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Photonic quantum computing

3 / 32



Photonic quantum computing
A photonic quantum computer stores information in independent optical modes called
qumodes.
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Why use photons?

✓ Pros:

▶ Stable coherence: photons interact weakly with the environment

▶ Fast: optical signals propagate at the speed of light

▶ Optical elements operate on room temperature

▶ Compatible with existing technologies

✗ Cons:

▶ Photon losses

▶ Nonlinearities are difficult to realize

▶ Single-photon sources are also difficult

▶ Timing (need to ensure indistinguishability)
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Qubit-based vs. photonic quantum computing

Qubit-based Photonic

Information unit Qubit Qumode

Hilbert space
dimension Finite Infinite

Basis states |0⟩, |1⟩ |0⟩, |1⟩, |2⟩, |3⟩, . . .

Elementary gates
Hadamard, CNOT,

Pauli gates
Squeezing, Rotation,
Displacement, (Kerr?)

Typical measurements
Computational/Hadamard

basis measurements
Particle number detection

Homodyne/heterodyne detection
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Qumodes

We model qumodes by quantum har-
monic oscillators, and the states |0⟩,
|1⟩, |2⟩, |3⟩ , . . . correspond to excitations
(particles).

Photonic quantum states can also be described by continuous quasidistributions over
the phase space.
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Wigner function
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Linear gates
▶ Squeezing S(r):

▶ Rotation (or phaseshift) R(θ) (passive, i.e., particle number preserving)

▶ Displacement D(r)
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Encoding information in a photonic quantum computer

Discrete-variable encoding

Encoding qubits into photonic modes, e.g., into polarization.

✓ Pros: only uses passive linear optical elements (phaseshifters, beamsplitters)
✗ Cons: requires nondeterministic nonlinearities

Continuous-variable encoding
Quantum information is stored in quadratures (x̂ , p̂) of the light field.

✓ Pros: deterministic Gaussian operations, scalable state preparation
✗ Cons: implementing non-Gaussian resources (e.g., Kerr gate) is expensive
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Boson Sampling (BS) and Gaussian Boson Sampling (GBS)

Non-universal schemes aimed to demonstrate quantum advantage.

BS GBS
Input Fock states (single photons) Squeezed vacuum states

Circuit Linear interferometer Linear interferometer

Output distribution ∝ permanents of matrices ∝ hafnians of matrices

Classical hardness ✓ ✓

Experimental scalability ? ✓

Applications ? ?
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Graph theoretical application
hafnian of adjacency matrices

!
= number of perfect matching permutations in the graph

Difficult to compute classically!

Potentially helpful for finding dense
subgraphs, maximum cliques in graphs.
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Typical setup of Gaussian Boson Sampling
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First quantum advantage by USTC (76 photons, 100 modes)
The Quantum Information Group of USTC in Hefei (led by Jian-Wei Pan)
demonstrated an advantage over classical computation in 2020.
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Quantum advantage by Xanadu (219 photons, 216 modes)

Xanadu also demonstrated an advantage over classical computation in 2022 on the
Borealis chip, which is also publicly available.
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Recent demonstration by USTC (3050 photons, 8196 modes)
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Variational quantum algorithms
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Variational quantum algorithms

Quantum machine learning: quantum computation + machine learning =⇒
possible advantages over classical machine learning!

Variational quantum algorithms use variational quantum circuits whose parameters
are trained analogously to classical neural networks.

Where quantum advantage may arise:

▶ More efficient representation of high-dimensional distributions.

▶ Sampling from distributions that are classically intractable to sample from.

▶ Compact encoding of correlations (entanglement) difficult for classical models.
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Variational quantum circuits
Variational quantum circuits (VQCs) constist of:

1. An initial state |ψ(x)⟩ (optionally) depending on some data x .

2. A quantum circuit Û(θ) depending on free parameters θ.

3. A set of observables {Ôj}Nj=1 to be measured.

Expectation values:

fj(θ) := ⟨ψ(x)| Û†(θ)Ôj Û(θ) |ψ(x)⟩ . (1)

Loss function L:

L(θ) = L(f1(θ), · · · , fN(θ)) (2)

Goal: minimize L by tuning θ.
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Expectation values:
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Question: How to determine ∇L(θ) efficiently?
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Determining gradients on a quantum computer
Parameter shift rules help us to estimate gradients better.

∂i f (θ) = c [f (θ + s ei )− f (θ − s ei )] , (3)

where

▶ c is some constant,

▶ s is the parameter shift, can be large.

Point: The shifts are larger, but the formula is still exact, and improves
sample-efficiency.

Rough analogy: For
f (x) = sin(x) (4)

we can write
d

dx
f (x) =

1

2
[sin(x + π/2) + sin(x − π/2)] .
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A simple variational quantum algorithm

Variational quantum
circuits: U(θ⃗).

Optimization: gradient
descent.

Gradients: parameter
shift rules.

Hybrid Training Loop
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Challenges in quantum machine learning

▶ Encoding classical data in a quantum computer is generally difficult

▶ Poor local minima

▶ Barren plateaus (exponentially vanishing gradients)

▶ Costly gradient computation

In general, there is a tradeoff between expressibility and trainability.
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Photonic quantum machine learning
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Photonic quantum machine learning

Photonic quantum machine learning is optical circuits and photonic quantum states for
machine learning purposes.

Promises:
All the advantages of photonic quantum computing + additionally:

▶ High-dimensional Hilbert space ≈ high expressivity?

▶ Interesting distributions for generative tasks
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Continuous-variable quantum neural networks

Single layer = Linear gates (interferometer I , squeezing S , displacement D) +
non-linear gates (Kerr K ).

✓ Pro: High expressivity, universal
✗ Con: Trainability issues (no parameter shift rules, vanishing gradients?), Kerr gate
is difficult experimentally
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Continuous-variable Born machines

Idea: train photonic quantum circuits that generate samples from a distribution that is
hard to sample classically =⇒ Born machines

Continuous-variable Born machines: Train variational quantum circuit to learn
probability distribution through homodyne measurements (x̂ measurement)!

✓ Pros: More natural for continuous distributions

✗ Cons: Expensive gradients, no parameter shift rule, Kerr gate nonlinearity, only
quantum distribution learning has been demonstrated
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Two-mode CVBM training
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New direction: training on classical computers?

Idea:

1. Train variational quantum circuit on classical computer

2. Deploy the trained circuit on an actual quantum computer

We need to make sure, that

1. training can be done efficiently on a classical computer, but

2. sampling is (provably) classically inefficient.

✓ Pros: Less expensive gradients (no parameter shift rule needed)

✗ Cons: Barren plateaus can still appear, potentially lower expressibility
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training set

𝑍𝒊 "𝐰
expectation 

values
ℒ##$"

Update parameters 𝐰 = (𝜶, 𝜽)

...

|ω1→

UFLO(ω)|ω2→

...

|ωN →

|0→ Ry(2ω2)

|0→
|0→
|0→

𝑍𝒊 %

𝜶∗, 𝜽∗

Classical training

Sampling
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Fermionic Born machines

Idea: Fermion Sampling is provably hard to simulate classically, but computing short
Z-string expectation values are classically tractable.

✓ Highly expressive

✓ No barren plateaus

Can we do similar with bosons?
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Classically trainable Born machines based on Gaussian Boson Sampling

Idea:

▶ Parity-string (analog of Z-string) expectation values can be efficiently calculated
for Gaussian states.

▶ Classically simulating the corresponding sampling is believed to be intractable.

Question: Are Gaussian states expressive enough for generative tasks?

32 / 32



Classically trainable Born machines based on Gaussian Boson Sampling

Idea:

▶ Parity-string (analog of Z-string) expectation values can be efficiently calculated
for Gaussian states.

▶ Classically simulating the corresponding sampling is believed to be intractable.

Question: Are Gaussian states expressive enough for generative tasks?

32 / 32


	Photonic quantum computing
	Variational quantum algorithms
	Photonic quantum machine learning

