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Photonic quantum computing



Photonic quantum computing

A photonic quantum computer stores information in independent optical modes called
qumodes.
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Why use photons?

Pros:
» Stable coherence: photons interact weakly with the environment
> Fast: optical signals propagate at the speed of light
» Optical elements operate on room temperature

» Compatible with existing technologies
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Why use photons?

Pros:
» Stable coherence: photons interact weakly with the environment
> Fast: optical signals propagate at the speed of light
» Optical elements operate on room temperature

» Compatible with existing technologies

X Cons:
» Photon losses
» Nonlinearities are difficult to realize
> Single-photon sources are also difficult

» Timing (need to ensure indistinguishability)
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Qubit-based vs. photonic quantum computing

Qubit-based Photonic
Information unit Qubit Qumode
Hilbert space
dimension Finite Infinite
Basis states |0), 1) |0),1]1),2),13),---

Elementary gates

Typical measurements

Hadamard, CNOT,
Pauli gates

Computational /Hadamard
basis measurements

Squeezing, Rotation,
Displacement, (Kerr?)

Particle number detection

Homodyne/heterodyne detection
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Qumodes

We model qumodes by quantum har-
monic oscillators, and the states |0),
[1), |2), |3),... correspond to excitations
(particles).
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Qumodes

A
E

We model qumodes by quantum har-
monic oscillators, and the states |0),
[1), |2), |3),... correspond to excitations
(particles).

Photonic quantum states can also be described by continuous quasidistributions over

the phase space.
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Linear gates
» Squeezing S(r):
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Linear gates
» Squeezing S(r):

Q Ir
> Rotation (or phaseshift) R(0) (passive, i.e., particle number preserving)

—-
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Linear gates
» Squeezing S(r):

O Ir
> Rotation (or phaseshift) R(0) (passive, i.e., particle number preserving)

—-

» Displacement D(r)
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Encoding information in a photonic quantum computer

Discrete-variable encoding

Encoding qubits into photonic modes, e.g., into polarization.
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Encoding information in a photonic quantum computer

Discrete-variable encoding
Encoding qubits into photonic modes, e.g., into polarization.

Pros: only uses passive linear optical elements (phaseshifters, beamsplitters)
X Cons: requires nondeterministic nonlinearities

Continuous-variable encoding
Quantum information is stored in quadratures (X, p) of the light field.

Pros: deterministic Gaussian operations, scalable state preparation
X Cons: implementing non-Gaussian resources (e.g., Kerr gate) is expensive
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Boson Sampling (BS) and Gaussian Boson Sampling (GBS)

Non-universal schemes aimed to demonstrate quantum advantage.

BS GBS

Input

Circuit

Output distribution
Classical hardness
Experimental scalability

Applications

Fock states (single photons) Squeezed vacuum states
Linear interferometer Linear interferometer

o permanents of matrices o hafnians of matrices
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Graph theoretical application
hafnian of adjacency matrices < number of perfect matching permutations in the graph
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Graph theoretical application
hafnian of adjacency matrices < number of perfect matching permutations in the graph

Difficult to compute classically!

Potentially helpful for finding dense
subgraphs, maximum cliques in graphs.
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Typical setup of Gaussian Boson Sampling
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First quantum advantage by USTC (76 photons, 100 modes)

The Quantum Information Group of USTC in Hefei (led by Jian-Wei Pan)
demonstrated an advantage over classical computation in 2020.
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Quantum advantage by Xanadu (219 photons, 216 modes)

Xanadu also demonstrated an advantage over classical computation in 2022 on the
Borealis chip, which is also publicly available.
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Recent demonstration by USTC (3050 photons, 8196 modes)
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Variational quantum algorithms
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Variational quantum algorithms

Quantum machine learning: quantum computation + machine learning —-
possible advantages over classical machine learning!
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Variational quantum algorithms

Quantum machine learning: quantum computation + machine learning —-
possible advantages over classical machine learning!

Variational quantum algorithms use variational quantum circuits whose parameters
are trained analogously to classical neural networks.

Where quantum advantage may arise:
» More efficient representation of high-dimensional distributions.
» Sampling from distributions that are classically intractable to sample from.

» Compact encoding of correlations (entanglement) difficult for classical models.
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Variational quantum circuits
Variational quantum circuits (VQCs) constist of:
1. An initial state |¢)(x)) (optionally) depending on some data x.
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Variational quantum circuits
Variational quantum circuits (VQCs) constist of:
1. An initial state |¢)(x)) (optionally) depending on some data x.
2. A quantum circuit 0(9) depending on free parameters 6.
3. A set of observables {OJ}J’V:l to be measured.

Expectation values:

Loss function L:

L£(0) = L(A(0),--- , n(0)) (2)

Goal: minimize £ by tuning 6.
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Determining gradients on a quantum computer
Parameter shift rules help us to estimate gradients better.

0if(0) =c[f(0+se)—f(0—se)],

where
> ¢ is some constant,
» s is the parameter shift, can be large.
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sample-efficiency.
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Determining gradients on a quantum computer
Parameter shift rules help us to estimate gradients better.

0if(0) =c[f(0+se))—f(0—se)], (3)

where
> ¢ is some constant,
» s is the parameter shift, can be large.

Point: The shifts are larger, but the formula is still exact, and improves
sample-efficiency.

Rough analogy: For
f(x) = sin(x) (4)

we can write
%f(x) = % [sin(x +/2) + sin(x — 7/2)].
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A simple variational quantum algorithm

y CPU
Varla-lt10|-1al quantum 2 . Updated
circuits: U(6). 8 parameters
o)
\ Parameter space //J
. . . . Expectation e . Solution
Optimization: gradient "~ es Stopping g
descent Criterion
Quantum Computer
(B)
o) = U(0) 1

Gradients: parameter
shift rules.
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Challenges in quantum machine learning

» Encoding classical data in a quantum computer is generally difficult
» Poor local minima
» Barren plateaus (exponentially vanishing gradients)

» Costly gradient computation
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Challenges in quantum machine learning

» Encoding classical data in a quantum computer is generally difficult
» Poor local minima
» Barren plateaus (exponentially vanishing gradients)

» Costly gradient computation

In general, there is a tradeoff between expressibility and trainability.
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Photonic quantum machine learning
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Photonic quantum machine learning

Photonic quantum machine learning is optical circuits and photonic quantum states for
machine learning purposes.
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Photonic quantum machine learning

Photonic quantum machine learning is optical circuits and photonic quantum states for
machine learning purposes.

Promises:
All the advantages of photonic quantum computing + additionally:

» High-dimensional Hilbert space = high expressivity?

P Interesting distributions for generative tasks
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Continuous-variable quantum neural networks

Single layer = Linear gates (interferometer /, squeezing S, displacement D) +
non-linear gates (Kerr K).

I(Uy) I(Us)
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Continuous-variable quantum neural networks

Single layer = Linear gates (interferometer /, squeezing S, displacement D) +

non-linear gates (Kerr K).

I(Uy)

I(U2)

Pro: High expressivity, universal
X Con: Trainability issues (no parameter shift rules, vanishing gradients?), Kerr gate

is difficult experimentally
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Continuous-variable Born machines

Idea: train photonic quantum circuits that generate samples from a distribution that is
hard to sample classically = Born machines
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Continuous-variable Born machines

Idea: train photonic quantum circuits that generate samples from a distribution that is
hard to sample classically = Born machines

Continuous-variable Born machines: Train variational quantum circuit to learn
probability distribution through homodyne measurements (X measurement)!

Pros: More natural for continuous distributions

X Cons: Expensive gradients, no parameter shift rule, Kerr gate nonlinearity, only
quantum distribution learning has been demonstrated
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Two-mode CVBM training
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New direction: training on classical computers?

Quantum Physics

[Submitted on 4 Mar 2025]

Train on classical, deploy on quantum: scaling generative quantum machine learning
to a thousand qubits

Erik Recio-Armengol, Shahnawaz Ahmed, Joseph Bowles
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New direction: training on classical computers?

Quantum Physics

[Submitted on 4 Mar 2025]

Train on classical, deploy on quantum: scaling generative quantum machine learning
to a thousand qubits

Erik Recio-Armengol, Shahnawaz Ahmed, Joseph Bowles

Idea:
1. Train variational quantum circuit on classical computer
2. Deploy the trained circuit on an actual quantum computer

We need to make sure, that
1. training can be done efficiently on a classical computer, but
2. sampling is (provably) classically inefficient.

Pros: Less expensive gradients (no parameter shift rule needed)

X Cons: Barren plateaus can still appear, potentially lower expressibility
29/32
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Fermionic Born machines

Quantum Physics
[Submitted on 17 Nov 2025]

Fermionic Born Machines: Classical training of quantum generative models based on
Fermion Sampling

Bence Bakd, Zoltan Kolarovszki, Zoltan Zimboras
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Fermionic Born machines

Quantum Physics

[Submitted on 17 Nov 2025]

Fermionic Born Machines: Classical training of quantum generative models based on
Fermion Sampling

Bence Bakd, Zoltan Kolarovszki, Zoltan Zimboras

Idea: Fermion Sampling is provably hard to simulate classically, but computing short
Z-string expectation values are classically tractable.

Highly expressive
No barren plateaus

Can we do similar with bosons?
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Classically trainable Born machines based on Gaussian Boson Sampling

Idea:

» Parity-string (analog of Z-string) expectation values can be efficiently calculated
for Gaussian states.

» Classically simulating the corresponding sampling is believed to be intractable.
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Classically trainable Born machines based on Gaussian Boson Sampling

Idea:

» Parity-string (analog of Z-string) expectation values can be efficiently calculated
for Gaussian states.

» Classically simulating the corresponding sampling is believed to be intractable.

Question: Are Gaussian states expressive enough for generative tasks?
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