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Research directions of the group

» (Characterization of errors in quantum computers, benchmarking performance
* Quantum machine learning problems (including classical training, but quantum sampling)
* Photonic quantum computing (including ML, and QML)

e Tensor network simulations

» Distillation schemes for quantum networks or distributed quantum computing
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Benchmarking quantum computers

®* What is a Quantum Computer Benchmark?

®* Quantum computer benchmarks are structured methods specifically designed to evaluate
quantum system performance.

® A benchmark defines a set of computational tasks for the quantum processor to execute and
prescribes how to analyse the resulting data to compute a benchmark score.

Types of benchmarks:

* Component-level benchmarks
Measure the quality of individual components: gate fidelities, T1/T2 times, measurement errors.

* Device-level benchmarks
Measure the entire processor’s ability to run circuits: volumetric benchmarks, layer fidelities.

* Algorithmic benchmarks
Compare the performance of entire families of protocols executing algorithms.




Quantum Benchmarks for different QC eras
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Benchmarking quantum computers (device level)

Near-term benchmarking approach: Instead of full-fledged algorithmic benchmarks, it is more
natural to consider benchmarks testing algorithmic primitives, i.e., protocols that appear as subtasks

within algorithms.

® Rather than complete algorithmic benchmarks, we focus on benchmarks evaluating
algorithmic primitives—smaller-scale protocols and subroutines crucial to quantum
algorithms.

® This approach offers clear insight into how close we are to achieving practical quantum
utility without requiring the execution of a full-scale quantum algorithm.

® It enables tracking and guiding the evolution of quantum computational platforms toward
achieving genuine utility.




Criteria for device-level (volumetric) benchmarks

Benchmarks should satisfy (ideally): Additional considerations:
e \Well-defined: clear set of rules, reproducible e Application oriented (relevant for the era)
¢ Platform independent, hardware-agnostic e Fit to the present devices (e.g., number of shots, software
e NO native gates, no fixed connectivity tools)
e preferably the unitary is given as a e Well known, often used by companies, academics
suitably defined global operation with e Randomness involved
no particular reference to compilation e Interesting science involved

e Scalable (wrt the circuit sizes relevant for the era)




Quantum Volume
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A. W. Cross, L. S. Bishop, S. Sheldon, P. D. Nation, J. Gambetta,
Validating quantum computers using randomized model circuits,

® Definition of Quantum Volume Phys. Rev. A 100, 032328 (2019).
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e Quantum Volume uses random square circuits with all-to-all

connectivity
® d sequential layers acting on d qubits

e a random permutation of these qubits
|
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e Haar-random SU(4) operations performed on neighboring pairs

log, Vo = argmax min(m, d(m)) ® m: number of qubits
m ® d(m): the number of qubits in the largest square circuits

that can reliably sample heavy outputs with p > 2/3

Advantages Disadvantages
e |t was well tailored for the NISQ era: fit to the e Not scalable for the late-NISQ (and the Fault Tolerant) era
present devices, software tools ® The value is not natural (an artificial exponential involved)

e Well known, often used by companies, academics e Partially platform biased
® Interesting theory/physics involved e Not application oriented




Our volumetric framework

®* Computational Task:

® Algorithmic primitives

® Quantum operations that remain classically simulable.

® Trade-off between scalability and quantum utility demonstration.

® Abstract definition for flexible compilation and optimization, ensuring platform independence.

® Measurement Procedure:

® Measure specifically chosen expectation values to verify correct quantum state preparation
IN noise-free conditions.
® Success criteria

®* Benchmark Score:

® Largest number of qubits on which the quantum processor consistently meets success criteria.




Clifford Volume Benchmark

Initialization and Circuit Preparation:

The following steps are carried out by the classical part of the quantum (|0) Al Py Py
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4. Construct and compile the circuit implementation of each n-
qubit Clifford, optimised for the benchmarked platform.




Clifford Volume Benchmark

Circuit Execution: S
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3. Measure the expectation value of the selected stabilizer and
non-stabilizer operators.
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Clifford Volume Benchmark

Performance Evaluation: We consider the nth step of the

benchmark successful if the following conditions are fulfilled
simultaneously:
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Clifford Volume Benchmark

Advantages:
e Platform-independence: The unitaries are selected from a group of global operations,
we avoid prescribing specific compilation implementations.
e Application-oriented: Clifford circuits form the backbone of many fault-tolerant
protocols, Shadow tomography, energy estimations,
e Scalability: Classically simulable operations, validates the benchmark results using

stabilizer fidelity witnesses, ensuring the benchmark remains scalable.

Disadvantage:

e Clifford operations alone cannot achieve quantum advantage, but ...




Free-fermion Volume Benchmark

Free fermionic systems are defined by their quadratic Hamiltonians of the form

2 . . . . .
H = 1 Z Aj pmimy, where A is a real antisymmetric matrix, and m; are the Majorana operators.
Jsk
The corresponding unitary operation is given by

2d

F(t) = exp (i Z [log(O(t))]ijmimj> where O(t) = el SO(2L)

1,7=1

Considering the time evolution governed by the free-fermion operator, we can verify the orthogonality relation for
the matrix O by measuring the expected values of the corresponding Majorana mode operators, given by

(m;) .ot = T (FpiFTmy) Zojk M), Zajk@k

This allows us to test the orthogonality relatlon by measuring the expected values of the Majorana operators:

> Ok (ma) gy i = D OniOkj = 65
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Free-fermion Volume Benchmark

Initialization and Circuit Preparation: — I
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Free-fermion Volume Benchmark

Circuit Execution:
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The following steps must be carried out on a quantum device. 8;
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2. Execute the circuit implementation.

3. Measure the expectation value of each chosen Majorana operators. "---mmmmmmmmmmmm e
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Free-fermion Volume Benchmark

Performance Evaluation: We consider the nth step of the
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Benchmark score: The largest n value for which the benchmark
protocol succeeds serves as a metric to characterize the quantum
computer.




Free-fermion Volume Benchmark
Advantages:

e Platform-independence: The unitaries are selected from a group of global operations, we
avoid prescribing specific compilation implementations.

e Application-oriented: energy estimations, fermion-to-qubit mapping changes, simulation of
free-fermion Hamiltonians, quantum chemistry, quantum many-body models

e Scalability: Classically simulable operations, validates the benchmark results using fidelity

witnesses, ensuring the benchmark remains scalable.
e Together with Clifford unitaries they form a universal gate-set, thus when applied jointly they
are hard to simulate classically. Example: Fermion Sampling, which can be validated by

measuring the 4-point correlators while sampling from the output state is classically hard.

M. Oszmaniec, N. Dangniam, M. E. S. Morales, Z. Zimboras, Fermion sampling: a robust quantum computational
advantage scheme using fermionic linear optics and magic input states, PRX Quantum, 2022.



https://scholar.google.hu/scholar?oi=bibs&cluster=6288118505801046679&btnI=1&hl=en
https://scholar.google.hu/scholar?oi=bibs&cluster=6288118505801046679&btnI=1&hl=en

From the European Quantum Flagship’s KPI Booklet
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Key Performance Indicators for Quantum Computing

1. Circuit size: The largest random N-qubit Clifford operation that can be
reliably executed
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2. Multipartite Entanglement: The largest GHZ state successfully fgchj;lgg .
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3. Cryptanalysis: Largest reliable instance of Shor's algorithm.
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4. Error correction: the ratio of the best achievable Bell state fidelity on
physical qubits to the best achievable Bell state fidelity on logical
gubits on the same hardware
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https://ec.europa.eu/eusurvey/runner/Quantum Flagship KPI Survey 2024
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