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Introduction 

• Processes with identified final state hadrons play important  roles in QCD. They 
provide crucial information on the splitting function and fragmentation function.

• Hadron production serves as a powerful probe of nucleon or nuclear structure.

• Hadron production data tests our key concepts in QCD at high energies such as 
factorization, universality of splitting functions, and perturbative calculations.

• Because electrons do not manifest any internal structure, they can be used as a 
precise probe of the more complicated nucleons and nuclei.
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Drell-Yan Production at LHC

Parton Distribution Function
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Role of DIS 
Inclusive DIS (Deep Inelastic Scattering),

lepton + hadron lepton + X 

One sums up all the particles in the final state, except the scattered lepton

Depends on Parton Distribution Function (PDF) of Incoming hadron.
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Hadronization

Fragmentation Function:
Probability of a Parton converting to Hadron
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Fragmentation Function
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EIC Goals

• Precision 3D imaging of hadrons.

• Solving the proton spin puzzle.

• Gluon saturation and Color glass 
condensate.

• Quark and gluon confinement.

• Mass problem of nucleons.
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 SIDIS ?
 SIDIS (Semi-Inclusive Deep Inelastic Scattering),

lepton + hadron lepton + hadron + X 

In SIDIS, in addition to the scattered lepton, we tag on one of the outgoing hadron

Depends on Parton Distribution Function (PDF) of Incoming hadron 
and Fragmentation Function (FF) of Outgoing hadron.
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NLO: Altarelli et al 1979

SV NNLO
Vogelsang et al 2022
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• At Partonic level cross-section,


               


   where  =  = 0 and . Our kinematic variables are 


                and  


q/g/γ(Pa) + γ * (q) → q/g/γ(Pb) + 𝒳

P2
a P2

b q2 = − Q2

x =
Q2

2P . q
⇒ x′￼ =

Q2

2Pa . q
z =

P . PH

P . q
⇒ z′￼ =

Pa . Pb

Pa . q

• Semi-Inclusive Deep Inelastic process,  


  l(kl) + H(P) → l(k′￼l ) + H′￼(PH) + X

Theoretical Framework

Pa

Pb

PH

X
H

H′￼

H

H′￼
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Theoretical Framework
• The Differential Hadronic cross-section for

l(kl) + H(P) → l(k′￼l ) + H′￼(PH) + X process is,

d3(Δ)σ
dxdydz

=
2πyα2

e

Q4
(Δ)Lμν(kl, k′￼l, q)(Δ)Wμν(P, PH, q)

where Laptonic tensor is,  
Lμν = 2kμ

l k′￼ν
l + 2k′￼μ

l kν
l − Q2gμν and  ΔLμν = 2iϵμνσλqσsl,λ

• Hadron compositeness makes hadronic tensor,  evaluation non-trivial. Wμν
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• The (polarized) unpolarized ( )  can be parametrize as,

                    

                               

Δ Wμν

Wμν = ∑
J=1,2

WJ(x, z, Q2)TJ,μν(P, q) ΔWμν = ∑
J=1,2

gJ(x, z, Q2)SJ,μν(P, q)

Theoretical Framework
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• The tensors  for the Unpolarized case,

                      


                      




        


TJ,μν

T1,μν = − gμν +
qμqν

q2

T2,μν =
1

M2 (Pμ −
P . q
q2

qμ)(Pν −
P . q
q2

qν)

• The tensors  for the Polarized case,                    

                      


         


   with  and .


SJ,μν

S1,μν =
i

P . q
ϵμνσλ qσSλ

S2,μν =
i

P . q
ϵμνσλ qσ(Sλ −

S . q
P . q

Pλ)
S2 = 1 S ⋅ P = 0



• Substituting  and  in the eqn. for   and expressing the phase space of 
the leptonic tensor in terms of  and ,

      

      
       are related to  through  and , 
      and  is the energy of the incoming lepton and y is inelasticity.

• Similarly, the spin-dependent cross-section is found to be

   

• Note that  does not contribute since we restrict ourselves to longitudinally polarized 
hadron in the initial state.

TJ,μν SJ,μν (Δ)Wμν
x y

d3σ
dxdydz

=
4πα2

e

Q2 [y F1(x, z, Q2) +
(1 − y)

y
F2(x, z, Q2)]

FJ WJ W1 = F1/M W2 = F2/(Ey)
E

d3Δσ
dxdydz

=
4πα2

e

Q2
(2 − y) g1(x, z, Q2)

g2

Theoretical Framework
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Here  denotes the spin averaged PDF and .fa/P Δfa/P = fa(↑)/P(↑) − fa(↓)/P(↑)

• Defining  we find,(g1(x, z, Q2))FJ(x, z, Q2) = (Δ)𝒮(x, z, Q2)

(Δ)𝒮J(x, z, Q2) = ∑
a,b=q,q,g

∫
1

x

dx1

x1
(Δ)fa/P (x1, μ2

F)∫
1

z

dz1

z1
DH/b (z1, μ2

F)(Δ)𝒞J,ab ( x
x1

,
z
z1

, Q2, μ2
F)

Theoretical Framework
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• SFs are not calculable due to the non-perturbative nature of the incoming and outgoing 
hadrons.

• Our goal is to calculate coefficient function   at NNLO.(Δ)𝒞J,ab



• The partonic level coefficient function can be computed as 


         


   where  is the projectors to project out the CFs and 


    is  amplitude for the .


   where the  partonic projectors in d space-time dimensions 


         ,  


       

d3(Δ) ̂σi,ab

dxdydz
=

(Δ)𝒫μν
i

4π ∫ dPS𝒳+b Σ | (Δ)Mab |2
μν × δ( z

z1
−

pa ⋅ pb

pa ⋅ q )
(Δ)𝒫μν

i

(Δ)Mab = Ma(↑)b + ( − )Ma(↓)b γ* + a(pa, sa) → b(pb) + 𝒳

𝒫μν
1 =

1
(d − 2) (T1,μν + 2xT2,μν) 𝒫μν

2 =
2x

(d − 2)x1
(T1,μν + 2x(d − 1)T2,μν)

Δ𝒫μν
1 =

i
(d − 2)(d − 3)

ϵμνσλ
qσ pa,λ

pa ⋅ q

Theoretical Framework
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Relevant Processes 

q(q) + γ* → q(q)

Leading Order (LO) : 

Next Leading Order (NLO) : 

q(q) + γ* → q(q) + 1 loop

q(q) + γ* → q(q) + g

g + γ* → q + q
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Next-to-Next Leading Order (NNLO) : 

2 loop

1 loop

q(q) + γ* → q(q) +

q(q) + γ* → q(q) + g +

g + γ* → q + q + 1 loop

Relevant Processes 
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Relevant Processes 
Next-to-Next Leading Order (NNLO) : 

q(q) + γ* → q(q) + g + g

q(q) + γ* → q(q) + q + q A-type
q(q) + γ* → q(q) + q′￼ + q′￼

q(q) + γ* → q(q) + q + q
B-type
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Relevant Processes 
Next-to-Next Leading Order (NNLO) : 

q(q) + γ* → q(q) + q + q

q(q) + γ* → q(q) + q′￼ + q′￼

q(q) + γ* → q(q) + q + q

C-type

D-type

g + γ* → q + q + g
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Calculation of Diagrams

Generate Feynman diagrams in symbolic form
QGRAF

Feynman Rules,SU(N) color algebra, Lorentz and Spin algebra
                               FORM + Mathematica

      Classify loop integrals into families 
              FORM + Mathematica

      Reduce to minimal set of integrals  
                      LiteRed

Master Integrals obtained
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• In Spin-dependent partonic amplitude squared  contain  contain 

   Dirac matrix  or Levi-Civita tensors from spin dependent quarks (anti-quarks)

   wave functions or the polarization of gluons or photons.


• Since the  matrix and the Levi-Civita tensor are intrinsically four-dimensional 
objects, we need to choose a prescription to define them in  dimensions.


• In our work, we use Larin's scheme which is very straightforward to implement in 
FORM. To define  in  dimensions,


                                               


• In this scheme, we add finite counter terms to restore chiral ward identity.

|ΔMab |2

γ5

γ5
d = 4 + ε

γ5 d = 4 + ε

paγ5 = −
i
6

ϵμνσλpμ
a γνγσγλ

Calculation of Diagrams
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• 3-Particle Phase-space is


      


• Phase-space integrals via Reverse Unitarity: delta functions → propagators


• IBP identities are based on the property that integral of a total derivative evaluates 
to a surface term which can be shown to vanish

                              


      and  are the loop momentum and external momentas respectively.

• The resulting expression contain Feynman loop integrals which are reduced to a 
minimal set of integrals called master integrals through IBP Identities.

∫z′￼

[dPS]3 =
2

∏
i=1 (∫

ddki

(2π)d−1
δ(k2

i ))∫ ddpb(2π)δ(p2
b) × δd(pb + k1 + k2 − pa − q)δ (z′￼−

pa . pb

pa . q )

0 = ∫ ddk
∂

∂kμ
i

[kμ, qμ
i ]

Dk1
1 Dk2

2 . . . Dkn
n

kμ qμ
i

Calculation of Diagrams

δ(p2 − m2) → i
p2 − m2 − iϵ

− c . c .
leave
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• Linear differential equation system w.r.t both the kinematic variable in the form

                                  


                                 


   where   and  are 20 X 20 lower triangular matrix.


• Completeness of Master Integrals basis  “Integrability Condition”


                        

∂ ⃗J
∂x′￼

= Mx′￼
(x′￼, z′￼, ε) ⃗J ,

∂ ⃗J
∂z′￼

= Mz′￼
(x′￼, z′￼, ε) ⃗J

Mx′￼
Mz′￼

→

∂Mx′￼
(x′￼, z′￼, ε)
∂z′￼

−
∂Mz′￼

(x′￼, z′￼, ε)
∂x′￼

+ [Mx′￼
, Mz′￼

] = 0

Calculation of Master Integrals
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• The differential equations can  be expressed in the -factorized form or 
canonical form.


• A new MI basis is obtained via transformations defined by a matrix  which 

changes the MI basis from  to   i,e  = .  Finally we obtain

                                       


                                      


 into -form. where  and  .

ε

T
⃗J ⃗J̃ ⃗J T ⃗J̃

d ⃗J̃
dx′￼

= εM̃x′￼
(x′￼, z′￼) ⃗J̃

d ⃗J̃
dz′￼

= εM̃z′￼
(x′￼, z′￼) ⃗J̃

ε M̃x′￼
= T−1(Mx′￼

T−
dT
dx′￼

) M̃z′￼
= T−1(Mz′￼

T−
dT
dz′￼

)

Calculation of Master Integrals
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• Path-ordered exponential

                                                  


                               


•  we did line integration on this path


                                                                    

d ⃗J̃ = ε( ̂Axdx + ̂Azdz) ⃗J̃ .

⃗J̃ (x, z, ε) = P exp{ε∫
x,z

x0,z0

( ̂Axdx + ̂Azdz)} ⃗J̃0(x0, z0, ε)

x

z

(x0, z0) (x, z0)

(x, z)

Calculation of Master Integrals
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• We have calculated explicitly boundary conditions and expanded above order by 
order in  and solved all the MIs iteratively.

• We get  , since we are taking our 
starting point of path ordered integration is .


• since ’s are unknown, we first solve for .


• To compute  , we calculated all the MIs in   limit in some frame.

• After getting all the constants, we solved the full result 

ε

Ji(x′￼, z′￼) = Fi(x′￼, z′￼, x0 = 0,z0 = 0) = Fi(x′￼, z′￼, {Ji(0,0)})
(x0 = 0,z0 = 0)

Ji(0,0) Ji(1,1) = Fi(1,1,{Ji(0,0)} = Bi)

Ji(1,1) (x′￼ → 1,z′￼ → 1)

Ji(x′￼, z′￼) = Fi(x′￼, z′￼, {Bi})

Calculation of Master Integrals
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Calculation of Master Integrals

28

•  We got some Alphabets as arguments of iterative generalised PolyLog

x′￼, (1 − x′￼), (1 + x′￼), z′￼, (1 − z′￼),

ri =
and

(x′￼)1/2, (z′￼)1/2, (z′￼− x′￼), (z′￼+ x′￼), (1 + x′￼z′￼),

((1 − z′￼)2 + 4x′￼z′￼)1/2, ((1 + x′￼)2 − 4x′￼z′￼)1/2,

(1 − z′￼)2 + 4x′￼z′￼, (1 + x′￼)2 − 4x′￼z′￼

• we defined our set of GPL's using these alphabets as

G(r1, r2, r3, λ) = ∫
λ

0

dλ1

r1(λ1) ∫
λ1

0

dλ2

r2(λ2) ∫
λ2

0

dλ3

r3(λ3)

• we expressed our results in terms of these iterated integrals.



UV divergences
• Amplitude beyond LO have UV divergences.To cure this divergence , we need to first 

renormalize strong coupling constant through 

                                   


                          


            

̂asSε( 1
μ2 )ε/2 = as(μ2

R)( 1
μ2

R )ε/2Zas
(μ2

R)

Zas
(μ2

R) = 1 + as(
2β0

ε ) + a2
s ( 4β2

0

ε2
+

β1

ε ) + O(a3
s )
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IR divergences
• KLN theorem: infrared (soft & collinear) singularities cancel when summed over 

initial and final states





               

(Δ)𝒞 = 1 + as(SoftV + CollinearV + FiniteV + SoftR + CollinearR + FiniteR) + O(a2
s )

SoftV + SoftR = 0; CollinearV + CollinearR ≠ 0;
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•  To remove remaining collinear singularity, we will use the Mass Factorisation 
prescription.

• By using Mass factorisation, we can factorize our remaining collinear singularity from 
Coefficient function    into space and time-like AP-
kernels.


• Divergences coming in  and  will be totally absorbed in bare Parton 
distribution functions   and Fragmentation function  respectively .


• After doing Mass factorization, we removed all the poles and got finite coefficient 
function.

(Δ)𝒞̂ = (Δ)Γ ⊗ 𝒞 ⊗ Γ̃

(Δ)Γ Γ̃
(Δ) ̂fa D̂b

IR divergences
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Numerical Results

Contribution form all partonic channels to the Structure Function  and  with respect to x.F1 g1

Channelwise-Comparison
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Contribution form all partonic channels to the Structure Function  and  with respect to z.F1 g1

Numerical Results
Channelwise-comparison
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Numerical Results
7-point scale variation

7-point scale variation of the Structure Function  with respect to z at different .F1 Q2
34



7-point scale variation

7-point scale variation of the Structure Function  with respect to z at different .g1 Q2

Numerical Results
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Taking Forward …
• Next-to-Next-to-Leading Order QCD Corrections to Semi-Inclusive Deep-Inelastic 

Scattering [Goyal, Moch, VP, Rana, Ravindran ‘24]


• Semi-Inclusive Deep-Inelastic Scattering at Next-to-Next-to-Leading Order in QCD 
[Bonino, Gehrmann, Stagnitto ‘24]


• Next-to-Next-to-Leading Order QCD Corrections to Polarized Semi-Inclusive Deep-
Inelastic Scattering [Bonino, Gehrmann , Löchner , Schönwald, Stagnitto ’24]


• Next-to-Next-to-Leading Order QCD Corrections to Polarized Semi-Inclusive Deep-
Inelastic Scattering [Goyal, Lee, Moch, VP, Rana, Ravindran ‘24]


• NNLO phase-space integrals for semi-inclusive deep-inelastic scattering [Ahmed, Goyal, 
Hasan, Lee, Moch, VP, Rana, Rapakoulias, Ravindran ‘25]


• NNLO QCD corrections to unpolarized and polarized SIDIS [Goyal, Lee, Moch, VP, Rana, 
Ravindran ‘25]


• Single-valued representation of unpolarized and polarized semi-inclusive deep inelastic 
scattering at next-to-next-to-leading order [Haug, Wunder ‘25]
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• NNLO QED and QCD  QED corrections to ,  and , thus providing a more 
precise theoretical description of SIDIS observables.

• The perturbative expansion of an observable  in SIDIS cross section in both the 
strong coupling and electromagnetic coupling is given by

         


    where,  and .

⊗ F1 F2 g1

𝕆

σ = σ(0,0) + as σ(1,0) + ae σ(0,1) + a2
s σ(2,0) + a2

e σ(0,2) + asae σ(1,1)

as = αs/(4π) = g2
s /(16π2) ae = α2

e /4π = e2/(16π2)

Next Correction ?
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Relevant Processes 
Next-to-Next Leading Order (NNLO) : 

2 loopq(q) + γ* → q(q) +

1 loopq(q) + γ* → q(q) + g/γ +

g/γ + γ* → q + q + 1 loop
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Next-to-Next Leading Order (NNLO) : 
q(q) + γ* → q(q) + g/γ + g/γ

A-typeq(q) + γ* → q(q) + q + q
q(q) + γ* → q(q) + q′￼ + q′￼

q(q) + γ* → q(q) + q + q B-type

Relevant Processes 
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Relevant Processes 
Next-to-Next Leading Order (NNLO) : 

q(q) + γ* → q(q) + q + q
q(q) + γ* → q(q) + q′￼ + q′￼

C-type

q(q) + γ* → q(q) + q + q D-type

g/γ + γ* → q + q + g/γ
40



Abelianization
• After adding all the channels , 

Soft singularity get cancelled 
out and to remove Collinear 
singularity we use mass-
factorization. With the help of 
coupling constant 
renormalisation of  and , we 
remove UV divergences.


• After getting Finite CFs of 
QCD,QED and mixed QCDQED, 
we checked the abelianization.


as ae
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Conclusions and Future Directions

• Our result shows what are the contributions all the channels are making. It shows 
q  q channel is dominating.

• Our result shows inclusion of NNLO corrections reduces the scale dependence 
when compared to the previous order.

• Improvement in CFs gives us better control over Parton distribution functions as 
well as Fragmentation functions.

→
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Conclusions and Future Directions

• Pure QED corrections may not be impactful but mixed QCDQED corrections are 
significant. Hence it necessary to add it.

• We could extract out Time-like splitting functions related to QED and mixed 
QCDQED which was unknown in literature. These Time-like splitting functions 
give us good constraint on less known fragmentation function.

• We could extract out Space-like Polarized splitting functions related to QED and 
mixed QCDQED which was unknown in literature. These Space-like splitting 
functions give us good constraint on Polarized PDFs.

• We are also currently investigating parallely the numerical impact of Neutral and 
Charged current intermediate processes. We expect improvement in result.


• We also plan to calculate  correction to SIDIS.QCD ⊗ EW
43



Thank You !
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Top pair Production at the LHC

Parton Distribution Function
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Higgs Production at the LHC

Parton Distribution Function
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PDF Extraction

Long List of 19 Pages 48



Calculation of Diagrams

• We start computation by generating the set of Feynman diagrams by using 
QGRAF to get expression in symbolic form.


• To apply the Feynman rules, perform SU(N) colour manipulation and d-
dimensional Lorentz and spin algebra, we pass the resulting expression 
through various procedures based on FORM and Mathematica.


• Using the Reduze package, we find appropriate loop momentum shifts for 
each Feynman diagram beyond tree level to classify them in one of the 
integral families.
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• SFs are not calculable due to the non-perturbative nature of the incoming and 
outgoing hadrons.

• In the QCD improved parton model, they are related to PDFs,  
and FFs,  through calculable coefficient functions (CFs),

 at factorization scale .

• Here,  =  is the fraction of the momentum carried away by incoming 
parton a from  hadron P, and  is the fraction of the final state parton 
b’s momentum carried away by the outgoing hadron H′.

(Δ)fa/P(x1, μ2
F)

DH/b(z1, μ2
F)

(Δ)𝒞J,ab(x/x1, z/z1, Q2, μ2
F) μ2

F

x1 Pa/P
z1 = PH /Pb

Theoretical Framework
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• Structure functions (SFs) are coefficients of hadronic tensors, being Lorentz 
invariant, depend on the scaling variables  and the invariant mass of the 
intermediate photon :  

                  =  and  for  = 1,2

• The (polarized) unpolarized ( )  can be parametrize as,

                                

                               

x, z
Q2

WJ WJ(x, z, Q2) gJ = gJ(x, z, Q2) J

Δ Wμν

Wμν = ∑
J=1,2

WJ(x, z, Q2)TJ,μν(P, q)

ΔWμν = ∑
J=1,2

gJ(x, z, Q2)SJ,μν(P, q)

Theoretical Framework
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• The tensors  for the Unpolarized case,

                      


                      


    and  for the Polarized case,                    


                      


                      


   with  and .


TJ,μν

T1,μν = − gμν +
qμqν

q2

T2,μν =
1

M2 (Pμ −
P . q
q2

qμ)(Pν −
P . q
q2

qν)
SJ,μν

S1,μν =
i

P . q
ϵμνσλ qσSλ

S2,μν =
i

P . q
ϵμνσλ qσ(Sλ −

S . q
P . q

Pλ)
S2 = 1 S ⋅ P = 0

Theoretical Framework
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• SFs are not calculable due to the non-perturbative nature of the incoming and 
outgoing hadrons.

• In the QCD improved parton model, they are related to PDFs,  
and FFs,  through calculable coefficient functions (CFs),

 at factorization scale .

• Here,  =  is the fraction of the momentum carried away by incoming 
parton a from  hadron P, and  is the fraction of the final state parton 
b’s momentum carried away by the outgoing hadron H′.

(Δ)fa/P(x1, μ2
F)

DH/b(z1, μ2
F)

(Δ)𝒞J,ab(x/x1, z/z1, Q2, μ2
F) μ2

F

x1 Pa/P
z1 = PH /Pb

Theoretical Framework
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Higgs cross-section @ LHC through gluon fusion

Why Higher Orders are important ?
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