

Antal Jakovác

Representing Reality

AIME 2025

Budapest, Hungary, November 27-28, 2025

Introduction: successes of Al

Neural networks → **magnificent achievements**

- classification (dog breeds, faces, birdsong, flowers, etc.)
- text generation (chatGPT, Bing, DeepSeek, etc.)
- image generation (midjourney, Dall-E, Dreamstudio, etc.)
- autonomous cars / Al driving assistants
- etc.
- Billion USD business (2023: ~ 200 bUSD)

Introduction: AI challenges

Challenges and limitations

- "I don't know" category (balanced datasets are needed for training)
- generalization ("catastrophic forgetting")
- prone to adversarial attacks
- no goals, planning
- hallucinations in generative networks

At the root of many AI-related problems lies an insufficient representation of reality.

Reality and AI Models

Aspects of reality: general and actual

- general reality
 - laws and generic algorithms describing how the world works
- examples
 - a map describing the streets → show the possibilities
 - in LLMs: possible tokens that can come from a context
- in AI: part of the (trained) hardware → represented by millions to
 ~100billions of parameters

Reality and AI Models

Aspects of reality: general and actual

- actual reality:
 - describes the actual environment, the objects, persons and phenomena that are actually active
- examples
 - in the map the actual traffic, road works, detours, obstacles, etc.
 - in LLMs: the actual question we want an answer to, prompt
- in AI: part of the input → ~million tokens

In AI applications, general reality is represented much more thoroughly.

Introduction: target accuracy

How can we shoot better?

- take a gun, shooting to a target: it is not accurate
- → improve accuracy → general level
 - improve weapon (e.g. attach a scope)
 - change for better weapon (e.g. handgun → rifle)
- → improve accuracy → actual level
 - better aiming
 - steadier hold

Introduction: target accuracy

How can we shoot better?

- take a gun, shooting to a target: it is not accurate
- improved accuracy: better tool, better aiming
 - → still there is a distance where precision is lost
- → initial conditions (aiming) is a pure representation of reality
- → true for any systems: initial conditions & propagation → drift
 - physical systems → like mechanical projectiles
 - iterative computations → like generative neural networks

Introduction: target accuracy

Maintain precision

- for long-term precision a control mechanism is necessary: compare modeled and actual reality
- → weapons → frequent course corrections
- → in general:
 - apply generation in small steps
 - compare state to the actual reality
 - apply correction before continuing generation
- → in this way we can follow the plan, without drifting away from reality

How can we characterize reality? → ask questions (measurements)

(A. Jakovac, A. Telcs, Mathematics, 2025)

what is a good question?

- → acquire information → data lakes
 - big data approach, measure what we can
 - → e.g. measure pixel colors, collect logs, store amplitudes
 - hope that all important detail can be recovered from the data
 - important details are deeply hidden in the data
 - often leads to an enormous, unstructured database with a lot of unnecessary/redundant information

what is a good question?

- useful information (feature) → characterize a phenomenon
 - phenomena are equivalence classes of elementary data
 - equivalence classes are defined by labels (supervised) or by other means (e.g. temporal subsequence – unsupervised)
 - to represent equivalence classes we choose functions constant on them (→ measurable functions)

$$f(x) = f_C \text{ if } x \in C \Rightarrow f(C)$$

features depend on the selected phenomena (context)
 (and any context have stable patterns)

Concepts as class-constant functions

- objects: we observe solid states with definite shape → remains constant while changing place, time, rotate, etc. → in a gaseous environment, "object" concept would be useless
- angle: consider two lines, observers see it in different position, rotation; the invariant property is the angle
- laws: persistent relation between measurable quantities:
 - Newton law: ma-F=0 is true for all times
 - market model: price distribution $P(S,\dot{S},...)$

Elements of a good representation

context: relevant objects – measurable functions – values

another (natural science vibe) wording:


context: objects – coordinates – values

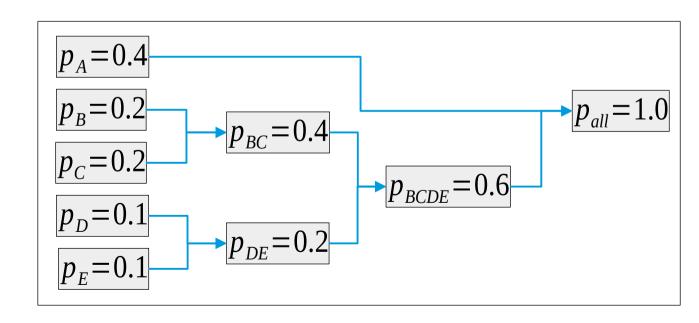
- everything is context-dependent (no "general" reality)
- coordination can be general or object dependent
- world basically consists of discrete objects, but the raw input is often continuous

General coordinates

Examples for object independent coordination

- mathematics: points in a d-dimensional space
- we not have to name the coordinates $\rightarrow p:(x_1,x_2,...,x_d)$
- word embedding in LLMs
 - one-hot-encoding: all words represent a new dimension
 - vector embedding: ~thousand dimensional space
 - all coordinates represent a (fixed, abstract) feature, and we store the relation of the word to the given feature

Object dependent coordinates


Optimal coordination

- assume we have discrete classes (objects) characterized by classconstant functions
- which coordination is the optimal?
 - we arrive at the given class with a minimal number of features
 - information theoretical question (Shannon entropy, Huffmann coding)
- → optimal coding is hierarchical: properties of the parents are valid properties of the children → generalization
- usually much less property/feature is enough than in the general case \rightarrow c.f. twenty questions (barchoba)

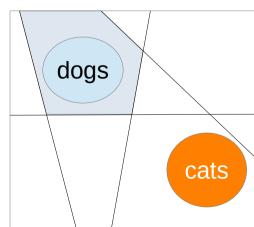
Object dependent coordinates

Shannon entropy and amount of information

- example for Huffmann coding
- average questions: 0.4+3x0.6=2.2
- Shannon entropy:2.12

Continuous inputs

Sensory inputs are (quasi) continuous → discrete features


- we have to define the context (labels, or temporal subsequence)
- → we have to define a parametrizable functional space (e.g. DNN, LLT, ...)
- optimize parameters to find class-constant or conserved (time-constant)

functions → necessary conditions

collect conditions to fully represent a class

object : (feature₁=
$$x_1$$
, feature₂= x_2 ,...)

- values usually discrete (discrete classes)
 - \rightarrow for regression they can be continuous

Coordination and objects

Technical solutions for representing reality

- time series analysis: LLT/ALT method (Kurbucz et al. arXiv 2025, Scientific Reports 2022)
- reusable computer vision applications (RESNET): last layer provides good features for natural images
- databases and Retrieval Augmented Generation (RAG)
 - relational databases → fixed coordinates
 - nonrelational databases → document databases (JSON)
 - graph databases → Resource Description Framework

Coordination and objects

Technical solutions for coordination

- time series analysis: LLT/ALT method (Kurbucz et al. arXiv 2025, Scientific Reports 2022)
 - linear laws for time segments
 - collection of laws for a given class with 'OR' relation
 - if rules do not fit to either class \rightarrow "I don't know" category (outlier)
 - adaptive version to find best scales

LLT/ALT classification results

Mathematical procedure:

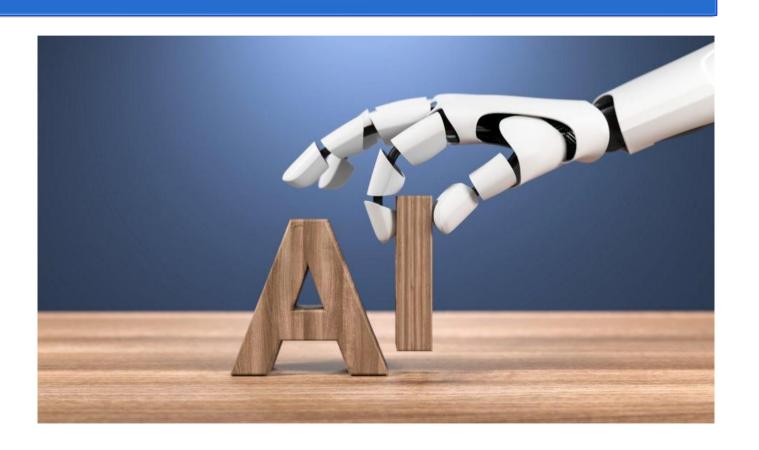
- new sample arrives
 - try the laws of both classes
 - keep the bests (top 5%)
 - predicted class that performs the best use standard classifiers (SVM, KNN)

Dataset	Accuracy	Training time	Benchmark
Ford A	97.5%	916 sec	97-98%
Ford B	94.3%	3070 sec	83-92%
AReM	100%	10 sec	99.6%
Gun_Point	96.7%	8 sec	100%

- → if no laws work: none of the classes → outlier analysis (e.g. ECG signal analysis)
- benchmarking: publicly available databases
- applications: mechanical motions, ECG signal processing, Bitcoin price prediction, etc.

Resource Description Framework

Triplet representation of reality


- knowledge graph representation
- each entry is a triplet:
 (subject, predicate, object) → (name, property, value)
- → example: Dorothy : son = Bill
- → own development: TriosDB → lightweight RDF solution
 - values are vectors
 - circular representation for efficient queriesBill: Dorothy = son, son: Bill = Dorothy
 - context as data modules

Conclusion

Representation of reality

- correct representation of reality is the main goal of the intelligence
- general vs actual reality
 - general reality is well represented in AI solutions
 - actual reality is poorly and ineffectively represented
- key element: find class-constant functions
 - continuous input → discrete representation (e.g. with LLT)
 - discrete objects → knowledge graphs, hierarchical structure

The end

