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What is a Quantum Circuit?

A quantum circuit describes a computation using:

Qubits (quantum bits)
Gates (operations)

Gates are arranged in time from left to right.

Multi-qubit gates create entanglement, linking qubit behavior.

q0 : H • RZ (
π
3
)

q1 : RX (π
4
) • RX (−π

5
)

q2 : RY (−π
6
) •

A simple quantum circuit acting on 3 qubits drawn with 3 rendering modes of
Qiskit: graphical, latex/latex source and text:.
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Why Are Circuits Hard to Simulate?

Each qubit doubles the size of the quantum state.

A system of n qubits requires 2n complex numbers.

Multi-qubit gates act on large blocks of this state.

Simulation becomes expensive as circuits grow.

Key Idea

If we can break a large circuit into smaller independent pieces, we can
often simulate or optimize each piece more e�ciently.
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Partitioning: The High-Level Idea

Partitioning identi�es subcircuits that can be:

Simulated separately
Optimized independently
Fused into larger operations

Helps reduce complexity in:

Simulation (CPU/GPU)
Decomposition and synthesis
Distributed or parallel execution

Example 5-qubit circuit of Perfect Code Encoder into 3 4-qubit Partitions
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Where Partitioning Is Used Today

In simulation:

Find blocks that can be fused into large unitary operations.

Used in GPU simulators for speed.

In compilation:

Identify subcircuits to decompose or synthesize.

Simplify mapping to hardware with limited connectivity.

In distributed computing:

Split a circuit among multiple processors.

Reduce expensive communication or teleportation.
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Heuristics in Use Today

Qiskit: �Collect multi-qubit blocks� (greedy).

BQSKit: Quick, Scan, Cluster, Greedy.

Clark et al. (2023): Tree-based DAG method.

Fang et al. (2022): Acyclic graph partitioning for simulation.

Xu et al. (2024): ILP assignment of blocks to GPUs (ATLAS).

Kaur et al. (2025): Distributed partitioning over processors.

Observe

These methods work well in practice, but they rely on heuristics rather
than global optimality.
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Limitations of Current Methods

Hard to know how good a heuristic really is.

No widely available �gold standard� for optimal partitions.

Some techniques work well only for certain hardware models.

Others struggle with:

Deep circuits
High entanglement
Large numbers of qubits

Motivation

We want a method that is exact and still practical, so we can set
benchmarks for the �eld.
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Our Idea in short

Reformulate partitioning as a set cover problem.

Use modern ILP solvers to �nd the globally optimal solution.

Add structural ideas to make it scale:

Collapse long single-qubit chains
Enumerate only convex, qubit-aware subcircuits
Exclude cycle-forming solutions iteratively

Result:

Optimal partitions for circuits up to 100,000 gates
Solve times on the order of minutes
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Why This Matters

Enables the �rst �ground truth� dataset for QC partitioning.

Lets us measure how far heuristics are from optimal.

Helps guide:

Better fusion strategies for simulators
Better decomposition strategies for compilers
Better cost models for distributed execution

Provides a foundation for principled quantum compiler design.
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Big Picture of the Algorithm

Goal: Compute globally optimal partitions of a quantum circuit DAG.

1 Preprocess the circuit

Contract simple single-qubit chains.

2 Enumerate candidate partitions

Use qubit-aware reachability.
Enumerate convex subcircuits.

3 Build an ILP model

Partitions become binary decision variables.
Constraints ensure every gate is covered exactly once.

4 Eliminate cycles between partitions

Ensure the partition graph remains acyclic.

5 Postprocess

Expand contracted chains and recover the full partitioning.
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Pre- and Post-Processing: Single-Qubit Chains

Observation: Long single-qubit chains are easy to handle and do not need
to be part of the expensive combinatorial search.

Contraction rules (preprocessing):

Single-qubit chains with no parents or children:

Form trivial partitions and can be removed from the main search.

Chains with only one neighbor:

Always attached to that neighbor's partition.

Chains with both a parent and a child:

In the unweighted case, either choice is equivalent.
In the weighted case, this choice can be NP-hard and is handled by a
small ILP.

Postprocessing: After solving the main ILP, the contracted chains are
reinserted according to these rules.
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Why Qubit-Aware Reachability?

Problem:

A naive reachability search (e.g., BFS on the DAG) �nds many
candidate subcircuits.

Many of these candidates may use too many qubits and cannot be
realized by the target hardware.

Idea: Only propagate through parts of the circuit that stay within a given
qubit budget Qmax.

Each gate v has an associated set Q(v) of qubits it acts on.
While exploring, we keep track of the union of qubits visited.

We stop expanding when this union exceeds Qmax.

Result: Infeasible branches are pruned early, and the search space remains
manageable.
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Circuit DAG and Qubit Sets

Model the circuit as a DAG:

G = (V ,E ), V = {gates}, E = {dependencies}.

For each gate v ∈ V :
Q(v) ⊆ Q

is the set of qubits touched by gate v .

We use:
g(v): forward adjacency (successors of v),
rg(v): reverse adjacency (predecessors of v).

Given a starting set of gates X and a qubit bound Qmax, we want:∣∣∣∣∣∣
⋃
u⪯v
Q(u)

∣∣∣∣∣∣ ≤ Qmax

along all paths considered.

Morse, G. (ELTE & Wigner) QC Partitioning LMSP'25 13 / 73



Qubit-Aware Reachability: Informal Algorithm

Input:

Initial gate set X .
Circuit DAG with adjacency lists g and rg .
Restriction set R of admissible vertices.
Mapping v 7→ Q(v).
Qubit limit Qmax.

High-level steps:
1 Start from X (current frontier level).
2 For each gate v in the frontier:

Check whether all required predecessors in R have been visited.
If yes, compute the qubit set for v by merging:

Qs [v ] = Q(v) ∪
⋃

u∈pred(v)

Qs [u].

If |Qs [v ]| ≤ Qmax, accept v and add its successors to the next frontier.
3 Repeat until no new gates can be added.

Output: set of gates reachable from X without violating the qubit bound.
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Qubit-Aware Reachability: Complexity

Let:

n = |V |: number of gates.

k = Qmax: maximum number of qubits per partition.

Key points:

Each gate is processed at most once (after predecessors are resolved).

Qubit sets Qs [v ] are updated incrementally.

Each update costs O(k) in the worst case.

Overall:
Time = O(n · k), Space = O(n · k).

In practice:

k is small compared to n (hardware qubit limit).

The procedure behaves almost linearly in the circuit size.
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What is a Convex Partition?

Convexity in a DAG:

A subset P ⊆ V is convex if:

u, v ∈ P, u ⪯ w ⪯ v ⇒ w ∈ P.

Intuition: You cannot �skip over� nodes.

Why convex partitions?

They correspond to contiguous subcircuits without holes.

Easier to interpret, simulate, and decompose.

Compatible with causal structure of the circuit.

Our goal:

Enumerate all convex partitions that also respect the qubit bound
Qmax.
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Preprocessing for Enumeration

To speed up enumeration, we precompute:

A topological order π : V → {1, . . . , n}.
For each gate u:

reach[u] = {v | u ⪯ v}, revreach[u] = {v | v ⪯ u}.

These reachability sets can be obtained e�ciently using standard graph
algorithms (e.g., SCC-based methods and dynamic programming).

Bene�t:

These closures allow us to quickly update frontiers when we grow a
convex set.

Combined with qubit-aware pruning, this massively shrinks the search
space.
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Convex Partition Enumeration: High-Level Strategy

For each seed gate t (in topological order):

1 Start with:

X = {t}, Y = {v : π(v) > π(t)}, Q = Q(t).

2 Maintain two frontier sets:

A: forward-reachable candidates.
B: backward-reachable candidates.

3 At each step, choose a frontier node v and compute the region R of
nodes that must be included with v to preserve convexity.

4 Extend the current set X by R if the updated qubit set Q ′ stays within
Qmax.

5 Use qubit-aware reachability to prune A, B, and Y .

6 When both A and B are empty, record X as a valid convex partition.
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Convex Partition Enumeration: Qubit-Aware Pruning

Qubit-aware enhancements:

Before exploring convex sets rooted at t:

Run qubit-aware reachability from t.
Remove from Y any node that is not qubit-feasible from t.

During enumeration:
Whenever X grows, we reapply qubit-aware reachability to:

prune A and B,
drop nodes that would violate the qubit bound.

E�ect in practice:

Huge reduction in the number of candidates we have to explore.

Enumeration becomes feasible even for large DAGs, as long as Qmax is
moderate.
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Convex Enumeration: Complexity Discussion

Theoretical worst case:

The number of convex subsets of a DAG can be exponential.

Any exact enumeration algorithm can thus be exponential in the worst
case.

Our approach:

Ensures each convex partition is found exactly once.

Uses polynomial-time operations per step:

Updates of reachability frontiers.
Qubit-set unions bounded by Qmax.

In practice:

Hardware limits imply small Qmax.

Qubit-aware pruning plus convexity signi�cantly reduce the e�ective
search space.

This allows us to handle circuits with hundreds or thousands of gates.
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What is an ILP?

Integer Linear Program (ILP):

Optimize a linear objective:

min c⊤x

Subject to linear constraints:

Ax ≤ b

Some or all variables xi are required to be integers (often 0�1).

ILPs can model:

Scheduling, routing, set cover, assignment, and here:

Selecting an optimal set of partitions.

Modern solvers:

Highly optimized branch-and-bound / branch-and-cut.

Exploit structure, cutting planes, heuristics, and presolve.
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Mini Example: Set Cover as an ILP

Toy problem:

Universe of items U = {1, 2, 3, 4}.
Subsets:

S1 = {1, 2}, S2 = {2, 3}, S3 = {3, 4}.
Goal: pick the fewest subsets so that every item is covered.

ILP formulation:

Variables: x1, x2, x3 ∈ {0, 1} (choose S1, S2, S3).

Objective:
min x1 + x2 + x3.

Coverage constraints:
item 1: x1 ≥ 1

item 2: x1 + x2 ≥ 1

item 3: x2 + x3 ≥ 1

item 4: x3 ≥ 1

We will use exactly this pattern for gates and partitions.
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From Partitions to an ILP Model

Input to the ILP:

Set of gates G.
Set of candidate partitions P = {P1, . . . ,Pm} from convex
enumeration.

For each gate g ∈ G:

P(g) = {j | g ∈ Pj},

the indices of partitions that contain gate g .

Decision variables:

xj =

{
1, if partition Pj is selected,

0, otherwise.
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ILP Formulation: Objective and Constraints

Objective:

min
m∑
j=1

xj

Minimize the total number of selected partitions.
This encourages larger, more informative blocks (subject to
constraints).

Coverage constraints: ∑
j∈P(g)

xj = 1 ∀g ∈ G.

Each gate must be covered by exactly one partition.
Overlapping partitions are allowed in enumeration, but:

The ILP will choose a non-overlapping selection.

Integrality:
xj ∈ {0, 1}, j = 1, . . . ,m.
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Interpretation and Properties

Interpretation as set cover:

Gates = items that must be covered.

Partitions = candidate subsets.

ILP chooses a minimal collection of partitions that exactly covers all
gates.

Why is this globally optimal?

Every feasible ILP solution corresponds to a valid partitioning.

The objective ensures we pick the partitioning with the smallest
number of blocks, given the candidate library.

Since we enumerate all relevant convex partitions (under the qubit
bound), this is optimal within that space.

Computationally:

The ILP can be large, but modern solvers handle these structures well,
especially with the additional structure we add next (acyclicity).

Morse, G. (ELTE & Wigner) QC Partitioning LMSP'25 25 / 73



Why Worry About Cycles Between Partitions?

Partition�interaction digraph:

Nodes represent selected partitions Si .

Directed edge Si → Sj exists if there is a gate-level edge u → v with
u ∈ Si and v ∈ Sj (exclusive parts).

Potential problem:

It is possible to select partitions that introduce a cycle in this
interaction graph:

Si1 → Si2 → · · · → Sik → Si1 .

Such a cycle violates the DAG structure at the partition level and
breaks the idea of a hierarchical decomposition.

Goal:

Enforce that the selected partitions themselves form a DAG.
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Canonical 2-Cycle Between Partitions

Partition A Partition B

1

3 4

2

Figure: Canonical invalid
2-cycle between two convex
partitions Si and Sj .

Setup:

Si and Sj are both individually valid convex
partitions.

There is a cross-edge Si → Sj : an edge u → v
with u ∈ Si \ Sj , v ∈ Sj \ Si .

There is also a cross-edge Sj → Si : an edge
u′ → v ′ with u′ ∈ Sj \ Si , v

′ ∈ Si \ Sj .

Consequence:

If we select both Si and Sj , the
partition�interaction graph contains a directed
2-cycle.

This violates the global acyclicity requirement.

Cycle cut:

xi + xj ≤ 1

At most one of Si or Sj can be chosen.

This is the simplest non-trivial example of our
general cycle cuts.
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Strategy 1: Cycle-Elimination Cuts

Idea: Detect cycles in the partition�interaction graph and forbid them with
linear inequalities.

For a directed cycle C : ∑
i∈C

xi ≤ |C | − 1.

At least one partition in the cycle must be switched o�.

Special cases:

2-cycle: Si ↔ Sj :
xi + xj ≤ 1.

3-cycle: Si → Sj → Sk → Si :

xi + xj + xk ≤ 2.

Works well when:

The number of short cycles is moderate.
Used in combination with other strategies.
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Strategy 2: Order Variables (Topological Labels)

Idea: Assign each partition a real-valued order ui that respects the
direction of edges.

Constraints:

For each edge (i , j) between partitions:

uj ≥ ui + 1 if xi = xj = 1.

If either xi or xj is 0, the constraint can be relaxed (via a big-M term
or an indicator constraint in the solver).

Why this prevents cycles:

Summing along a directed cycle would give:

ui1 ≥ ui1 + |C |,
which is impossible.
Therefore, no set of selected partitions can form a cycle.

Advantage: Single, compact ILP model; no need to detect cycles explicitly
during the solve.
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Strategy 3: Lazy Cycle Cuts (Cutting-Plane Approach)

Idea: Let the solver propose a candidate solution, then check it for cycles
and cut them o� if they exist.

Procedure:
1 Solve the ILP without acyclicity constraints.
2 Inspect the selected partitions (xi = 1) and build their interaction

graph.
3 If there is a cycle:

Extract the cycle C .
Add the cut: ∑

i∈C

xi ≤ |C | − 1.

Reoptimize and repeat.
4 If there is no cycle, we have a valid solution.

Modern MILP solvers:

Support this via lazy-constraint callbacks.

Often very e�cient in practice (few iterations).
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Cycle Elimination Algorithm: Summary

High-level algorithm:

1 Start with the base ILP formulation (no cycle constraints).
2 Repeatedly:

Solve the ILP.
Build the partition�dependency graph for the selected partitions.
Compute the strongly connected components (SCCs).
For each SCC of size > 1, extract a cycle and add a cut.

3 Stop when the selected partitions form an acyclic graph.

Complexity:

ILP solve dominates the runtime.

Graph operations (SCCs, cycle extraction) are linear in the number of
selected partitions and arcs.

Empirically, only a few re�nement rounds are needed.
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Full Pipeline Recap

1 Preprocessing
Contract single-qubit chains.

2 Qubit-Aware Convex Partition Enumeration
Use qubit-aware reachability and convexity.

3 ILP Construction
Partitions → binary variables.
Gates → coverage constraints.
Objective: minimize number of partitions.

4 Acyclicity Enforcement
Cycle cuts, order variables, or lazy constraints.

5 Postprocessing
Expand contracted chains.
Recover full partition mapping for the original circuit.

Result: Globally optimal, hardware-aware partitions for circuits with up to
∼ 105 gates, computed in practical time.
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Connectedness of Partitions and Convex Sets

Key Principle: All partition blocks are assumed to be connected subcircuits.
Why only connected convex sets?

Our convex-set enumeration algorithm was explicitly the connected version: every
enumerated block forms a single qubit-connected region.

Disconnected convex sets o�er no advantage:

They cannot be fused e�ciently in simulation.
They provide no bene�t for decomposition.
They in�ate the search space without adding useful partitions.

Partitioning rule (crucial):

Every candidate block is pre-split into its connected components, regardless of how
it was generated.

Ensures a fair comparison between methods and a consistent basis for the ILP.

Guarantees that all blocks correspond to meaningful quantum operations on a
contiguous set of qubits.

Consequence: The ILP only receives connected, convex, and simulation-relevant blocks,

aligning the optimization with real fusion e�ciency.
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Why We Need a Weighted Objective

Unweighted optimal partitioning:

Minimizes the number of blocks.

Ensures convexity and hardware feasibility.

But for simulation or fusion:

Di�erent blocks cost di�erent amounts of work.

A block acting on k qubits requires operations on a 2k -dimensional
subspace.

Larger blocks are exponentially more expensive.

Therefore

We need to attach a weight (cost) to each candidate partition:

weight(Pj) = estimated FLOPs to simulate block Pj .
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Weighted ILP Objective

Recall the unweighted objective: min
∑

j xj

Weighted version for gate fusion: min
∑m

j=1 wj xj where:

xj ∈ {0, 1} selects partition Pj ,
wj is the cost (FLOPs) required to simulate Pj .

Coverage constraints remain unchanged:∑
j :g∈Pj

xj = 1 for each gate g .

Interpretation

The ILP simultaneously:

chooses partitions,

avoids cycles,

respects the qubit bound,

and minimizes the true �oating-point simulation cost.
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FLOPs for Applying a Gate Block

Consider a fused block acting on a set of k qubits.

State-vector size:

vector has size 2n where n is the total number of qubits.

When applying a k-qubit operation:

we update 2n−k disjoint subvectors,

each of length:
2k .

Fusion cost intuition

Cost = 2n−k × (cost to multiply a 2k × 2k matrix)
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Cost of a 2k × 2k Complex Matrix Multiply

Each complex multiply: (a+ bi)(c + di) = (ac − bd)+ (ad + bc)i requires:

4 real multiplications+ 2 real additions = 6 FLOPs.

A matrix�vector multiply of size 2k has:

2k outputs, each requiring 2k complex multiplies.

So the total is:
2k × (2k)× 6 = 6 · 22k .

But SQUANDER uses a slightly richer estimate

including:

matrix�vector core cost,

accumulation cost,

an I/O penalty.
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The I/O Penalty

Motivation:

Loading and storing slices of the state vector is expensive.

Memory movement, especially across cache lines, dominates runtime.

Approximated as a constant:

io_penalty = 48 (empirical estimate)

It is added once per matrix�vector multiply block:

cost = FLOPsMV + io_penalty.

Why this matters

For small blocks (2�4 qubits), I/O dominates; for large blocks, arithmetic
dominates.
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Putting It All Together: Cost of One Block

For a fused block acting on qubits:

gate_qubits = k , control qubits = c ,

e�ective size:
gsize = 2k−c .

The FLOP estimate implemented is:

FLOPs(k, c) = 2 n−(c if pure else 0) × (gsize · (4+ 2) + 2(gsize − 1) + io_penalty)

The �rst factor counts how many slices of the state vector must be
updated.

The second factor is the per-slice computation (matrix�vector multiply
+ I/O).
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Computing the Weight of a Partition

For a candidate partition Pj (a fused block):

weight(Pj) = FLOPs needed to apply Pj .

Steps:
1 Collect the qubits involved in Pj :

Q(Pj) =
⋃
g∈Pj

Q(g).

2 Determine number of:
gate qubits,
control qubits,
(optionally) whether the block is �pure�.

3 Apply the FLOP model per block.

Key idea

The ILP is now minimizing the true simulation cost, not simply the number
of blocks.
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Final Weighted ILP Model for Gate Fusion

Decision variables:

xj ∈ {0, 1} select block Pj .

Objective:

min
m∑
j=1

wjxj .

Coverage constraints: ∑
j :g∈Pj

xj = 1 ∀g ∈ G.

Acyclicity:

Same cycle-elimination conditions as before.
Enforces a DAG structure among fused blocks.

This is a principled model of gate fusion

Optimal partitions are now optimal in terms of actual �oating-point
simulation cost.
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How to Evaluate the Approach

Implementation:

Python implementation using a standard ILP modeling library.

Solved with a modern commercial ILP solver under academic license.

Benchmarks:

Standard quantum circuit suites used in prior work:

QFT, Ising / Heisenberg models, arithmetic circuits, etc.

Circuits ranging from a few hundred to ∼ 70,000 gates.

Baselines (for comparison):

Kahn-style greedy topological partitioning.

TDAG and GTQCP implementations.

Qiskit's multi-qubit block collection.

BQSKit (Quick variant).
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Illustrative Example: Small Circuits

Setup: maximum qubit budget k = 3 (small, tightly constrained blocks).

Circuit Gates Kahn GTQCP ILP (ours)
qft_10 200 24 23 21
ising_model_13 633 38 30 28
heisenberg-16-20 1028 109 85 84

All methods respect the same qubit bound.

Heuristics get reasonably close, but:

ILP gives the provably optimal number of blocks.

Even on these modest examples, the gap is visible.
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Illustrative Example: Large Circuits

Example: large benchmark with ∼ 50,000 gates.

Circuit Gates Kahn GTQCP ILP (ours)
urf5_280 (k = 3) 49,829 4953 4507 4427
urf5_280 (k = 4) 49,829 3986 3290 3209

For large, realistic circuits, the ILP still improves on the best heuristics.

Di�erences of a few percent may represent:

Thousands of fewer blocks,
Shorter depth or fewer communication boundaries.
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Runtime: Is Exact Optimality Practical?

We are solving a global optimization problem, so:

ILP is inevitably more expensive than a single greedy pass.

Empirically:

Small circuits (hundreds of gates): solved almost instantly.
Medium circuits (thousands of gates): typically seconds.
Large circuits (up to ∼ 50 000 gates): minutes.

Modern ILP solvers exploit:

Strong presolve,
Good cutting planes for set-cover�like formulations,
Parallel branch-and-bound.

Take-away

Exact optimality is not free, but it is feasible at scales that are already
interesting to simulators and compilers.
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How to Use This in Practice

ILP-based partitioning is integrated into an open-source library for
Sequential QUANtum gate DecomposER (SQUANDER).

In practice:
For small and medium circuits, you can run the ILP directly.
For very large workloads, ILP can serve as:

A benchmark tool to evaluate heuristics.
A way to calibrate and improve heuristic cost models.

Access to an industrial-strength solver (e.g., academic Gurobi license)
is helpful for the largest instances.

Takeaway: the ground truth is now obtainable.
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From Fusion to Decomposition

So far:

We used ILP and weights (FLOPs + I/O) to �nd optimal fusion
blocks for simulation.

Now we change perspective:
Instead of minimizing �oating-point cost, we want to:

Decompose a target unitary into CNOT + single-qubit gates,
on all-to-all or constrained (graph) topologies.

The natural �weight� is now:

w(Pj) = CNOT count in block Pj

instead of FLOPs.

Philosophy

Same ILP machinery, di�erent cost model:

Fusion: weights = simulation cost.

Decomposition: weights = CNOT counts (or depth).
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Why Pre-Decomposition Is Necessary

Key Idea: Partitioning operates on CNOTs + 1-qubit gates. To reason
about communication, entanglement, and partition boundaries, we must
express every multi-qubit gate in this basis.

Reasons this is essential:

Partition weights depend on CNOT counts.

The ILP's objective uses the minimal number of CNOTs needed to
implement a block.
Therefore, every gate must �rst be expanded into its known optimal
CNOT form.

Partition boundaries must be between elementary operations.

Multi-qubit gates spanning di�erent partitions are ambiguous.
Once expanded to CNOTs, the bipartite structure becomes explicit.
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Why Pre-Decomposition Is Necessary (cntd.)

All well-known 2- and 3-qubit gates have optimal
decompositions.

Library gates (e.g., CY , CU, CCX ) have known best CNOT counts.
Using these avoids underestimating or overestimating partition cost.

Preprocessing drastically reduces ILP complexity.

Without decomposition, the ILP must explore all equivalent
realizations�exponential blowup.
With decomposition, only one canonical form enters the search.

Note: For full completeness, multiple possible decompositions may be
tried, but this is a secondary re�nement step.
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Pre-Partitioning: Basic Decomposition of Standard Gates

U(θ, ϕ, λ) =

[
cos

(
θ
2

)
−e iϕ sin

(
θ
2

)
e iλ sin

(
θ
2

)
e i(λ+ϕ) cos

(
θ
2

)] q : U (θ, ϕ, λ)

=

[
e−

iϕ
2 0

0 e
iϕ
2

]
·
[
cos

(
θ
2

)
− sin

(
θ
2

)
sin

(
θ
2

)
cos

(
θ
2

) ]
·

[
e−

iλ
2 0

0 e
iλ
2

]
·

[
e i(

λ
2
+ϕ

2 ) 0

0 e i(
λ
2
+ϕ

2 )

]

q : RZ (ϕ) RY (θ) RZ (λ) GP (ϕ+λ
2 )
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Pre-Partitioning: Decomposition of 2-qubit Standard Gates

CY =


1 0 0 0
0 0 0 −i
0 0 1 0
0 i 0 0

 q0 : •
q1 : Y

q0 : •
q1 : H S S† H

CU(θ, ϕ, λ, γ) =


1 0 0 0

0 e iγ cos
(

θ
2

)
0 −e i(γ+ϕ) sin

(
θ
2

)
0 0 1 0

0 e i(γ+λ) sin
(

θ
2

)
0 e i(γ+λ+ϕ) cos

(
θ
2

)


q0 : •
q1 : U (θ, ϕ, λ, γ)

q0 : • • P (γ + λ/2 + ϕ/2)

q1 : RZ (−λ/2 + ϕ/2) RZ (−λ/2 − ϕ/2) RY (−θ/2) RY (θ/2) RZ (λ)

Morse, G. (ELTE & Wigner) QC Partitioning LMSP'25 51 / 73



Pre-Partitioning: Decomposition of 3-qubit Standard Gates

CCX =



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0



q0 : •
q1 : •
q2 :

q0 : • • • T •
q1 : • • T T†

q2 : H T† T T† T H
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Linear Reversible Circuits and GL(n, 2)

CNOT-only circuits on n qubits:

Any sequence of CNOTs (over all qubits) implements a linear
reversible map:

x 7→ Ax (mod 2), A ∈ GL(n, 2).
Each CNOT corresponds to an elementary row operation over F2.
The group of all such maps is the general linear group GL(n, 2).

OEIS A002884:

|GL(n, 2)| = 1, 1, 6, 168, 20160, 9999360, . . .

Number of nonsingular n × n matrices over F2.

Also: number of distinct linear Boolean / CNOT-only operations on n
bits/qubits.

Interpretation

This sequence is the search space size for CNOT-only decompositions on n
qubits.
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OEIS A002884: Size of GL(n, 2) and CNOT-Only Circuits

De�nition (OEIS A002884):

Number of reversible linear
quantum operations on n qubits
using only CNOT gates.

Closed form:

|GL(n, 2)| =
n−1∏
k=0

(
2n − 2k

)
Asymptotics: |GL(n, 2)| ≈
2n

2
(up to lower-order factors).

Interpretation for CNOT synthesis

Each element of GL(n, 2) corresponds
to a distinct CNOT-only linear
reversible circuit on n qubits.

First values (OEIS A002884):

n |GL(n, 2)| log10
1 1 0.0
2 6 0.78
3 168 2.23
4 20160 4.30
5 9 999 360 6.00
6 20 158 709 760 10.30
7 1.64× 1014 14.2
8 5.35× 1018 18.7

Key message

The search space for CNOT-only
decompositions grows super fast
with n: exhaustive search is
hopeless beyond very small n.
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OEIS A002884 and Depth-Ordered CNOT Enumeration

Radcli�e's interpretation (OEIS
comment):

A002884 also counts
�The number of Boolean operations

on n bits, or quantum operations on

n qubits, that can be constructed

using only CNOT gates.�

Why this matters for us:

GL(n, 2) is the full CNOT-only space.

Our BFS enumeration over CNOTs:

explores GL(n, 2) in increasing depth,
assigns a minimal CNOT count to
each linear map.

These minimal depths become:
weights w(A) = CNOT count, used in
our weighted ILP for decomposition.

Conceptual picture:

Depth 0: identity only.

Depth 1: all single-CNOT
maps.

Depth 2: all maps
reachable by at most 2
CNOTs, etc.

Philosophy

OEIS A002884 tells us how huge
GL(n, 2) is. BFS-by-depth gives
us:

structure (minimal depth),

a principled cost metric for
CNOT-based blocks.
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BFS Enumeration of CNOT Networks by Depth

Idea: Enumerate elements of GL(n, 2) in order of CNOT depth.

Represent each linear reversible map by an n × n binary matrix A.

Start from the identity I at depth 0.

At each BFS level:

Apply all allowed CNOTs (according to the topology) to each matrix.
Record each new matrix in a visited set.
The BFS level gives the minimal CNOT count for that map.

Weight for decomposition

For a block implementing a linear map A:

w(A) = minimal CNOT count from BFS depth.

These CNOT counts replace FLOP-based weights in the ILP objective.
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BFS Level Expansion (Topology-Aware)

Algorithm 1: BFS_Expand_Level(frontier, visited, topology)
Input : frontier: set of matrices A ∈ GL(n, 2) at current depth

visited: set of matrices already discovered
topology: set of allowed CNOT edges (i , j)

Output: next_frontier: matrices at the next CNOT depth
next_frontier← ∅;
foreach A ∈ frontier do

foreach (i , j) ∈ topology do

foreach (c, t) ∈ {(i , j), (j , i)} do
B ← apply_CNOT(A, control = c, target = t);
if B /∈ visited then

visited← visited ∪ {B};
record parent / sequence information for B;
next_frontier← next_frontier ∪ {B};

return next_frontier;

Key properties:

BFS guarantees minimal CNOT depth for each reachable linear map.

topology encodes which CNOTs are allowed (line, grid, all-to-all, arbitrary graph).

Applicable to any reversible linear map over GL(n, 2).
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Symmetry Reduction for Topology-Aware Enumeration

Context: For the non-GL(n, 2) variant, we enumerate sequences of CNOT
edges rather than binary matrices. To avoid redundant sequences, we
enforce:

1. Limit on repeated CNOTs

For any edge p ∈ topology, we allow at most three consecutive
occurrences of p in a sequence.

If the last three steps in a pre�x are all equal to p, we do not extend
the pre�x by p again.

This cuts away long, uninteresting chains of identical CNOTs and
reduces the search space.

2. Canonical topological order (pre�x test)
We de�ne a partial order between CNOTs by qubit usage: gate k depends
on gate p if they share a qubit and p appears earlier.
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Symmetry Reduction Canonical Pre�x Checking

Algorithm 2: IsCanonicalPre�x(e0, . . . , em−1)

Input : sequence of CNOT edges ek = {ik , jk}
Output: true if pre�x is canonical, false otherwise
Build a dependency DAG over positions 0, . . . ,m − 1:

for each gate k and each qubit q ∈ ek , add an edge p → k from the last gate p
that used q.

Compute in-degrees and initialize a priority queue Q with all nodes of in-degree 0,
ordered by a �xed lexicographic order on edges ek .

for pos = 0 to m − 1 do
If Q is empty: return false (malformed DAG).
Extract from Q the gate index u with lexicographically minimal edge eu.
if u ̸= pos then

return false ; // sequence deviates from canonical topological

order

For each successor v of u: decrement in-degree; when it reaches 0, insert v into
Q.

Return true.

Usage: A candidate sequence is only kept if every pre�x is canonical; otherwise, it is
rejected as a symmetric duplicate.
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From CNOT Sequences to a U3+CNOT Fabric

Input: A sequence of unordered CNOT pairs

pairs =
[
(i0, j0), (i1, j1), . . . , (iL−1, jL−1)

]
over n qubits.

Construction of the fabric:

For each pair (ik , jk) in order:

apply a parameterized U3 gate on qubit ik ,
apply a parameterized U3 gate on qubit jk ,
apply a CNOT with control ik and target jk .

Optionally, add a �nalizing layer of single-qubit U3 gates on all n
qubits at the end.

This yields a parametric U3+ CNOT ansatz block associated to each
topology-aware CNOT sequence discovered by BFS.
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Example U3+CNOT Fabric

Without �nalizing layer With �nalizing U3 layer
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Weighted ILP for CNOT-Based Decomposition

For a �xed topology and target unitary:

We build candidate blocks Pj that combine CNOT layers and
single-qubit gates.
Each block Pj is assigned a CNOT-based weight wj from BFS depth.

ILP objective (decomposition version):

min
m∑
j=1

wjxj

Subject to:

Each gate is covered exactly once (as before).
Partition interaction graph is acyclic (as before).
Qubit budget / topology constraints are respected.

Interpretation

We now get globally optimal partitions with respect to CNOT cost instead
of simulation cost.
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Motivation: Measuring Entanglement of a Block

For decomposition we also care about:

How entangling a block is across each bipartition.

For gradient-based optimization, we need a smooth cost function that
re�ects entanglement structure.

Tool: Operator Schmidt Rank (OSR)

Given U acting on n qubits and a cut A|B :

U =
∑
k

λk Ak ⊗ Bk ,

where λk are singular values of a reshaped matrix.

The number of signi�cant λk quanti�es entanglement of U across the
cut A|B .
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Constructing the OSR Matrix M for a Cut

Let U be a 2n × 2n unitary in row-major order, and let A ⊂ {0, . . . , n − 1}
be the qubits on one side of the cut.

Dimensions:
dA = 2|A|, dB = 2n−|A|,

and we build:
M ∈ C(d2A)×(d

2
B).

Index mapping:

M(a′dA+a), (b′dB+b) = U(a′,b′),(a,b),

where:

(a, b) encodes input basis indices on A and B ,
(a′, b′) encodes output basis indices on A and B.

OSR singular values:

M = UosrΣV †osr, Σ = diag(S0, S1, . . . ).

After normalization, the Si capture the operator Schmidt spectrum.
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Constructing the OSR Matrix: Algorithmic View

Algorithm 3: Build M for a bipartition A|B
Input : Unitarty U ∈ C2n×2n , cut A ⊂ {0, . . . , n − 1}
Output: OSR matrix M ∈ C(d2A)×(d

2
B)

Compute complementary set B and dimensions dA = 2|A|, dB = 2|B|;
Initialize M as a (d2A)× (d2B) complex matrix;
foreach basis pair (a, b) on A and B do

foreach basis pair (a′, b′) on A and B do
Set row index r = a′dA + a;
Set column index c = b′dB + b;
Set Mr ,c = U(a′,b′),(a,b);
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OSR Across All Cuts

For an n-qubit block, we consider all nontrivial bipartitions:

A|B, A ⊂ {0, . . . , n − 1}, 1 ≤ |A| ≤
⌊n
2

⌋
,

modulo complement symmetry.

For each cut c:

1 Build Mc via the OSR reshaping.

2 Compute singular values S (c) of Mc (SVD).

3 Normalize: S
(c)
i ← S

(c)
i /∥U∥F .

The OSR spectrum {S (c)} provides a rich view of the entanglement
structure of the block across all bipartitions.
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Philosophy of the OSR Cost

Desired properties:

Di�erentiable: usable in gradient-based optimization.

Sensitive to entangling tails: small but nonzero singular values.

Scale-aware: focus on �dyadic� ranks 1, 2, 4, . . . (powers of two).

Heuristic design choices:

Work with the normalized singular values S = (S0, S1, . . . ).

Emphasize entries at indices 1, 2, 4, . . . (dyadic positions).

Use a decaying weight ρk to discount higher-order dyadics.

Subtract a small tolerance multiple of S0 to be robust to numerical
noise.

Goal

Penalize �residual� entanglement beyond the leading Schmidt components
across all cuts.
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Per-Cut Tail Loss

For a single cut with singular values S = (S0, S1, . . . ):

tail_loss(S) =
K−1∑
k=0

ρK−1−k
(
S2k − S0 · tol

)2
where:

K = ⌈log2 |S |⌉ is the maximum dyadic scale,

ρ ∈ (0, 1) is a decay factor (e.g. ρ = 0.1),

tol is a small tolerance to ignore numerical noise.

Interpretation:

Large values at dyadic positions 2k indicate higher e�ective OSR rank.

The cost encourages singular spectra that decay quickly (low
entangling power).
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Aggregating Over Cuts: Softmax

For all cuts c = 1, . . . ,C , with per-cut tail losses Lc :

Softmax aggregation:

LOSR = τ log
C∑

c=1

exp

(
Lc −m

τ

)
+m,

where:

m = maxc Lc ,

τ > 0 is a �temperature� parameter (e.g. 10−2).

Properties:

As τ → 0, LOSR ≈ maxc Lc (worst-cut behavior).

For larger τ , we get a smoother, more averaged penalty.

This LOSR becomes our entanglement cost for the block.
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Gradient w.r.t. Singular Values

For a single cut:

Lc(S) =
K−1∑
k=0

ρK−1−k
(
S2k − S0 · tol

)2
.

The derivative at dyadic positions (schematically):

∂Lc
∂S2k

= 2 ρK−1−k
(
S2k − S0 · tol

)
.

Non-dyadic indices receive zero gradient from this cost.

For the softmax aggregation:

∂LOSR
∂Lc

= wc =
exp((Lc −m)/τ)∑
c ′ exp((Lc ′ −m)/τ)

,

so:
∂LOSR
∂S (c)

= wc ·
∂Lc
∂S (c)

.
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Backpropagating Through SVD (Conceptual)

For each cut c :
Mc = Uc Σc V

†
c ,

with singular values S (c) on the diagonal of Σc .

Given ∂L
∂S(c) :

We can build the gradient w.r.t. Mc using standard SVD derivative
formulas.
Then we map the gradient on Mc back to U via the OSR reshaping
(inverse of the construction of Mc).

End result

We obtain ∂LOSR
∂U as a full 2n × 2n matrix, which can be paired with:

∂U

∂θi

for each circuit parameter θi to obtain parameter gradients.
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Gradient Accumulation for OSR: High-Level Algorithm

Algorithm 4: Compute
∂LOSR
∂U

Input : U: an 2n × 2n unitary matrix
C: list of bipartition cuts

Output:
∂L

∂U
: gradient of OSR loss w.r.t. U

1. Construct OSR matrices. foreach cut c ∈ C do
Form matrix Mc by reshaping U according to cut c;

Compute SVD: Mc = UcΣcV
†
c ;

Let S(c) be the diagonal singular-value vector of Σc ;

2. Compute gradients w.r.t. singular values. Apply the chosen OSR loss (e.g. softmax tail) to each S(c) to obtain
∂L

∂S(c)
;

3. Backpropagate through each SVD. foreach cut c ∈ C do

Use SVD derivative identities to compute
∂L

∂Mc
from

∂L

∂S(c)
;

Map
∂L

∂Mc
back to

∂L

∂U
via the inverse reshape of cut c;

4. Aggregate contributions. Sum the per-cut gradients over all cuts:

∂L

∂U
=

∑
c∈C

reshape
−1

c

(
∂L

∂Mc

)
.
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Putting It All Together

1 Partition the circuit with ILP:

Fusion: weights = FLOPs + I/O.
Decomposition: weights = CNOT counts (from GL(n, 2) BFS).

2 Within each block, optimize a parameterized circuit:

Use OSR-based entanglement cost across all cuts.
Use SVD + gradient backprop to get ∇θLOSR.

3 End result:
A decomposition that is:

Topology-aware,
CNOT-e�cient,
And controlled by a mathematically well-founded entanglement cost.

Next: examples and hands on for partitioning, fusion, simulation, GL(n, 2),
OSR, decomposition.
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