Scalable Globally Optimal Partitioning of Quantum
Circuits

Gregory Morse
gregory.morse@live.com

REN Cuisner
HUN-REN Wigner Research Center for
Physics

ELTE Eo6tvos Lorand University, Budapest
Faculty of Informatics
Department of Programming Languages
and Compilers

PhD supervisor: Tamas Kozsik

Lectures on Modern Scientific Programming 2025
November 25, 2025
QC Partitioning LMSP'25 1/73

gregory.morse@live.com

What is a Quantum Circuit?

A quantum circuit describes a computation using:
o Qubits (quantum bits)
o Gates (operations)

Gates are arranged in time from left to right.

(]

Multi-qubit gates create entanglement, linking qubit behavior.

— —
q0: — H | Rz(n/3) H x

—
q.1: 4 Rx(n/4) H x | Rx(-n/5) ——
e

q2: { Ry(-/6) b— X H——a—
SN —

A simple quantum circuit acting on 3 qubits drawn with 3 rendering modes of
Qiskit: graphical, latex/latex source and text:.

Morse, G. (ELTE & Wigner) QC Partitioning LMSP’25 2/73

Why Are Circuits Hard to Simulate?

Each qubit doubles the size of the quantum state.
A system of n qubits requires 2" complex numbers.

Multi-qubit gates act on large blocks of this state.

Simulation becomes expensive as circuits grow.

If we can break a large circuit into smaller independent pieces, we can
often simulate or optimize each piece more efficiently.

Morse, G. (ELTE & Wigner) QC Partitioning LMSP’25 3/73

Partitioning: The High-Level Idea

@ Partitioning identifies subcircuits that can be:
e Simulated separately
o Optimized independently
o Fused into larger operations
@ Helps reduce complexity in:
e Simulation (CPU/GPU)
e Decomposition and synthesis
e Distributed or parallel execution

I T“ O—6—=©
I |
B

I =
g -0 1 3

Example 5-qubit circuit of Perfect Code Encoder into 3 4-qubit Partitions

Morse, G. (ELTE & Wigner) QC Partitioning LMSP’25 4/73

Where Partitioning Is Used Today

In simulation:
o Find blocks that can be fused into large unitary operations.
@ Used in GPU simulators for speed.
In compilation:
o |dentify subcircuits to decompose or synthesize.
e Simplify mapping to hardware with limited connectivity.
In distributed computing:
@ Split a circuit among multiple processors.

@ Reduce expensive communication or teleportation.

LIN @=0
& »

SQUANCZ

Morse, G. (ELTE & Wigner) QC Partitioning LMSP’25 5/73

Heuristics in Use Today

Qiskit: “Collect multi-qubit blocks” (greedy).

BQSK:it: Quick, Scan, Cluster, Greedy.

Clark et al. (2023): Tree-based DAG method.

Fang et al. (2022): Acyclic graph partitioning for simulation.
Xu et al. (2024): ILP assignment of blocks to GPUs (ATLAS).
Kaur et al. (2025): Distributed partitioning over processors.

Observe

These methods work well in practice, but they rely on heuristics rather
than global optimality.

Morse, G. (ELTE & Wigner) QC Partitioning LMSP’25 6/73

Limitations of Current Methods

Hard to know how good a heuristic really is.
No widely available “gold standard” for optimal partitions.

Some techniques work well only for certain hardware models.

Others struggle with:
e Deep circuits
e High entanglement
e Large numbers of qubits

We want a method that is exact and still practical, so we can set
benchmarks for the field.

Morse, G. (ELTE & Wigner) QC Partitioning LMSP’25 7/73

Our Idea in short

@ Reformulate partitioning as a set cover problem.

@ Use modern ILP solvers to find the globally optimal solution.
@ Add structural ideas to make it scale:

e Collapse long single-qubit chains
e Enumerate only convex, qubit-aware subcircuits
e Exclude cycle-forming solutions iteratively

@ Result:

e Optimal partitions for circuits up to 100,000 gates
e Solve times on the order of minutes

Morse, G. (ELTE & Wigner) QC Partitioning LMSP’25 8/73

Why This Matters

Enables the first “ground truth” dataset for QC partitioning.

Lets us measure how far heuristics are from optimal.

Helps guide:
o Better fusion strategies for simulators
o Better decomposition strategies for compilers
o Better cost models for distributed execution

Provides a foundation for principled quantum compiler design.

Morse, G. (ELTE & Wigner) QC Partitioning LMSP’25 9/73

Big Picture of the Algorithm

Goal: Compute globally optimal partitions of a quantum circuit DAG.

O Preprocess the circuit
e Contract simple single-qubit chains.
@ Enumerate candidate partitions

e Use qubit-aware reachability.
e Enumerate convex subcircuits.

© Build an ILP model

o Partitions become binary decision variables.
o Constraints ensure every gate is covered exactly once.

@ Eliminate cycles between partitions
e Ensure the partition graph remains acyclic.
O Postprocess
e Expand contracted chains and recover the full partitioning.

Morse, G. (ELTE & Wigner) QC Partitioning LMSP’25 10/73

Pre- and Post-Processing: Single-Qubit Chains

Observation: Long single-qubit chains are easy to handle and do not need
to be part of the expensive combinatorial search.
Contraction rules (preprocessing):
@ Single-qubit chains with no parents or children:
o Form trivial partitions and can be removed from the main search.
@ Chains with only one neighbor:
o Always attached to that neighbor’s partition.
@ Chains with both a parent and a child:

e In the unweighted case, either choice is equivalent.

e In the weighted case, this choice can be NP-hard and is handled by a
small ILP.

Postprocessing: After solving the main ILP, the contracted chains are
reinserted according to these rules.

Morse, G. (ELTE & Wigner) QC Partitioning LMSP’'25

11/73

Why Qubit-Aware Reachability?

Problem:

@ A naive reachability search (e.g., BFS on the DAG) finds many
candidate subcircuits.

@ Many of these candidates may use too many qubits and cannot be
realized by the target hardware.

Idea: Only propagate through parts of the circuit that stay within a given
qubit budget Qmax-

e Each gate v has an associated set Q(v) of qubits it acts on.

@ While exploring, we keep track of the union of qubits visited.

@ We stop expanding when this union exceeds Qmax-

Result: Infeasible branches are pruned early, and the search space remains
manageable.

Morse, G. (ELTE & Wigner) QC Partitioning LMSP’25 12 /73

Circuit DAG and Qubit Sets

@ Model the circuit as a DAG:
G=(V,E), V ={gates}, E = {dependencies}.

@ For each gate v e V:
Q(v)c @
is the set of qubits touched by gate v.

o We use:

o g(v): forward adjacency (successors of v),
o rg(v): reverse adjacency (predecessors of v).

e Given a starting set of gates X and a qubit bound Qmax, we want:

U Q(U) < Qmax

u=v

along all paths considered.

Morse, G. (ELTE & Wigner) QC Partitioning LMSP’25 13/73

Qubit-Aware Reachability: Informal Algorithm

Input:

Initial gate set X.

Circuit DAG with adjacency lists g and rg.
Restriction set R of admissible vertices.
Mapping v — Q(v).

Qubit limit Qmax-

High-level steps:
@ Start from X (current frontier level).
@ For each gate v in the frontier:
o Check whether all required predecessors in R have been visited.
o If yes, compute the qubit set for v by merging:

Qil=omu J Q.

u€pred(v)

o If |Qs[v]| < Qmax, accept v and add its successors to the next frontier.
© Repeat until no new gates can be added.

OUtI ut: set of iates reachable from X without violating the qubit bound.
Morse, G. (ELTE & Wigner) QC Partitioning LMSP’25 14 /73

Qubit-Aware Reachability: Complexity

Let:
e n=|V|: number of gates.

@ k = Qmax: maximum number of qubits per partition.

Key points:
@ Each gate is processed at most once (after predecessors are resolved).
@ Qubit sets Qs[v] are updated incrementally.
e Each update costs O(k) in the worst case.

Overall:
Time = O(n - k), Space = O(n - k).

In practice:
@ k is small compared to n (hardware qubit limit).

@ The procedure behaves almost linearly in the circuit size.

Morse, G. (ELTE & Wigner) QC Partitioning LMSP’25 15 /73

What is a Convex Partition?

Convexity in a DAG:
o A subset P C V is convex if:

uveP, uxw=xv = weP.

@ Intuition: You cannot “skip over’ nodes.

Why convex partitions?
@ They correspond to contiguous subcircuits without holes.
o Easier to interpret, simulate, and decompose.

o Compatible with causal structure of the circuit.

Our goal:

@ Enumerate all convex partitions that also respect the qubit bound

Qmax-

Morse, G. (ELTE & Wigner) QC Partitioning LMSP’25 16 /73

Preprocessing for Enumeration

To speed up enumeration, we precompute:

e A topological order 7 : V — {1,...,n}.

@ For each gate u:
reach[u] = {v | u <X v}, revreach[u]={v|v = u}.

@ These reachability sets can be obtained efficiently using standard graph
algorithms (e.g., SCC-based methods and dynamic programming).

Benefit:
@ These closures allow us to quickly update frontiers when we grow a
convex set.
@ Combined with qubit-aware pruning, this massively shrinks the search
space.

Morse, G. (ELTE & Wigner) QC Partitioning LMSP’25 17 /73

Convex Partition Enumeration: High-Level Strategy

For each seed gate t (in topological order):
© Start with:

X=A{t}, Y={v:n(v)>n(t)}, Q=9(t).

@ Maintain two frontier sets:

e A: forward-reachable candidates.
e B: backward-reachable candidates.

© At each step, choose a frontier node v and compute the region R of
nodes that must be included with v to preserve convexity.

© Extend the current set X by R if the updated qubit set Q' stays within
Qmax-

@ Use qubit-aware reachability to prune A, B, and Y.

© When both A and B are empty, record X as a valid convex partition.

Morse, G. (ELTE & Wigner) QC Partitioning LMSP’25 18 /73

Convex Partition Enumeration: Qubit-Aware Pruning

Qubit-aware enhancements:
@ Before exploring convex sets rooted at t:

o Run qubit-aware reachability from t.
e Remove from Y any node that is not qubit-feasible from ¢.

@ During enumeration:
o Whenever X grows, we reapply qubit-aware reachability to:
@ prune A and B,

e drop nodes that would violate the qubit bound.
Effect in practice:
@ Huge reduction in the number of candidates we have to explore.

@ Enumeration becomes feasible even for large DAGs, as long as Qmax is
moderate.

Morse, G. (ELTE & Wigner) QC Partitioning LMSP’25 19/73

Convex Enumeration: Complexity Discussion

Theoretical worst case:
@ The number of convex subsets of a DAG can be exponential.
@ Any exact enumeration algorithm can thus be exponential in the worst
case.
Our approach:

@ Ensures each convex partition is found exactly once.
@ Uses polynomial-time operations per step:
e Updates of reachability frontiers.

o Qubit-set unions bounded by Qmax.
In practice:
@ Hardware limits imply small Qnmnax.

@ Qubit-aware pruning plus convexity significantly reduce the effective
search space.

o This allows us to handle circuits with hundreds or thousands of gates.

Morse, G. (ELTE & Wigner) QC Partitioning LMSP’25 20/73

What is an ILP?

Integer Linear Program (ILP):

@ Optimize a linear objective:
min ¢ x
@ Subject to linear constraints:
Ax < b
@ Some or all variables x; are required to be integers (often 0-1).

ILPs can model:
@ Scheduling, routing, set cover, assignment, and here:
@ Selecting an optimal set of partitions.

Modern solvers:
e Highly optimized branch-and-bound / branch-and-cut.
o Exploit structure, cutting planes, heuristics, and presolve.

Morse, G. (ELTE & Wigner) QC Partitioning LMSP’25 21/73

Mini Example: Set Cover as an ILP

Toy problem:

e Universe of items U = {1,2,3,4}.

@ Subsets:

S ={1,2}, S =1{2,3}, S3={3,4}.

@ Goal: pick the fewest subsets so that every item is covered.
ILP formulation:

@ Variables: x1,x2,x3 € {0,1} (choose 51, Sz, S3).

@ Objective:

min x; + x> + x3.

@ Coverage constraints:
item1l: xg>1

item2: x3+x >1
item3: x+x3>1
item4: x3>1

We will use exactly this pattern for gates and partitions.

Morse, G. (ELTE & Wigner) QC Partitioning LMSP’25 22 /73

From Partitions to an ILP Model

Input to the ILP:
@ Set of gates G.

@ Set of candidate partitions P = {P1,..., Pn} from convex
enumeration.

@ For each gate g € G:

Plg)={ilg <P}
the indices of partitions that contain gate g.

Decision variables:

{1, if partition P; is selected,
)(j =

0, otherwise.

Morse, G. (ELTE & Wigner) QC Partitioning LMSP’25 23 /73

ILP Formulation: Objective and Constraints

Objective:

m

min ZXJ
j=1
@ Minimize the total number of selected partitions.

@ This encourages larger, more informative blocks (subject to
constraints).

Coverage constraints:

Y x=1 Vgeg.

Jj€P(g)

@ Each gate must be covered by exactly one partition.
@ Overlapping partitions are allowed in enumeration, but:
o The ILP will choose a non-overlapping selection.

Integrality:

xi€{0,1}, j=1,...,m.
QC Partitioning LMSP’25 24 /73

Interpretation and Properties

Interpretation as set cover:
o Gates = items that must be covered.
o Partitions = candidate subsets.
@ ILP chooses a minimal collection of partitions that exactly covers all
gates.

Why is this globally optimal?
@ Every feasible ILP solution corresponds to a valid partitioning.
@ The objective ensures we pick the partitioning with the smallest
number of blocks, given the candidate library.
@ Since we enumerate all relevant convex partitions (under the qubit
bound), this is optimal within that space.

Computationally:
@ The ILP can be large, but modern solvers handle these structures well,
especially with the additional structure we add next (acyclicity).

Morse, G. (ELTE & Wigner) QC Partitioning LMSP’25 25 /73

Why Worry About Cycles Between Partitions?

Partition—interaction digraph:
@ Nodes represent selected partitions S;.

o Directed edge S; — §; exists if there is a gate-level edge u — v with
ue Sjand v e S; (exclusive parts).

Potential problem:

@ It is possible to select partitions that introduce a cycle in this
interaction graph:

Sy =+ Sp, == S5, = S

@ Such a cycle violates the DAG structure at the partition level and
breaks the idea of a hierarchical decomposition.

Goal:

@ Enforce that the selected partitions themselves form a DAG.

Morse, G. (ELTE & Wigner) QC Partitioning LMSP’25 26 /73

Canonical 2-Cycle Between Partitions

Setup:
o — @ S; and S; are both individually valid convex
Partition A |Partition B partitions.

@ There is a cross-edge S; — Sj: an edge u — v
1 ° with u € S\ S, ve S\ S
l > @ There is also a cross-edge S; — Si: an edge

u = v with v’ € 5\ S, v € 5\ S

3 ° Consequence:

@ If we select both S; and S, the

partition—interaction graph contains a directed

2-cycle.
Figure: Canonical invalid @ This violates the global acyclicity requirement.
2-cycle between two convex
Cycle cut:

partitions S; and §;.
o xi+x <1

@ At most one of S; or S; can be chosen.

@ This is the simplest non-trivial example of our
general cycle cuts:

Morse, G. (ELTE & Wigner) QC Partitioning LMSP’25 27 /73

Strategy 1: Cycle-Elimination Cuts

Idea: Detect cycles in the partition—interaction graph and forbid them with
linear inequalities.

For a directed cycle C:
d x<|Cl -1
ieC
@ At least one partition in the cycle must be switched off.

Special cases:
e 2-cycle: §; <+ §;:
xj +x; < 1.
@ 3-cycle: §; =+ S; — S — S
Xi + X+ x < 2.

Works well when:
@ The number of short cycles is moderate.
@ Used in combination with other strategies.

Morse, G. (ELTE & Wigner) QC Partitioning LMSP’25 28 /73

Strategy 2: Order Variables (Topological Labels)
Idea: Assign each partition a real-valued order u; that respects the
direction of edges.
Constraints:

@ For each edge (i,/) between partitions:

uj > ui+1 ifX,'ZXjZl.
o If either x; or x; is 0, the constraint can be relaxed (via a big-M term
or an indicator constraint in the solver).

Why this prevents cycles:

@ Summing along a directed cycle would give:

uy > uy +|C|,
which is impossible.

@ Therefore, no set of selected partitions can form a cycle.

Advantage: Single, compact ILP model; no need to detect cycles explicitly
during the solve.
QC Partitioning LMSP'25 29/73

Strategy 3: Lazy Cycle Cuts (Cutting-Plane Approach)

Idea: Let the solver propose a candidate solution, then check it for cycles
and cut them off if they exist.

Procedure:
© Solve the ILP without acyclicity constraints.
@ Inspect the selected partitions (x; = 1) and build their interaction
graph.
O |If there is a cycle:

o Extract the cycle C.
e Add the cut:

> xi<|Cl-1.

iec
o Reoptimize and repeat.
© If there is no cycle, we have a valid solution.

Modern MILP solvers:
@ Support this via lazy-constraint callbacks.
o Often very efficient in practice (few iterations).

Morse, G. (ELTE & Wigner) QC Partitioning LMSP’25 30/73

Cycle Elimination Algorithm: Summary

High-level algorithm:
© Start with the base ILP formulation (no cycle constraints).

O Repeatedly:
e Solve the ILP.
o Build the partition—dependency graph for the selected partitions.
o Compute the strongly connected components (SCCs).
e For each SCC of size > 1, extract a cycle and add a cut.

© Stop when the selected partitions form an acyclic graph.

Complexity:
@ ILP solve dominates the runtime.
e Graph operations (SCCs, cycle extraction) are linear in the number of
selected partitions and arcs.

o Empirically, only a few refinement rounds are needed.

Morse, G. (ELTE & Wigner) QC Partitioning LMSP’25 31/73

Full Pipeline Recap

© Preprocessing
o Contract single-qubit chains.

@ Qubit-Aware Convex Partition Enumeration
o Use qubit-aware reachability and convexity.

© ILP Construction
e Partitions — binary variables.

e Gates — coverage constraints.
o Objective: minimize number of partitions.

@ Acyclicity Enforcement
e Cycle cuts, order variables, or lazy constraints.
© Postprocessing

e Expand contracted chains.
o Recover full partition mapping for the original circuit.

Result: Globally optimal, hardware-aware partitions for circuits with up to
~ 10° gates, computed in practical time.

Morse, G. (ELTE & Wigner) QC Partitioning LMSP’25 32/73

Connectedness of Partitions and Convex Sets

Key Principle: All partition blocks are assumed to be connected subcircuits.
Why only connected convex sets?

@ Our convex-set enumeration algorithm was explicitly the connected version: every
enumerated block forms a single qubit-connected region.

@ Disconnected convex sets offer no advantage:

o They cannot be fused efficiently in simulation.

e They provide no benefit for decomposition.

o They inflate the search space without adding useful partitions.
Partitioning rule (crucial):

@ Every candidate block is pre-split into its connected components, regardless of how
it was generated.

@ Ensures a fair comparison between methods and a consistent basis for the ILP.

@ Guarantees that all blocks correspond to meaningful quantum operations on a
contiguous set of qubits.

Consequence: The ILP only receives connected, convex, and simulation-relevant blocks,
aligning the optimization with real fusion efficiency.

Morse, G. (ELTE & Wigner) QC Partitioning LMSP’25 33/73

Why We Need a Weighted Objective

Unweighted optimal partitioning:
@ Minimizes the number of blocks.

o Ensures convexity and hardware feasibility.

But for simulation or fusion:
@ Different blocks cost different amounts of work.
@ A block acting on k qubits requires operations on a 2X-dimensional
subspace.
@ Larger blocks are exponentially more expensive.

Therefore
We need to attach a weight (cost) to each candidate partition:

weight(P;) = estimated FLOPs to simulate block P;.

Morse, G. (ELTE & Wigner) QC Partitioning LMSP’25 34 /73

Weighted ILP Objective

Recall the unweighted objective: min}_ . x;

Weighted version for gate fusion: min "7, w; x; where:
e x; € {0,1} selects partition P,
o wj is the cost (FLOPs) required to simulate P;.

Coverage constraints remain unchanged:

Z xj =1 for each gate g.
Jj:8€P;

Interpretation

The ILP simultaneously:
@ chooses partitions,

avoids cycles,

o
@ respects the qubit bound,
@ and minimizes the true floating-point simulation cost.

= = =

Morse, G. (ELTE & Wigner) QC Partitioning LMSP’25 35/73

FLOPs for Applying a Gate Block

Consider a fused block acting on a set of k qubits.

State-vector size:
vector has size 2" where n is the total number of qubits.
When applying a k-qubit operation:
we update 2" disjoint subvectors,

each of length:
2k,

Fusion cost intuition

Cost = 2™k x (cost to multiply a 2% x 2% matrix)

Morse, G. (ELTE & Wigner) QC Partitioning LMSP’25 36 /73

Cost of a 2% x 2K Complex Matrix Multiply

Each complex multiply: (a+ bi)(c + di) = (ac — bd) + (ad + bc)i requires:
4 real multiplications + 2 real additions = 6 FLOPs.

A matrix—vector multiply of size 2 has:
2K outputs, each requiring 2% complex multiplies.

So the total is:
2K % (2K) x 6 = 6 22K,

But SQUANDER uses a slightly richer estimate

including:

@ matrix—vector core cost,
@ accumulation cost,

@ an |I/O penalty.
QC Partitioning LMSP'25 37/73

The 1/O Penalty

Motivation:
e Loading and storing slices of the state vector is expensive.

@ Memory movement, especially across cache lines, dominates runtime.

Approximated as a constant:
io_penalty =48 (empirical estimate)
It is added once per matrix—vector multiply block:

cost = FLOPsyy + io_penalty.

For small blocks (2-4 qubits), I/O dominates; for large blocks, arithmetic
dominates.

Morse, G. (ELTE & Wigner) QC Partitioning LMSP’25 38/73

Putting It All Together: Cost of One Block

For a fused block acting on qubits:
gate qubits = k, control qubits = c,

effective size:
k—
8size = PR

The FLOP estimate implemented is:

FLOPs(k,c) = 2"~ (cifpureclse 0) o (oo (4 +2) + 2(gsize — 1) + io_penalty)

@ The first factor counts how many slices of the state vector must be
updated.

@ The second factor is the per-slice computation (matrix—vector multiply

+1/0).

Morse, G. (ELTE & Wigner) QC Partitioning LMSP’25 39/73

Computing the Weight of a Partition

For a candidate partition P; (a fused block):
weight(P;) = FLOPs needed to apply P;.

Steps:
@ Collect the qubits involved in P;:

Q(P) = | Qe)-

ger

@ Determine number of:

e gate qubits,

e control qubits,

o (optionally) whether the block is “pure’”.
© Apply the FLOP model per block.

Key idea

The ILP is now minimizing the true simulation cost, not simply the number
of blocks. !
QC Partitioning LMSP’25 40/73

Final Weighted ILP Model for Gate Fusion

Decision variables:

xj € {0,1} select block P;.
Objective:
m
min Z W;X;.
j=1
Coverage constraints:
Z xi=1 Vgeg.
J:8€EP;
Acyclicity:

@ Same cycle-elimination conditions as before.
@ Enforces a DAG structure among fused blocks.

This is a principled model of gate fusion

Optimal partitions are now optimal in terms of actual floating-point
simulation cost. ;
QC Partitioning LMSP’25 41/73

How to Evaluate the Approach

Implementation:
@ Python implementation using a standard ILP modeling library.

@ Solved with a modern commercial ILP solver under academic license.

Benchmarks:

@ Standard quantum circuit suites used in prior work:
e QFT, Ising / Heisenberg models, arithmetic circuits, etc.

o Circuits ranging from a few hundred to ~ 70,000 gates.

Baselines (for comparison):
o Kahn-style greedy topological partitioning.
@ TDAG and GTQCP implementations.
@ Qiskit’s multi-qubit block collection.
e BQSKit (Quick variant).

Morse, G. (ELTE & Wigner) QC Partitioning LMSP’25 42 /73

lllustrative Example: Small Circuits

Setup: maximum qubit budget k = 3 (small, tightly constrained blocks).

Circuit | Gates | Kahn | GTQCP | ILP (ours)
qft_10 200 | 24 23 21
ising_model 13 633 38 30 28
heisenberg-16-20 | 1028 109 85 84

@ All methods respect the same qubit bound.
@ Heuristics get reasonably close, but:
o ILP gives the provably optimal number of blocks.

@ Even on these modest examples, the gap is visible.

Morse, G. (ELTE & Wigner) QC Partitioning LMSP’25

43/73

lllustrative Example: Large Circuits

Example: large benchmark with ~ 50,000 gates.

Circuit | Gates | Kahn | GTQCP | ILP (ours)
urf5_280 (k = 3) | 49,820 | 4953 | 4507 4427
urf5 280 (k =4) | 49,829 | 3986 3290 3209

o For large, realistic circuits, the ILP still improves on the best heuristics.
o Differences of a few percent may represent:

e Thousands of fewer blocks,
o Shorter depth or fewer communication boundaries.

Morse, G. (ELTE & Wigner) QC Partitioning LMSP’25 44 /73

Runtime: Is Exact Optimality Practical?

o We are solving a global optimization problem, so:
o ILP is inevitably more expensive than a single greedy pass.
e Empirically:
o Small circuits (hundreds of gates): solved almost instantly.
e Medium circuits (thousands of gates): typically seconds.
o Large circuits (up to ~ 50000 gates): minutes.
@ Modern ILP solvers exploit:

e Strong presolve,
e Good cutting planes for set-cover—like formulations,
o Parallel branch-and-bound.

Take-away

Exact optimality is not free, but it is feasible at scales that are already
interesting to simulators and compilers.

Morse, G. (ELTE & Wigner) QC Partitioning LMSP’25 45 /73

How to Use This in Practice

@ ILP-based partitioning is integrated into an open-source library for
Sequential QUANtum gate DecomposER (SQUANDER).

SQUANDZR

@ In practice:
e For small and medium circuits, you can run the ILP directly.
o For very large workloads, ILP can serve as:
o A benchmark tool to evaluate heuristics.
@ A way to calibrate and improve heuristic cost models.

@ Access to an industrial-strength solver (e.g., academic Gurobi license)
is helpful for the largest instances.

Takeaway: the ground truth is now obtainable.
QC Partitioning LMSP'25 46 /73

From Fusion to Decomposition

So far:
@ We used ILP and weights (FLOPs + 1/0) to find optimal fusion
blocks for simulation.

Now we change perspective:
@ Instead of minimizing floating-point cost, we want to:
e Decompose a target unitary into CNOT + single-qubit gates,
o on all-to-all or constrained (graph) topologies.
@ The natural “weight” is now:

w(P;) = CNOT count in block P;
instead of FLOPs.

Philosophy

Same ILP machinery, different cost model:
@ Fusion: weights = simulation cost.
@ Decomposition: weights = CNOT counts (or depth). ‘
QC Partitioning LMSP'25 47 /73

Why Pre-Decomposition |s Necessary

Key Idea: Partitioning operates on CNOTs + 1-qubit gates. To reason
about communication, entanglement, and partition boundaries, we must
express every multi-qubit gate in this basis.

Reasons this is essential:
o Partition weights depend on CNOT counts.
e The ILP’s objective uses the minimal number of CNOTs needed to

implement a block.
o Therefore, every gate must first be expanded into its known optimal

CNOT form.
e Partition boundaries must be between elementary operations.

o Multi-qubit gates spanning different partitions are ambiguous.
o Once expanded to CNQOTs, the bipartite structure becomes explicit.

Morse, G. (ELTE & Wigner) QC Partitioning LMSP’25 48 /73

Why Pre-Decomposition Is Necessary (cntd.)

o All well-known 2- and 3-qubit gates have optimal
decompositions.

o Library gates (e.g., CY, CU, CCX) have known best CNOT counts.
o Using these avoids underestimating or overestimating partition cost.
o Preprocessing drastically reduces ILP complexity.

e Without decomposition, the ILP must explore all equivalent
realizations—exponential blowup.
e With decomposition, only one canonical form enters the search.

Note: For full completeness, multiple possible decompositions may be
tried, but this is a secondary refinement step.

Morse, G. (ELTE & Wigner) QC Partitioning LMSP’25 49 /73

Pre-Partitioning: Basic Decomposition of Standard Gates

)Z) 00 cos(%%)] q: —U(0,0,A) —

Morse, G. (ELTE & Wigner) QC Partitioning LMSP’25 50 /73

Pre-Partitioning: Decomposition of 2-qubit Standard Gates

1 00 O
— qo -
cy — 0 00]
001 0 G
0 /0 O
do :
5
1 0 0 qo:
i 2 +<f> [} .
CU(97 ¢, A7’-}/) = g ‘ ’YCOOS <2> fl) ’Y sin <2> a U(07 ¢7)\”Y)
0 (N sin (g) 0 e"”“+¢)cos<g>

G : - +— Py + /2 + ¢/2)
@ —{Ry (-V/2 + ¢/2) HIH Rz (—)/2 = ¢/2) |- Ry (=6/2) %H Ry (60/2)——Rs (\) }—

Morse, G. (ELTE & Wigner) QC Partitioning LMSP’25 51/73

Pre-Partitioning: Decomposition of 3-qubit Standard Gates

10000000 Qo :
01000000
00100000 g1 -
00000001 _
CCX=100001000 92 -
000007100
000000T0
0001000 O
do @—o—
¢ (T} S&—{ 1t b
G2 —H}-&— Tt =& T|-&— T

Morse, G. (ELTE & Wigner) QC Partitioning LMSP’25 52 /73

Linear Reversible Circuits and GL(n, 2)

CNOT-only circuits on n qubits:

@ Any sequence of CNOTs (over all qubits) implements a linear
reversible map:

x+— Ax (mod 2), Ae GL(n,2).

@ Each CNOT corresponds to an elementary row operation over 5.
@ The group of all such maps is the general linear group GL(n,2).

OEIS A002884:
|GL(n,2)| =1,1,6,168,20160, 9999360, . . .
@ Number of nonsingular n x n matrices over ;.

@ Also: number of distinct linear Boolean / CNOT-only operations on n
bits/qubits.

Interpretation

This sequence is the search space size for CNOT-only decompositions on n
qubits. b
QC Partitioning LMSP’25 53 /73

OEIS A002884: Size of GL(n,2) and CNOT-Only Circuits

Definition (OEIS A002884): First values (OEIS A002884):
@ Number of reversible linear n |GL(n,2)| | logyg
quantum operations on n qubits 1 110.0
using only CNOT gates. 2 610.78
3 168 | 2.23
Closed form: 4 20160 | 4.30
n—1 5 9999360 | 6.00
L(n.2)| = on _ ok 6 | 20158709760 | 10.30
(GL(n, 2)] ka () 7| 1.64x10" | 142
B 8 5.35 x 108 | 18.7
Asymptotics: |GL(n,2)| =
2" (up to lower-order factors). Key message

TR RO AR STl | he search space for CNOT-only
decompositions grows super fast

with n: exhaustive search is
hopeless beyond very small n.

Each element of GL(n,2) corresponds
to a distinct CNOT-only linear
reversible circuit on n qubits.

Morse, G. (ELTE & Wigner) QC Partitioning LMSP’25 54 /73

OEIS A002884 and Depth-Ordered CNOT Enumeration

Radcliffe’s interpretation (OEIS Conceptual picture:
comment):
o A002884 also counts
“The number of Boolean operations
on n bits, or quantum operations on
n qubits, that can be constructed @ Depth 2: all maps

using only CNOT gates.” reachable by at most 2
CNOTs, etc.

@ Depth 0: identity only.

@ Depth 1: all single-CNOT
maps.

Why this matters for us:
e GL(n,2) is the full CNOT-only space. JEillle=Is11\%
@ Our BFS enumeration over CNOTs: OEIS A002884 tells us how huge
o explores GL(n,2) in increasing depth, GL(n,2) is. BFS-by-depth gives

o assigns a minimal CNOT count to us:
each linear map. @ structure (minimal depth),

@ These minimal depths become: @ a principled cost metric for
weights w(A) = CNOT count, used in CNOT-based blocks.

our weighted ILP for decomposition.
Morse, G. (ELTE & Wigner) QC Partitioning LMSP’25 55 /73

BFS Enumeration of CNOT Networks by Depth

Idea: Enumerate elements of GL(n,2) in order of CNOT depth.

@ Represent each linear reversible map by an n x n binary matrix A.
@ Start from the identity / at depth 0.

@ At each BFS level:

o Apply all allowed CNOTs (according to the topology) to each matrix.
o Record each new matrix in a visited set.
e The BFS level gives the minimal CNOT count for that map.

Weight for decomposition

For a block implementing a linear map A:

w(A) = minimal CNOT count from BFS depth.

These CNOT counts replace FLOP-based weights in the ILP objective.

Morse, G. (ELTE & Wigner) QC Partitioning LMSP’25 56 /73

BFS Level Expansion (Topology-Aware)

Algorithm 1: BFS_Expand _Level(frontier, visited, topology)

Input : frontier: set of matrices A € GL(n,2) at current depth
visited: set of matrices already discovered
topology: set of allowed CNOT edges (/,;)

Output: next frontier: matrices at the next CNOT depth
next_frontier « (;

foreach A € frontier do
foreach (i,) € topology do
foreach (c,t) € {(,j),(j,7)} do
B < apply CNOT(A, control = ¢, target = t);
if B ¢ visited then
visited < visited U {B};
record parent / sequence information for B;
next frontier <— next_frontier U {B};

return next frontier;

Key properties:
@ BFS guarantees minimal CNOT depth for each reachable linear map.
@ topology encodes which CNOTs are allowed (line, grid, all-to-all, arbitrary graph).
@ Applicable to any reversible linear map over GL(n, 2).

Morse, G. (ELTE & Wigner) QC Partitioning LMSP’25 57 /73

Symmetry Reduction for Topology-Aware Enumeration

Context: For the non-GL(n,2) variant, we enumerate sequences of CNOT
edges rather than binary matrices. To avoid redundant sequences, we
enforce:

1. Limit on repeated CNOTs
@ For any edge p € topology, we allow at most three consecutive
occurrences of p in a sequence.
o If the last three steps in a prefix are all equal to p, we do not extend
the prefix by p again.
@ This cuts away long, uninteresting chains of identical CNOTs and
reduces the search space.

2. Canonical topological order (prefix test)
We define a partial order between CNOTs by qubit usage: gate k depends
on gate p if they share a qubit and p appears earlier.

Morse, G. (ELTE & Wigner) QC Partitioning LMSP’25 58 /73

Symmetry Reduction Canonical Prefix Checking

Algorithm 2: IsCanonicalPrefix(ep, ..., em—1)

Input : sequence of CNOT edges ex = {ik, jx}

Output: true if prefix is canonical, false otherwise

Build a dependency DAG over positions 0,...,m — 1:
for each gate k and each qubit g € ex, add an edge p — k from the last gate p
that used gq.

Compute in-degrees and initialize a priority queue Q with all nodes of in-degree 0,
ordered by a fixed lexicographic order on edges e.

for pos=0to m—1 do

If Q is empty: return false (malformed DAG).

Extract from Q the gate index u with lexicographically minimal edge e,.

if u+# pos then

L return false ; // sequence deviates from canonical topological
order

For each successor v of u: decrement in-degree; when it reaches 0, insert v into

Return true.

Usage: A candidate sequence is only kept if every prefix is canonical; otherwise, it is
rejected as a symmetric duplicate.

Morse, G. (ELTE & Wigner) QC Partitioning LMSP’25 59 /73

From CNOT Sequences to a U3+CNOT Fabric

Input: A sequence of unordered CNOT pairs

pairs = [(io,Jo), (i1,1), - - -, (iL—1,Je—1)]
over n qubits.

Construction of the fabric:
e For each pair (i, jk) in order:

o apply a parameterized U3 gate on qubit i,
o apply a parameterized U3 gate on qubit ji,
e apply a CNOT with control i; and target ji.

@ Optionally, add a finalizing layer of single-qubit U3 gates on all n
qubits at the end.

This yields a parametric U3 + CNOT ansatz block associated to each
topology-aware CNOT sequence discovered by BFS.

Morse, G. (ELTE & Wigner) QC Partitioning LMSP’25 60 /73

Example U34+CNOT Fabric

Without finalizing layer With finalizing U3 layer
o —J— -
o -
"

Morse, G. (ELTE & Wigner) QC Partitioning LMSP’25 61/73

Weighted ILP for CNOT-Based Decomposition

For a fixed topology and target unitary:
e We build candidate blocks P; that combine CNOT layers and
single-qubit gates.
e Each block P; is assigned a CNOT-based weight w; from BFS depth.

ILP objective (decomposition version):
m
min Z w;X;
j=1

Subject to:
e Each gate is covered exactly once (as before).
e Partition interaction graph is acyclic (as before).
@ Qubit budget / topology constraints are respected.

Interpretation

We now get globally optimal partitions with respect to CNOT cost instead
of simulation cost.

Morse, G. (ELTE & Wigner) QC Partitioning LMSP’25 62 /73

Motivation: Measuring Entanglement of a Block

For decomposition we also care about:
@ How entangling a block is across each bipartition.

@ For gradient-based optimization, we need a smooth cost function that
reflects entanglement structure.

Tool: Operator Schmidt Rank (OSR)
e Given U acting on n qubits and a cut A|B:

U:Z)\kAk@Bk,
k

where X\ are singular values of a reshaped matrix.

@ The number of significant Ax quantifies entanglement of U across the
cut A|B.

Morse, G. (ELTE & Wigner) QC Partitioning LMSP’25 63 /73

Constructing the OSR Matrix M for a Cut

Let U be a 2" x 2" unitary in row-major order, and let A C {0,...,n—1}
be the qubits on one side of the cut.

Dimensions:
da = 2|A‘, dg = 2n—|A|’
and we build:
M e Cldd)x(dg).

Index mapping:

M(ada+a), (b dg+b) = Ular 1) (a,b)>
where:
@ (a, b) encodes input basis indices on A and B,
e (a',b') encodes output basis indices on A and B.
OSR singular values:

M = Upse £ VI, ¥ = diag(So,S1,...).

After normalization, the S; capture the operator Schmidt spectrum.
QC Partitioning LMSP'25 64/73

Constructing the OSR Matrix: Algorithmic View

Algorithm 3: Build M for a bipartition A|B
Input : Unitarty U € C2"*?" cut AC {0,...,n—1}
Output: OSR matrix M € C(d2)x(d3)
Compute complementary set B and dimensions d4 = 2|4, dg = 2Bl
Initialize M as a (d3) x (d3) complex matrix;
foreach basis pair (a, b) on A and B do
foreach basis pair (a’,b') on A and B do
Set row index r = a'dy + a;
Set column index ¢ = b'dg + b;
Set M c = Uz 1) (a,b):

Morse, G. (ELTE & Wigner) QC Partitioning LMSP’'25

65/73

OSR Across All Cuts

For an n-qubit block, we consider all nontrivial bipartitions:
AB, Ac{0,....n—1}, 1<|A < EJ 7

modulo complement symmetry.

For each cut c:
© Build M. via the OSR reshaping.
@ Compute singular values S(¢) of M. (SVD).

© Normalize: S « 5{9/||U|r.

The OSR spectrum {S(€)} provides a rich view of the entanglement
structure of the block across all bipartitions.

Morse, G. (ELTE & Wigner) QC Partitioning LMSP’25 66 /73

Philosophy of the OSR Cost

Desired properties:
o Differentiable: usable in gradient-based optimization.

e Sensitive to entangling tails: small but nonzero singular values.

@ Scale-aware: focus on “dyadic” ranks 1,2,4, ... (powers of two).

Heuristic design choices:
e Work with the normalized singular values S = (5o, 51, ...).
e Emphasize entries at indices 1,2, 4,... (dyadic positions).
o Use a decaying weight p¥ to discount higher-order dyadics.

@ Subtract a small tolerance multiple of Sy to be robust to numerical
noise.

Penalize “residual” entanglement beyond the leading Schmidt components
across all cuts.

= = = =

Morse, G. (ELTE & Wigner) QC Partitioning LMSP’25 67 /73

Per-Cut Tail Loss

For a single cut with singular values S = (S, S1, ...):

PN

-1
2
tail _loss(S) = pH—1=k <52k —5Sp- toI)
0

x
Il

where:

e K = [log,|S|] is the maximum dyadic scale,

e p€(0,1)is a decay factor (e.g. p=0.1),

@ tol is a small tolerance to ignore numerical noise.
Interpretation:

o Large values at dyadic positions 2% indicate higher effective OSR rank.

@ The cost encourages singular spectra that decay quickly (low
entangling power).

Morse, G. (ELTE & Wigner) QC Partitioning LMSP’25 68 /73

Aggregating Over Cuts: Softmax

For all cuts c =1,..., C, with per-cut tail losses L.:

Softmax aggregation:

C
L. —
Losr :TlogZexp< CT m> + m,

c=1

where:
@ m=maxc L,

o 7 > 0is a “temperature” parameter (e.g. 1072).

Properties:
@ As 7 — 0, Losr =~ max. L. (worst-cut behavior).

@ For larger 7, we get a smoother, more averaged penalty.
This Losg becomes our entanglement cost for the block.

Morse, G. (ELTE & Wigner) QC Partitioning LMSP’25 69 /73

Gradient w.r.t. Singular Values

For a single cut:

K-1)
Le(S) = pK—l—k(szk - so-tol) .
k=0
The derivative at dyadic positions (schematically):
Ole . k-1-k
55 =20 (52k—50~t0|>.
Non-dyadic indices receive zero gradient from this cost.
For the softmax aggregation:
Olosr _ ~_ _ ep((Lc —m)/7)
OLc S oexp((Le —m)/T)’
so:
Olosr oL,

W .
9S(0) ¢ 989
QC Partitioning LMSP'25 70/73

Backpropagating Through SVD (Conceptual)

For each cut c:
Mc - Uc Zc V;r’
with singular values S(¢) on the diagonal of L.
. oL .
Given FIGE

@ We can build the gradient w.r.t. M, using standard SVD derivative
formulas.

@ Then we map the gradient on M. back to U via the OSR reshaping
(inverse of the construction of M,.).

We obtain 8%% as a full 2" x 2" matrix, which can be paired with:

ou
00;

for each circuit parameter 6; to obtain parameter gradients.
QC Partitioning LMSP'25

71/73

Gradient Accumulation for OSR: High-Level Algorithm

, OLosr
Algorithm 4: Compute ——
ou
Input : U: an 2" X 2" unitary matrix

C: list of bipartition cuts

L
Output: %: gradient of OSR loss w.r.t. U

1. Construct OSR matrices. foreach cut ¢ € C do
Form matrix M. by reshaping U according to cut c;

Compute SVD: M, = UCZCVCT;

Let S(°) be the diagonal singular-value vector of ¥;
2. Compute gradients w.r.t. singular values. Apply the chosen OSR loss (e.g. softmax tail) to each 5(¢) to obtain
oL

95’

3. Backpropagate through each SVD. foreach cut c € C do
oL
Use SVD derivative identities to compute —— fr. _—

om
M, a5()

oL oL .
Map back to — via the inverse reshape of cut c;
OM, ou
4. Aggregate contributions. Sum the per-cut gradients over all cuts:

L S resh 71(L)
—_— = reshape _— .
au Pee

cec M.

Morse, G. (ELTE & Wigner) QC Partitioning LMSP’25 72/73

Putting It All Together

O Partition the circuit with ILP:

o Fusion: weights = FLOPs + 1/0.

e Decomposition: weights = CNOT counts (from GL(n,2) BFS).
@ Within each block, optimize a parameterized circuit:

e Use OSR-based entanglement cost across all cuts.

e Use SVD + gradient backprop to get VgLosr.
© End result:

e A decomposition that is:

e Topology-aware,
o CNOT-efficient,
@ And controlled by a mathematically well-founded entanglement cost.

Next: examples and hands on for partitioning, fusion, simulation, GL(n, 2),
OSR, decomposition.

Morse, G. (ELTE & Wigner) QC Partitioning LMSP’25 73/73

	Quantum Computing Basics
	Why Partition Quantum Circuits?
	Existing Approaches (High-Level)
	Our Globally Optimal Approach
	Algorithm: From Circuits to Optimal Partitions
	Qubit-Aware Reachability
	Qubit-Aware Convex Partition Enumeration
	Integer Linear Programming (ILP) Basics
	ILP for Global Optimal Partitioning
	Acyclicity and Cycle Elimination
	Putting It All Together
	From Partitioning to Gate Fusion
	Modeling the Cost of Simulating a Block
	From Block Costs to Weighted ILP
	Illustrative Results and Comparisons
	CNOT-Based Decomposition and OSR Entanglement Cost
	Operator Schmidt Rank (OSR) as Entanglement Measure
	Designing the OSR-Based Cost Function
	Gradients and Optimization

