
Recent advances in tensor network state methods

A journey from mathematical aspects towards industrial perspectives

Synergies among physics, chemistry, math and computer science
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Strong correlations between electrons used by nature and in

new technologies

High Tc superconductors Single molecular magnets (SMM)

Nitrogen fixation Battery technology



Experimental realizations: optical lattices

Numerical simulations: model systems

Atoms (represented as blue spheres) pictured
in a 2D-optical lattice potential

Potential depth of the optical lattice can be tuned.

Periodicity of the optical lattice can be tuned.

Hubbard model: lattice model of interacting
electron system

H = t
∑
⟨i,j⟩,σ

c†i,σcj,σ +
U

2

∑
σ ̸=σ′

∑
i

ni,σni,σ′

t hopping amplitude
U on-site Coulomb interaction

σ ∈ ↑, ↓ spin index

Classical or quantum computers?



in collaboration with

▶ Our computer program package is used by more than 30 research
groups worldwide for more than two decades in condensed matter
physics, quantum chemistry, nuclear physics, quantum information
theory, applied mathematics and computer science, etc...

▶ High-Performance Computing Center Stuttgart, Germany

▶ National Energy Research Scientific Computing Center (NERSC),
USA

Recently there is also an increasing interest by industrial partners:

▶ NVIDIA, USA

▶ AMD, USA

▶ SandboxAQ, USA (Google startup)

▶ Riverlane LTD, UK

▶ Furukawa Electric Institute of Technology, Japan

▶ IBM, USA

▶ FACCTS, Germany

▶ Dynaflex LTD, Hungary



Wigner, PNNL, NVIDIA, SandboxAQ joint press release

https://www.pnnl.gov/news-media/collaboration-speeds-complex-
chemical-modeling



TNS/DMRG provide state-of-the-art results in many fields

▶ General form of the Hamiltonian with one- and two-body interactions

H =
∑
ijαβ

Tαβ
ij c†iαcjβ +

1

2

∑
ijklαβγδ

V αβγδ
ijkl c†iαc

†
jβckγclδ + . . . ,

▶ i , j , k, l label modes, α, β, . . . are color indices
▶ Tij kinetic and on-site terms, Vijkl two-particle scattering

Vijkl =

∫
d3x1d

3x2Φ
∗
i (x⃗1)Φ

∗
j (x⃗2)

1

x⃗1 − x⃗2
Φk(x⃗2)Φl(x⃗1)

▶ with appropriate choice of one-particle basis
▶ (DMRG): O(M3d3) +O(M2d4)
▶ Major aim is to obtain the desired eigenstates and measurable

quantities

• Symmetries: Abelian and non-Abelian quantum numbers, double
groups, complex integrals, quaternion sym. etc

• # of block states: 1 000 – 60 000. Size of Hilbert space up to 108.

• In ab inito DMRG the CAS size is: 70 electrons on 70 orbitals.

• 1-BRDM and 2-BRDM, finite temperature, dynamics



Quantum chemistry: modes are molecular orbitals

(QC-DMRG) White, Martin (1999), Chan(2002), Ö.L.(2002), Reiher(2005), ...

3 (1.936) 14 (1.988)13 (0.070) 25 (1.958)

34 (1.942)26 (0.028) 35 (0.550)

3 (1.769) 14 (1.493)13 (0.381) 25 (1.927)

26 (0.029) 35 (0.567)34 (1.810)

• Combination with con-
ventional methods

• post-DMRG methods

• Relativistic quantum chemistry: modes are spinors (4c-DMRG)
Knecht, Ö.L., Reiher (2014)

• electrons moving at relativistic speeds, close lying states and dynamical
correlation, open d or f shells



Nuclear physics: modes are proton/neutron orbitals (JDMRG)

Dukelsky, Papenbrock, Pittel (2003), Ö.L., Veis, Dukelsky, Poves (2015)

H =
∑
α

εαc
†
αcα − 1

2

∑
αβγδ

Vαβγδc
†
αc

†
βcδcγ ,

▶ where c†α and cα creates and annihilates a particle with quantum
numbers α = (n, l , j ,m, τz). j ≥ 1/2, Isospin,

▶ no-core shell models
▶ effective Hamiltonian including parts of 3-body interactions



Real space: modes are lattice sites → new basis
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(a)

many-body 
spectrum

non-interacting 
spectrum

(b)

H0 = −
∑
x,x′,s

t(x− x′)c†s (x)cs(x
′) with r = r(x) = r(ν, l, τ) ,

• Construct and diagonalize the non-interacting part of the Hamiltonian
and obtain the corresponding eigenfunctions ϕα(r) ≡ ϕα(ν, ℓ, τ),
• Express the Coulomb interaction in this basis.
• For effective Coulomb interaction we use the so-called Ohno potential,

V (r1 − r2) =
e2

ϵr

1√
(r1 − r2)2 + α2

, ,
Moca, Izumida, Dóra, Ö.L., Zaránd

(2019)



Tensor product approximation

State vector of a quantum system in the discrete tensor product spaces

|Ψγ⟩ =
q1∑

α1=1

. . .

qd∑
αd=1

U(α1, . . . , αd , γ) |α1⟩ ⊗ · · · ⊗ |αd⟩ ∈
d⊗

i=1

Λi :=
d⊗

i=1

Cqi ,

where span{|αi ⟩ : αi = 1 , . . . , qi} = Λi = Cqi and γ = 1, . . . ,m.

α1 α2 α3 α4 α5 α6 α7 α8 γ

U

dimHd = O(qd) Curse of dimensionality! (exponential scaling)

We seek to reduce computational
costs by parametrizing the tensors in
some data-sparse representation.

A general tensor network representa-
tion of a tensor of order 5.
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Matrix product state (MPS) representation / DMRG / TT

Exponential scaling → polynomial scaling

Affleck, Kennedy, Lieb Tagasaki (87); Fannes, Nachtergale, Werner (91), White (92)

The tensor U is given elementwise as

U(α1, . . . , αd) =
r1∑

m1=1

. . .

rd−1∑
md−1=1

A1(α1,m1)A2(m1, α2,m2) · · ·Ad(md−1, αd).

We get d component tensors of
order 2 or 3. Scaling: m3. α1
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Calculation of ρij corresponds
to the contraction of the net-
work except at modes i and j .
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von Neumann quantum information entropy, s = −
∑

α λ2
α lnλ2

α.

Mutual information, I = si + sj − sij .

Ö.L & Sólyom, (03), Rissler, Noack, White (06)



Single particle unitary mode transformation U ∈ U(N)
Krumnow, Veis, ÖL, Eisert 2015-2021

Friesecke, Werner, Kapas, Menczer, Ö.L. 2024

• New modes φ′
i =

∑
j Uijφj , and C ′ = G (U)†C where G (U) is a unitary

transformation on the space of many-body coefficient tensors.

• For time reversal symmetric case, C and the φi are real-valued and
U ∈ O(N) or, discarding an immaterial overall sign factor, U ∈ SO(N).

• U can be parametrized as U = eAU∗ with U∗ an arbitrary fixed matrix
in SO(N) and A real and skew-symmetric, the parametrization being
unique for U close to U∗.

• Thus stationarity of a scalar function f on SO(N) at U∗ is equivalent to

0 =
d

dt

∣∣∣
t=0

f (etAU∗) = Tr
∂f

∂U
(U∗)U

T
∗ AT , ∀AT = −A

that is to say ∂f
∂U (U∗)U

T
∗ symmetric.

• Reduction to pairwise rotations: To achieve stationarity minimize f
over all pairwise rotations



2-d spinless fermionic 10× 10 quantum lattice on a torus
(a) (b) (c)DMRG DMRG + SwapMO 1 2
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Two-qubit gate disentanglers via mode optimization

Computational complexity can be reduced by orders of magnitudes!



Direct connection to computer science: complexity in FLOPS
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Menczer,Kapas,Werner,ÖL,2023

• Half-filled N × N Spinless
model on a torus geometry

• t = 1, t ′ = 0.4, V = 0.8

• opt with D = 80

• Computational complexity
in teraFLOPS
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• The solid lines are first-order
polynomial fits leading to expo-
nents ν ≃ 3± 0.2

• inset: scaling of the prefactor as
a function of system size N with
fitted exponents 0.53 and 1.85 for
the real space and for the opti-
mized basis, respectively.



Towards exascale computations on supercomputers

• Underlying tensor and matrix algebra can be organized into several
million of independent operations (tasks).

• Dense matrix operations are performed in parallel according to the
so-called quantum number decomposed representations (sectors).

• parallelization over operators, sectors, positions

GPU: MPS and TNS
on kilo-processor architectures (K20):
Nemes, Barcza, Nagy, Ö.L., Szolgay, 2014

Massive parallelization
Brabec, Brandejs, Kowalski

Xanntheas, Ö.L., Veis (2020)

FeMoco cluster
[CAS(113,76)]



Centralized scheduling: unideal society
• Set of workers to generate tasks
• Set of workers to transfer tasks
• Set of workers to execute tasks

→ Workers are threads
→ Transfer: IO communication
→ CPU, GPU, FPGA units

▶ Central scheduler has to organize the full workflow, measure
complexity of tasks, distribute tasks, check execution etc

▶ Central scheduler envisions the global aim & wants to accomplish it
▶ Tasks: several millions of independent tensor and matrix operations



Centralized scheduling: Huge overhead, units can be idle

• Central scheduler performs lot of measurements, estimations,
communication to rearrange tasks and workers → huge overhead

▶ Central scheduler cannot see everything in a given moment
→ workers can be idle

▶ Too much workload on scheduler → inefficient scheduling, tasks can
pile up partially



Self motivated workers → ideal ”team-like” society
• Central unit: Contractor, contract book (only meta-data
communicated, boolean-like bookkeeping flags)
• Everybody is motivated to achieve global aim



Novel algorithmic solutions A. Menczer, ÖL (2023)
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CPU only limit (for CAS(113,76) dimH = 2.88× 1036)
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(113,76), Maze-R + MKL seq.

(54,54), Maze-R + MKL seq.

(18,18), Maze-Runner + MKL seq.

(18,18), OpenMP + MKL seq.

(18,18), MKL Threaded

Performance measured in TFLOPS for the F2 and FeMoco chemical
systems for CAS(18,18) and CAS(54,54) orbitals spaces, respectively, as
a function of the DMRG bond dimension on a dual Intel(R) Xeon(R)
Gold 5318Y CPU system with 2× 24 physical cores running at 2.10 Ghz.



Boosting the effective performance via non-Abelian symmetries
Benchmark on 8×A100 GPUs with 40GB VRAM. Menczer, Ö.L (2023), CAS(18,18)

JO(ν,L)⊗O(ν,k)Kγ′,γ = O(ν,L)O(ν,k)F (Sα,Sk ,Sγ ;S
op
L ,Sop

k ,Sop
L

′;S ′
α,S

′
k ,S

′
γ) ,

where F equals the Wigner-9j
symbol up to rescaling,
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J
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• New mathematical model for parallelization → felxibe scaling

• DSU(2) = 24576 → DU(1) = 216 → FCI solution

• We reached 108 TFLOPS > 76 TFLOPS of the FP64 limit of NVIDIA
→ utilization of highly specialized tensor core units (TCU)



Quarter petaflops on a single node ∼ 10000x speedup; D3 → D
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• NVIDIA DGX H100: 80x speedup wrt a single node with 128 cores
Testing performance up to ∼ 250 TFLOPS in collab with NVIDIA and
SandboxAQ Menczer,Damme,Rask,Huntington,Hammond,Xantheas,Ganahl,ÖL

• New model to utilize NVIDIA D2D links. A. Menczer ÖL (unpublished 2023)

• Combination of our MPI and GPU kernels: full replacement of boost
library, asynchronous IO, multiNode-multiGPU
→ petascale computing. A. Menczer ÖL (unpublished 2023-2024)



Cost optimized TNS Menczer, ÖL 2024

• DGX-H100 costs 100
USD/hour on Google Cloud

• Schematic plot of hardware
topology illustrating the var-
ious communication channels
(arrows), such as host to host
(H2H), host to device (H2D)
and device to host (D2H),
and device to device (D2D),
i.e., InfiniBand, PCI-E, and
NVLink, accordingly.

• The compute node is a
very powerful and expensive
unit surrounded by one or
more cheap auxiliary nodes
with minimal computational
capacity, but with substantial
amount of RAM



Precontracted network asynchronous MPI-IO Menczer, ÖL 2024

a) Schematic plot of quantum num-
ber based block sparse representa-
tion of matrices and tensors.
b) Skeleton of serialized data seg-
ments used during disk IO save pro-
cedure or MPI based communica-
tion.
c) Skeleton of serialized data seg-
ments filled completely with data
when asynchronous save IO.

• FeMoco CAS(54,54), DSU(2) = 5120, D ≃ 17500
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Precontracted network asynchronous MPI-IO Menczer, ÖL 2024
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• Decomposition of the total wall time as a function of DMRG iteration
steps via synchronous IO operations (a) and via 10 auxiliary nodes (b) for
the FeMoco CAS(113,76) model space using D = 4096 SU(2) multiplets
corresponding to largest U(1) bond dimension values around
DU(1) = 15400.

• The asterisks indicate functions converted to GPU already. The
description of the legend is given in the main text. The first (warmup)
sweep with D = 512 low bond dimension is not shown in the the plots.

• Currently, we save some 80-90 USD per hour.

• Extensions using several powerful compute units is straighforward.



Spin adapted DMRGSCF on NVIDIA DGX-A100/H100

ÖL, Menczer,Ganyecz,Kapas,Werner,Hammond,Xantheas,Ganahl,Neese (JCTC 2025)

Polycyclic aromatic hydrocarbons

• For Heptacene, CAS(30,30),
25 DMRGSCF iterations with
D = 256 using other codes took
∼ 7 days
→ ∼ 3.8 hours with our hybrid
DMRG + ORCA
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0 • Dodecacene CAS(50,50)
• Full orbital space:
328 electrons on 840 orbitals.
• Wall time: 13.3 hours
(D = 512).

• Icosacene CAS(82,82)
• Full orbital space:
536 electrons on 1368 orbitals.
• Wall time: ∼ 1.2 days (D =
512).
• Use DMRG-TCC (DLPNO).



Mixed precision ab initio tensor network state methods

adapted for NVIDIA Blackwell technology via emulated FP64

arithmetic (Rio Yokota at SC-2024, BoF TOP500)



Mixed precision ab initio TNS methods adapted for NVIDIA

Blackwell technology via emulated FP64 arithmetic
J. Gunnels, C. Brower, S. R. Bernabeu, J. Hammond, S. Xantheas, M. Ganahl, A. Menczer, Ö.L.

• Results obtained on DGX-B200 single node utilizing the Ozaki scheme

• Results obtained via early access utilizing a pre-release cuBLAS binary,
and the data is subject to change.

• mantissa bit setting {15, 23, 31, 39, 47, 55} for S = 2, 3, 4, 5, 6, 7 slices.
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• Chemical accuracy, 1.6mHa, can be reached with 4, 6 slices



Performance assessment
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• Benchmark on DGX-H100 and DGX-B200 via native FP64

• Remark: with emulation we expect B200 to be faster in the near future
(but currently don’t have data)

• Most recent cuBLAS offers native FP64 and various options for
emulation (native, emulated, mantissa bit setting, eager)



Simulation on IBM quantum chip vs DMRG/BUG

UBC,DIPC,IKERBASQUE,Wigner,IBM,CERN (2025)

• Z2-Higgs lattice gauge theory
(hadronization, meson excit., topolog-
ical effects)

• IBM superconducting quantum pro-
cessor with up to 156 qubits

• Hexagonal quantum chip topology,
error mitigation to reduce noise

• Basis Update Galerkin (BUG) novel
TNS algorithm for time evolution

• Perfect agreement with simu-
lation on real hardware up to 68
qubits

• For more qubits noise is too
large on real hardware

• BUG can be used in quantum
chemistry as well



New TNS benchmarks for quantum computing ???



Conclusion and near future on GH200, MI300, GB200 etc

• Tensor topologies together with proper basis representations are
important for efficient data sparse representaion of the wavefunction

• Global and local mode optimization for tree-like TNS provides
black-box tool to reduce computatinal complexity

• Long time evolution with adaptive mode transformation is a promising
direction in collab. Eisert, Lübich

• Massive Parallelization multiNode-multiGPU → exascale computation

• Mixed precision TNS on specialized new hardware with lower energy
consumption

• Future: New TNS benchmarks via NVIDIA GB200 NVL72 for quantum
computing ??? Converting our code to AMD-MI300 (HIP, ROCm)

• → Simulation of realistic material properties in collab. Riverlane, Furukawa
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