© Build an ILP model

o Partitions become binary decision variables.
o Constraints ensure every gate is covered exactly once.

@ Eliminate cycles between partitions
e Ensure the partition graph remains acyclic.
O Postprocess
e Expand contracted chains and recover the full partitioning.
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Pre- and Post-Processing: Single-Qubit Chains

Observation: Long single-qubit chains are easy to handle and do not need
to be part of the expensive combinatorial search.
Contraction rules (preprocessing):
@ Single-qubit chains with no parents or children:
o Form trivial partitions and can be removed from the main search.
@ Chains with only one neighbor:
o Always attached to that neighbor’s partition.
@ Chains with both a parent and a child:

e In the unweighted case, either choice is equivalent.

e In the weighted case, this choice can be NP-hard and is handled by a
small ILP.

Postprocessing: After solving the main ILP, the contracted chains are
reinserted according to these rules.
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Why Qubit-Aware Reachability?

Problem:

@ A naive reachability search (e.g., BFS on the DAG) finds many
candidate subcircuits.

@ Many of these candidates may use too many qubits and cannot be
realized by the target hardware.

Idea: Only propagate through parts of the circuit that stay within a given
qubit budget Qmax-

e Each gate v has an associated set Q(v) of qubits it acts on.

@ While exploring, we keep track of the union of qubits visited.

@ We stop expanding when this union exceeds Qmax-

Result: Infeasible branches are pruned early, and the search space remains
manageable.
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Circuit DAG and Qubit Sets

@ Model the circuit as a DAG:
G=(V,E), V ={gates}, E = {dependencies}.

@ For each gate v e V:
Q(v)c @
is the set of qubits touched by gate v.

o We use:

o g(v): forward adjacency (successors of v),
o rg(v): reverse adjacency (predecessors of v).

e Given a starting set of gates X and a qubit bound Qmax, we want:

U Q(U) < Qmax

u=v

along all paths considered.
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Qubit-Aware Reachability: Informal Algorithm

Input:

Initial gate set X.

Circuit DAG with adjacency lists g and rg.
Restriction set R of admissible vertices.
Mapping v — Q(v).

Qubit limit Qmax-

High-level steps:
@ Start from X (current frontier level).
@ For each gate v in the frontier:
o Check whether all required predecessors in R have been visited.
o If yes, compute the qubit set for v by merging:

Qil=omu J Q.

u€pred(v)

o If |Qs[v]| < Qmax, accept v and add its successors to the next frontier.
© Repeat until no new gates can be added.

OUtI ut: set of iates reachable from X without violating the qubit bound.
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Qubit-Aware Reachability: Complexity

Let:
e n=|V|: number of gates.

@ k = Qmax: maximum number of qubits per partition.

Key points:
@ Each gate is processed at most once (after predecessors are resolved).
@ Qubit sets Qs[v] are updated incrementally.
e Each update costs O(k) in the worst case.

Overall:
Time = O(n - k), Space = O(n - k).

In practice:
@ k is small compared to n (hardware qubit limit).

@ The procedure behaves almost linearly in the circuit size.
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What is a Convex Partition?

Convexity in a DAG:
o A subset P C V is convex if:

uveP, uxw=xv = weP.

@ Intuition: You cannot “skip over’ nodes.

Why convex partitions?
@ They correspond to contiguous subcircuits without holes.
o Easier to interpret, simulate, and decompose.

o Compatible with causal structure of the circuit.

Our goal:

@ Enumerate all convex partitions that also respect the qubit bound

Qmax-
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Preprocessing for Enumeration

To speed up enumeration, we precompute:

e A topological order 7 : V — {1,...,n}.

@ For each gate u:
reach[u] = {v | u <X v}, revreach[u]={v|v = u}.

@ These reachability sets can be obtained efficiently using standard graph
algorithms (e.g., SCC-based methods and dynamic programming).

Benefit:
@ These closures allow us to quickly update frontiers when we grow a
convex set.
@ Combined with qubit-aware pruning, this massively shrinks the search
space.
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Convex Partition Enumeration: High-Level Strategy

For each seed gate t (in topological order):
© Start with:

X=A{t}, Y={v:n(v)>n(t)}, Q=9(t).

@ Maintain two frontier sets:

e A: forward-reachable candidates.
e B: backward-reachable candidates.

© At each step, choose a frontier node v and compute the region R of
nodes that must be included with v to preserve convexity.

© Extend the current set X by R if the updated qubit set Q' stays within
Qmax-

@ Use qubit-aware reachability to prune A, B, and Y.

© When both A and B are empty, record X as a valid convex partition.
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Convex Partition Enumeration: Qubit-Aware Pruning

Qubit-aware enhancements:
@ Before exploring convex sets rooted at t:

o Run qubit-aware reachability from t.
e Remove from Y any node that is not qubit-feasible from ¢.

@ During enumeration:
o Whenever X grows, we reapply qubit-aware reachability to:
@ prune A and B,

e drop nodes that would violate the qubit bound.
Effect in practice:
@ Huge reduction in the number of candidates we have to explore.

@ Enumeration becomes feasible even for large DAGs, as long as Qmax is
moderate.
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Convex Enumeration: Complexity Discussion

Theoretical worst case:
@ The number of convex subsets of a DAG can be exponential.
@ Any exact enumeration algorithm can thus be exponential in the worst
case.
Our approach:

@ Ensures each convex partition is found exactly once.
@ Uses polynomial-time operations per step:
e Updates of reachability frontiers.

o Qubit-set unions bounded by Qmax.
In practice:
@ Hardware limits imply small Qnmnax.

@ Qubit-aware pruning plus convexity significantly reduce the effective
search space.

o This allows us to handle circuits with hundreds or thousands of gates.
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What is an ILP?

Integer Linear Program (ILP):

@ Optimize a linear objective:
min ¢ x
@ Subject to linear constraints:
Ax < b
@ Some or all variables x; are required to be integers (often 0-1).

ILPs can model:
@ Scheduling, routing, set cover, assignment, and here:
@ Selecting an optimal set of partitions.

Modern solvers:
e Highly optimized branch-and-bound / branch-and-cut.
o Exploit structure, cutting planes, heuristics, and presolve.
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Mini Example: Set Cover as an ILP

Toy problem:

e Universe of items U = {1,2,3,4}.

@ Subsets:

S ={1,2}, S =1{2,3}, S3={3,4}.

@ Goal: pick the fewest subsets so that every item is covered.
ILP formulation:

@ Variables: x1,x2,x3 € {0,1} (choose 51, Sz, S3).

@ Objective:

min x; + x> + x3.

@ Coverage constraints:
item1l: xg>1

item2: x3+x >1
item3: x+x3>1
item4: x3>1

We will use exactly this pattern for gates and partitions.
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From Partitions to an ILP Model

Input to the ILP:
@ Set of gates G.

@ Set of candidate partitions P = {P1,..., Pn} from convex
enumeration.

@ For each gate g € G:

Plg)={ilg <P}
the indices of partitions that contain gate g.

Decision variables:

{1, if partition P; is selected,
)(j =

0, otherwise.
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ILP Formulation: Objective and Constraints

Objective:

m

min ZXJ
j=1
@ Minimize the total number of selected partitions.

@ This encourages larger, more informative blocks (subject to
constraints).

Coverage constraints:

Y x=1 Vgeg.

Jj€P(g)

@ Each gate must be covered by exactly one partition.
@ Overlapping partitions are allowed in enumeration, but:
o The ILP will choose a non-overlapping selection.

Integrality:

xi€{0,1}, j=1,...,m.
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Interpretation and Properties

Interpretation as set cover:
o Gates = items that must be covered.
o Partitions = candidate subsets.
@ ILP chooses a minimal collection of partitions that exactly covers all
gates.

Why is this globally optimal?
@ Every feasible ILP solution corresponds to a valid partitioning.
@ The objective ensures we pick the partitioning with the smallest
number of blocks, given the candidate library.
@ Since we enumerate all relevant convex partitions (under the qubit
bound), this is optimal within that space.

Computationally:
@ The ILP can be large, but modern solvers handle these structures well,
especially with the additional structure we add next (acyclicity).
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Why Worry About Cycles Between Partitions?

Partition—interaction digraph:
@ Nodes represent selected partitions S;.

o Directed edge S; — §; exists if there is a gate-level edge u — v with
ue Sjand v e S; (exclusive parts).

Potential problem:

@ It is possible to select partitions that introduce a cycle in this
interaction graph:

Sy =+ Sp, == S5, = S

@ Such a cycle violates the DAG structure at the partition level and
breaks the idea of a hierarchical decomposition.

Goal:

@ Enforce that the selected partitions themselves form a DAG.
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Canonical 2-Cycle Between Partitions

Setup:
o — @ S; and S; are both individually valid convex
Partition A |Partition B partitions.

@ There is a cross-edge S; — Sj: an edge u — v
1 ° with u € S\ S, ve S\ S
l > @ There is also a cross-edge S; — Si: an edge

u = v with v’ € 5\ S, v € 5\ S

3 ° Consequence:

@ If we select both S; and S, the

partition—interaction graph contains a directed

2-cycle.
Figure: Canonical invalid @ This violates the global acyclicity requirement.
2-cycle between two convex
Cycle cut:

partitions S; and §;.
o xi+x <1

@ At most one of S; or S; can be chosen.

@ This is the simplest non-trivial example of our
general cycle cuts:
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Strategy 1: Cycle-Elimination Cuts

Idea: Detect cycles in the partition—interaction graph and forbid them with
linear inequalities.

For a directed cycle C:
d x<|Cl -1
ieC
@ At least one partition in the cycle must be switched off.

Special cases:
e 2-cycle: §; <+ §;:
xj +x; < 1.
@ 3-cycle: §; =+ S; — S — S
Xi + X+ x < 2.

Works well when:
@ The number of short cycles is moderate.
@ Used in combination with other strategies.
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Strategy 2: Order Variables (Topological Labels)
Idea: Assign each partition a real-valued order u; that respects the
direction of edges.
Constraints:

@ For each edge (i,/) between partitions:

uj > ui+1 ifX,'ZXjZl.
o If either x; or x; is 0, the constraint can be relaxed (via a big-M term
or an indicator constraint in the solver).

Why this prevents cycles:

@ Summing along a directed cycle would give:

uy > uy +|C|,
which is impossible.

@ Therefore, no set of selected partitions can form a cycle.

Advantage: Single, compact ILP model; no need to detect cycles explicitly
during the solve.
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Strategy 3: Lazy Cycle Cuts (Cutting-Plane Approach)

Idea: Let the solver propose a candidate solution, then check it for cycles
and cut them off if they exist.

Procedure:
© Solve the ILP without acyclicity constraints.
@ Inspect the selected partitions (x; = 1) and build their interaction
graph.
O |If there is a cycle:

o Extract the cycle C.
e Add the cut:

> xi<|Cl-1.

iec
o Reoptimize and repeat.
© If there is no cycle, we have a valid solution.

Modern MILP solvers:
@ Support this via lazy-constraint callbacks.
o Often very efficient in practice (few iterations).
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Cycle Elimination Algorithm: Summary

High-level algorithm:
© Start with the base ILP formulation (no cycle constraints).

O Repeatedly:
e Solve the ILP.
o Build the partition—dependency graph for the selected partitions.
o Compute the strongly connected components (SCCs).
e For each SCC of size > 1, extract a cycle and add a cut.

© Stop when the selected partitions form an acyclic graph.

Complexity:
@ ILP solve dominates the runtime.
e Graph operations (SCCs, cycle extraction) are linear in the number of
selected partitions and arcs.

o Empirically, only a few refinement rounds are needed.
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Full Pipeline Recap

© Preprocessing
o Contract single-qubit chains.

@ Qubit-Aware Convex Partition Enumeration
o Use qubit-aware reachability and convexity.

© ILP Construction
e Partitions — binary variables.

e Gates — coverage constraints.
o Objective: minimize number of partitions.

@ Acyclicity Enforcement
e Cycle cuts, order variables, or lazy constraints.
© Postprocessing

e Expand contracted chains.
o Recover full partition mapping for the original circuit.

Result: Globally optimal, hardware-aware partitions for circuits with up to
~ 10° gates, computed in practical time.
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Connectedness of Partitions and Convex Sets

Key Principle: All partition blocks are assumed to be connected subcircuits.
Why only connected convex sets?

@ Our convex-set enumeration algorithm was explicitly the connected version: every
enumerated block forms a single qubit-connected region.

@ Disconnected convex sets offer no advantage:

o They cannot be fused efficiently in simulation.

e They provide no benefit for decomposition.

o They inflate the search space without adding useful partitions.
Partitioning rule (crucial):

@ Every candidate block is pre-split into its connected components, regardless of how
it was generated.

@ Ensures a fair comparison between methods and a consistent basis for the ILP.

@ Guarantees that all blocks correspond to meaningful quantum operations on a
contiguous set of qubits.

Consequence: The ILP only receives connected, convex, and simulation-relevant blocks,
aligning the optimization with real fusion efficiency.
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Why We Need a Weighted Objective

Unweighted optimal partitioning:
@ Minimizes the number of blocks.

o Ensures convexity and hardware feasibility.

But for simulation or fusion:
@ Different blocks cost different amounts of work.
@ A block acting on k qubits requires operations on a 2X-dimensional
subspace.
@ Larger blocks are exponentially more expensive.

Therefore
We need to attach a weight (cost) to each candidate partition:

weight(P;) = estimated FLOPs to simulate block P;.
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Weighted ILP Objective

Recall the unweighted objective: min}_ . x;

Weighted version for gate fusion: min "7, w; x; where:
e x; € {0,1} selects partition P,
o wj is the cost (FLOPs) required to simulate P;.

Coverage constraints remain unchanged:

Z xj =1 for each gate g.
Jj:8€P;

Interpretation

The ILP simultaneously:
@ chooses partitions,

avoids cycles,

o
@ respects the qubit bound,
@ and minimizes the true floating-point simulation cost.

= = =
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FLOPs for Applying a Gate Block

Consider a fused block acting on a set of k qubits.

State-vector size:
vector has size 2" where n is the total number of qubits.
When applying a k-qubit operation:
we update 2" disjoint subvectors,

each of length:
2k,

Fusion cost intuition

Cost = 2™k x (cost to multiply a 2% x 2% matrix)
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Cost of a 2% x 2K Complex Matrix Multiply

Each complex multiply: (a+ bi)(c + di) = (ac — bd) + (ad + bc)i requires:
4 real multiplications + 2 real additions = 6 FLOPs.

A matrix—vector multiply of size 2 has:
2K outputs, each requiring 2% complex multiplies.

So the total is:
2K % (2K) x 6 = 6 22K,

But SQUANDER uses a slightly richer estimate

including:

@ matrix—vector core cost,
@ accumulation cost,

@ an |I/O penalty.
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The 1/O Penalty

Motivation:
e Loading and storing slices of the state vector is expensive.

@ Memory movement, especially across cache lines, dominates runtime.

Approximated as a constant:
io_penalty =48 (empirical estimate)
It is added once per matrix—vector multiply block:

cost = FLOPsyy + io_penalty.

For small blocks (2-4 qubits), I/O dominates; for large blocks, arithmetic
dominates.
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Putting It All Together: Cost of One Block

For a fused block acting on qubits:
gate qubits = k, control qubits = c,

effective size:
k—
8size = PR

The FLOP estimate implemented is:

FLOPs(k,c) = 2"~ (cifpureclse 0) o (oo (4 +2) + 2(gsize — 1) + io_penalty)

@ The first factor counts how many slices of the state vector must be
updated.

@ The second factor is the per-slice computation (matrix—vector multiply

+1/0).
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Computing the Weight of a Partition

For a candidate partition P; (a fused block):
weight(P;) = FLOPs needed to apply P;.

Steps:
@ Collect the qubits involved in P;:

Q(P) = | Qe)-

ger

@ Determine number of:

e gate qubits,

e control qubits,

o (optionally) whether the block is “pure’”.
© Apply the FLOP model per block.

Key idea

The ILP is now minimizing the true simulation cost, not simply the number
of blocks. !
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Final Weighted ILP Model for Gate Fusion

Decision variables:

xj € {0,1} select block P;.
Objective:
m
min Z W;X;.
j=1
Coverage constraints:
Z xi=1 Vgeg.
J:8€EP;
Acyclicity:

@ Same cycle-elimination conditions as before.
@ Enforces a DAG structure among fused blocks.

This is a principled model of gate fusion

Optimal partitions are now optimal in terms of actual floating-point
simulation cost. ;
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How to Evaluate the Approach

Implementation:
@ Python implementation using a standard ILP modeling library.

@ Solved with a modern commercial ILP solver under academic license.

Benchmarks:

@ Standard quantum circuit suites used in prior work:
e QFT, Ising / Heisenberg models, arithmetic circuits, etc.

o Circuits ranging from a few hundred to ~ 70,000 gates.

Baselines (for comparison):
o Kahn-style greedy topological partitioning.
@ TDAG and GTQCP implementations.
@ Qiskit’s multi-qubit block collection.
e BQSKit (Quick variant).
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lllustrative Example: Small Circuits

Setup: maximum qubit budget k = 3 (small, tightly constrained blocks).

Circuit | Gates | Kahn | GTQCP | ILP (ours)
qft_10 200 | 24 23 21
ising_model 13 633 38 30 28
heisenberg-16-20 | 1028 109 85 84

@ All methods respect the same qubit bound.
@ Heuristics get reasonably close, but:
o ILP gives the provably optimal number of blocks.

@ Even on these modest examples, the gap is visible.
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lllustrative Example: Large Circuits

Example: large benchmark with ~ 50,000 gates.

Circuit | Gates | Kahn | GTQCP | ILP (ours)
urf5_280 (k = 3) | 49,820 | 4953 | 4507 4427
urf5 280 (k =4) | 49,829 | 3986 3290 3209

o For large, realistic circuits, the ILP still improves on the best heuristics.
o Differences of a few percent may represent:

e Thousands of fewer blocks,
o Shorter depth or fewer communication boundaries.
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Runtime: Is Exact Optimality Practical?

o We are solving a global optimization problem, so:
o ILP is inevitably more expensive than a single greedy pass.
e Empirically:
o Small circuits (hundreds of gates): solved almost instantly.
e Medium circuits (thousands of gates): typically seconds.
o Large circuits (up to ~ 50000 gates): minutes.
@ Modern ILP solvers exploit:

e Strong presolve,
e Good cutting planes for set-cover—like formulations,
o Parallel branch-and-bound.

Take-away

Exact optimality is not free, but it is feasible at scales that are already
interesting to simulators and compilers.
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How to Use This in Practice

@ ILP-based partitioning is integrated into an open-source library for
Sequential QUANtum gate DecomposER (SQUANDER).

SQUANDZR

@ In practice:
e For small and medium circuits, you can run the ILP directly.
o For very large workloads, ILP can serve as:
o A benchmark tool to evaluate heuristics.
@ A way to calibrate and improve heuristic cost models.

@ Access to an industrial-strength solver (e.g., academic Gurobi license)
is helpful for the largest instances.

Takeaway: the ground truth is now obtainable.
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From Fusion to Decomposition

So far:
@ We used ILP and weights (FLOPs + 1/0) to find optimal fusion
blocks for simulation.

Now we change perspective:
@ Instead of minimizing floating-point cost, we want to:
e Decompose a target unitary into CNOT + single-qubit gates,
o on all-to-all or constrained (graph) topologies.
@ The natural “weight” is now:

w(P;) = CNOT count in block P;
instead of FLOPs.

Philosophy

Same ILP machinery, different cost model:
@ Fusion: weights = simulation cost.
@ Decomposition: weights = CNOT counts (or depth). ‘
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Why Pre-Decomposition |s Necessary

Key Idea: Partitioning operates on CNOTs + 1-qubit gates. To reason
about communication, entanglement, and partition boundaries, we must
express every multi-qubit gate in this basis.

Reasons this is essential:
o Partition weights depend on CNOT counts.
e The ILP’s objective uses the minimal number of CNOTs needed to

implement a block.
o Therefore, every gate must first be expanded into its known optimal

CNOT form.
e Partition boundaries must be between elementary operations.

o Multi-qubit gates spanning different partitions are ambiguous.
o Once expanded to CNQOTs, the bipartite structure becomes explicit.
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Why Pre-Decomposition Is Necessary (cntd.)

o All well-known 2- and 3-qubit gates have optimal
decompositions.

o Library gates (e.g., CY, CU, CCX) have known best CNOT counts.
o Using these avoids underestimating or overestimating partition cost.
o Preprocessing drastically reduces ILP complexity.

e Without decomposition, the ILP must explore all equivalent
realizations—exponential blowup.
e With decomposition, only one canonical form enters the search.

Note: For full completeness, multiple possible decompositions may be
tried, but this is a secondary refinement step.
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Pre-Partitioning: Basic Decomposition of Standard Gates

)Z) 00 cos(%%)] q: —U(0,0,A) —
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Pre-Partitioning: Decomposition of 2-qubit Standard Gates

1 00 O
— qo -
cy — 0 00 ]
001 0 G
0 /0 O
do :
5
1 0 0 qo:
i 2 +<f> [} .
CU(97 ¢, A7’-}/) = g ‘ ’YCOOS <2> fl) ’Y sin <2> a U(07 ¢7 )\”Y)
0 (N sin (g) 0 e"”“+¢)cos<g>

G : - +— Py + /2 + ¢/2)
@ —{Ry (-V/2 + ¢/2) HIH Rz (—)/2 = ¢/2) |- Ry (=6/2) %H Ry (60/2)——Rs (\) }—
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Pre-Partitioning: Decomposition of 3-qubit Standard Gates

10000000 Qo :
01000000
00100000 g1 -
00000001 _
CCX=100001000 92 -
000007100
000000T0
0001000 O
do @—o—
¢ (T} S&—{ 1t b
G2 —H}-&— Tt =& T|-&— T
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Linear Reversible Circuits and GL(n, 2)

CNOT-only circuits on n qubits:

@ Any sequence of CNOTs (over all qubits) implements a linear
reversible map:

x+— Ax (mod 2), Ae GL(n,2).

@ Each CNOT corresponds to an elementary row operation over 5.
@ The group of all such maps is the general linear group GL(n,2).

OEIS A002884:
|GL(n,2)| =1,1,6,168,20160, 9999360, . . .
@ Number of nonsingular n x n matrices over ;.

@ Also: number of distinct linear Boolean / CNOT-only operations on n
bits/qubits.

Interpretation

This sequence is the search space size for CNOT-only decompositions on n
qubits. b
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OEIS A002884: Size of GL(n,2) and CNOT-Only Circuits

Definition (OEIS A002884): First values (OEIS A002884):
@ Number of reversible linear n |GL(n,2)| | logyg
quantum operations on n qubits 1 110.0
using only CNOT gates. 2 610.78
3 168 | 2.23
Closed form: 4 20160 | 4.30
n—1 5 9999360 | 6.00
L(n.2)| = on _ ok 6 | 20158709760 | 10.30
(GL(n, 2)] ka ( ) 7| 1.64x10" | 142
B 8 5.35 x 108 | 18.7
Asymptotics: |GL(n,2)| =
2" (up to lower-order factors). Key message

TR RO AR STl | he search space for CNOT-only
decompositions grows super fast

with n: exhaustive search is
hopeless beyond very small n.

Each element of GL(n,2) corresponds
to a distinct CNOT-only linear
reversible circuit on n qubits.

Morse, G. (ELTE & Wigner) QC Partitioning LMSP’25 54 /73



OEIS A002884 and Depth-Ordered CNOT Enumeration

Radcliffe’s interpretation (OEIS Conceptual picture:
comment):
o A002884 also counts
“The number of Boolean operations
on n bits, or quantum operations on
n qubits, that can be constructed @ Depth 2: all maps

using only CNOT gates.” reachable by at most 2
CNOTs, etc.

@ Depth 0: identity only.

@ Depth 1: all single-CNOT
maps.

Why this matters for us:
e GL(n,2) is the full CNOT-only space.  JEillle=Is11\%
@ Our BFS enumeration over CNOTs: OEIS A002884 tells us how huge
o explores GL(n,2) in increasing depth, GL(n,2) is. BFS-by-depth gives

o assigns a minimal CNOT count to us:
each linear map. @ structure (minimal depth),

@ These minimal depths become: @ a principled cost metric for
weights w(A) = CNOT count, used in CNOT-based blocks.

our weighted ILP for decomposition.
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BFS Enumeration of CNOT Networks by Depth

Idea: Enumerate elements of GL(n,2) in order of CNOT depth.

@ Represent each linear reversible map by an n x n binary matrix A.
@ Start from the identity / at depth 0.

@ At each BFS level:

o Apply all allowed CNOTs (according to the topology) to each matrix.
o Record each new matrix in a visited set.
e The BFS level gives the minimal CNOT count for that map.

Weight for decomposition

For a block implementing a linear map A:

w(A) = minimal CNOT count from BFS depth.

These CNOT counts replace FLOP-based weights in the ILP objective.
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BFS Level Expansion (Topology-Aware)

Algorithm 1: BFS_Expand _Level(frontier, visited, topology)

Input : frontier: set of matrices A € GL(n,2) at current depth
visited: set of matrices already discovered
topology: set of allowed CNOT edges (/,;)

Output: next frontier: matrices at the next CNOT depth
next_frontier « (;

foreach A € frontier do
foreach (i, ) € topology do
foreach (c,t) € {(,j),(j,7)} do
B < apply  CNOT(A, control = ¢, target = t);
if B ¢ visited then
visited < visited U {B};
record parent / sequence information for B;
next frontier <— next_frontier U {B};

return next frontier;

Key properties:
@ BFS guarantees minimal CNOT depth for each reachable linear map.
@ topology encodes which CNOTs are allowed (line, grid, all-to-all, arbitrary graph).
@ Applicable to any reversible linear map over GL(n, 2).
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Symmetry Reduction for Topology-Aware Enumeration

Context: For the non-GL(n,2) variant, we enumerate sequences of CNOT
edges rather than binary matrices. To avoid redundant sequences, we
enforce:

1. Limit on repeated CNOTs
@ For any edge p € topology, we allow at most three consecutive
occurrences of p in a sequence.
o If the last three steps in a prefix are all equal to p, we do not extend
the prefix by p again.
@ This cuts away long, uninteresting chains of identical CNOTs and
reduces the search space.

2. Canonical topological order (prefix test)
We define a partial order between CNOTs by qubit usage: gate k depends
on gate p if they share a qubit and p appears earlier.
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Symmetry Reduction Canonical Prefix Checking

Algorithm 2: IsCanonicalPrefix(ep, ..., em—1)

Input : sequence of CNOT edges ex = {ik, jx}

Output: true if prefix is canonical, false otherwise

Build a dependency DAG over positions 0,...,m — 1:
for each gate k and each qubit g € ex, add an edge p — k from the last gate p
that used gq.

Compute in-degrees and initialize a priority queue Q with all nodes of in-degree 0,
ordered by a fixed lexicographic order on edges e.

for pos=0to m—1 do

If Q is empty: return false (malformed DAG).

Extract from Q the gate index u with lexicographically minimal edge e,.

if u+# pos then

L return false ; // sequence deviates from canonical topological
order

For each successor v of u: decrement in-degree; when it reaches 0, insert v into

Return true.

Usage: A candidate sequence is only kept if every prefix is canonical; otherwise, it is
rejected as a symmetric duplicate.
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From CNOT Sequences to a U3+CNOT Fabric

Input: A sequence of unordered CNOT pairs

pairs = [(io,Jo), (i1,1), - - -, (iL—1,Je—1)]
over n qubits.

Construction of the fabric:
e For each pair (i, jk) in order:

o apply a parameterized U3 gate on qubit i,
o apply a parameterized U3 gate on qubit ji,
e apply a CNOT with control i; and target ji.

@ Optionally, add a finalizing layer of single-qubit U3 gates on all n
qubits at the end.

This yields a parametric U3 + CNOT ansatz block associated to each
topology-aware CNOT sequence discovered by BFS.
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Example U34+CNOT Fabric

Without finalizing layer With finalizing U3 layer
o —J— -
o -
"
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Weighted ILP for CNOT-Based Decomposition

For a fixed topology and target unitary:
e We build candidate blocks P; that combine CNOT layers and
single-qubit gates.
e Each block P; is assigned a CNOT-based weight w; from BFS depth.

ILP objective (decomposition version):
m
min Z w;X;
j=1

Subject to:
e Each gate is covered exactly once (as before).
e Partition interaction graph is acyclic (as before).
@ Qubit budget / topology constraints are respected.

Interpretation

We now get globally optimal partitions with respect to CNOT cost instead
of simulation cost.
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Motivation: Measuring Entanglement of a Block

For decomposition we also care about:
@ How entangling a block is across each bipartition.

@ For gradient-based optimization, we need a smooth cost function that
reflects entanglement structure.

Tool: Operator Schmidt Rank (OSR)
e Given U acting on n qubits and a cut A|B:

U:Z)\kAk@Bk,
k

where X\ are singular values of a reshaped matrix.

@ The number of significant Ax quantifies entanglement of U across the
cut A|B.
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Constructing the OSR Matrix M for a Cut

Let U be a 2" x 2" unitary in row-major order, and let A C {0,...,n—1}
be the qubits on one side of the cut.

Dimensions:
da = 2|A‘, dg = 2n—|A|’
and we build:
M e Cldd)x(dg).

Index mapping:

M(ada+a), (b dg+b) = Ular 1) (a,b)>
where:
@ (a, b) encodes input basis indices on A and B,
e (a',b') encodes output basis indices on A and B.
OSR singular values:

M = Upse £ VI, ¥ = diag(So,S1,...).

After normalization, the S; capture the operator Schmidt spectrum.
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Constructing the OSR Matrix: Algorithmic View

Algorithm 3: Build M for a bipartition A|B
Input : Unitarty U € C2"*?" cut AC {0,...,n—1}
Output: OSR matrix M € C(d2)x(d3)
Compute complementary set B and dimensions d4 = 2|4, dg = 2Bl
Initialize M as a (d3) x (d3) complex matrix;
foreach basis pair (a, b) on A and B do
foreach basis pair (a’,b') on A and B do
Set row index r = a'dy + a;
Set column index ¢ = b'dg + b;
Set M c = Uz 1) (a,b):

Morse, G. (ELTE & Wigner) QC Partitioning LMSP’'25

65/73



OSR Across All Cuts

For an n-qubit block, we consider all nontrivial bipartitions:
AB, Ac{0,....n—1}, 1<|A < EJ 7

modulo complement symmetry.

For each cut c:
© Build M. via the OSR reshaping.
@ Compute singular values S(¢) of M. (SVD).

© Normalize: S « 5{9/||U|r.

The OSR spectrum {S(€)} provides a rich view of the entanglement
structure of the block across all bipartitions.
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Philosophy of the OSR Cost

Desired properties:
o Differentiable: usable in gradient-based optimization.

e Sensitive to entangling tails: small but nonzero singular values.

@ Scale-aware: focus on “dyadic” ranks 1,2,4, ... (powers of two).

Heuristic design choices:
e Work with the normalized singular values S = (5o, 51, ... ).
e Emphasize entries at indices 1,2, 4,... (dyadic positions).
o Use a decaying weight p¥ to discount higher-order dyadics.

@ Subtract a small tolerance multiple of Sy to be robust to numerical
noise.

Penalize “residual” entanglement beyond the leading Schmidt components
across all cuts.

= = = =
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Per-Cut Tail Loss

For a single cut with singular values S = (S, S1, ... ):

PN

-1
2
tail _loss(S) = pH—1=k <52k —5Sp- toI)
0

x
Il

where:

e K = [log,|S|] is the maximum dyadic scale,

e p€(0,1)is a decay factor (e.g. p=0.1),

@ tol is a small tolerance to ignore numerical noise.
Interpretation:

o Large values at dyadic positions 2% indicate higher effective OSR rank.

@ The cost encourages singular spectra that decay quickly (low
entangling power).
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Aggregating Over Cuts: Softmax

For all cuts c =1,..., C, with per-cut tail losses L.:

Softmax aggregation:

C
L. —
Losr :TlogZexp< CT m> + m,

c=1

where:
@ m=maxc L,

o 7 > 0is a “temperature” parameter (e.g. 1072).

Properties:
@ As 7 — 0, Losr =~ max. L. (worst-cut behavior).

@ For larger 7, we get a smoother, more averaged penalty.
This Losg becomes our entanglement cost for the block.
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Gradient w.r.t. Singular Values

For a single cut:

K-1 )
Le(S) = pK—l—k(szk - so-tol) .
k=0
The derivative at dyadic positions (schematically):
Ole . k-1-k
55 =20 (52k—50~t0|>.
Non-dyadic indices receive zero gradient from this cost.
For the softmax aggregation:
Olosr _ ~_ _ ep((Lc —m)/7)
OLc S oexp((Le —m)/T)’
so:
Olosr oL,

W .
9S(0) ¢ 989
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Backpropagating Through SVD (Conceptual)

For each cut c:
Mc - Uc Zc V;r’
with singular values S(¢) on the diagonal of L.
. oL .
Given FIGE

@ We can build the gradient w.r.t. M, using standard SVD derivative
formulas.

@ Then we map the gradient on M. back to U via the OSR reshaping
(inverse of the construction of M,.).

We obtain 8%% as a full 2" x 2" matrix, which can be paired with:

ou
00;

for each circuit parameter 6; to obtain parameter gradients.
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Gradient Accumulation for OSR: High-Level Algorithm

, OLosr
Algorithm 4: Compute ——
ou
Input : U: an 2" X 2" unitary matrix

C: list of bipartition cuts

L
Output: %: gradient of OSR loss w.r.t. U

1. Construct OSR matrices. foreach cut ¢ € C do
Form matrix M. by reshaping U according to cut c;

Compute SVD: M, = UCZCVCT;

Let S(°) be the diagonal singular-value vector of ¥;
2. Compute gradients w.r.t. singular values. Apply the chosen OSR loss (e.g. softmax tail) to each 5(¢) to obtain
oL

95’

3. Backpropagate through each SVD. foreach cut c € C do
oL
Use SVD derivative identities to compute —— fr. _—

om
M, a5()

oL oL .
Map back to — via the inverse reshape of cut c;
OM, ou
4. Aggregate contributions. Sum the per-cut gradients over all cuts:

L S resh 71( L )
—_— = reshape _— .
au Pee

cec M.
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Putting It All Together

O Partition the circuit with ILP:

o Fusion: weights = FLOPs + 1/0.

e Decomposition: weights = CNOT counts (from GL(n,2) BFS).
@ Within each block, optimize a parameterized circuit:

e Use OSR-based entanglement cost across all cuts.

e Use SVD + gradient backprop to get VgLosr.
© End result:

e A decomposition that is:

e Topology-aware,
o CNOT-efficient,
@ And controlled by a mathematically well-founded entanglement cost.

Next: examples and hands on for partitioning, fusion, simulation, GL(n, 2),
OSR, decomposition.
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