
!

Portable HPC for High-
Performance Simulation

Federico Carminati
Future of Many-Core

Computing in Science
29 May 2014 Wigner Datacenter

Thanks to

• John Apostolakis (CERN)
• Marilena Bandieramonte (Catania U.)
• Georgios Bitzes (CERN openlab)
• Rene Brun (CERN)
• Philippe Canal (FNAL)
• Federico Carminati (CERN)
• Johannes Christof De Fine Licht (CERN)
• Laurent Duhem (Intel)
• Daniel Elvira (FNAL)
• Andrei Gheata (CERN)
• Soon Yung Jun (FNAL)
• Guilherme Lima (FNAL)
• Mihaly Novak (CERN)
• Raman Sehgal (BARC)
• Oksana Shadura (CERN)
• Sandro Christian Wenzel (CERN)

2

A luminous future for HEP...

LS1

LS2

CERN openlab BoS – May 8, 2014

A luminous future for HEP...

LS1

LS2

•
HEP now risks to compromise physics because of lack of computing

resources

-
Has not been tru

e for ~20 years

CERN openlab BoS – May 8, 2014

The Eight dimensions
n The “dimensions of performance”

q Vectors
q Instruction Pipelining
q Instruction Level Parallelism (ILP)
q Hardware threading
q Clock frequency
q Multi-core
q Multi-socket
q Multi-node

Possibly running different
jobs as we do now is the
best solution

}
Gain in memory footprint
and time-to-solution
but not in throughput

Very little gain to be
expected and no action
to be taken

Micro-parallelism: gain
in throughput and
in time-to-solution

4

The Eight dimensions
n The “dimensions of performance”

q Vectors
q Instruction Pipelining
q Instruction Level Parallelism (ILP)
q Hardware threading
q Clock frequency
q Multi-core
q Multi-socket
q Multi-node

Possibly running different
jobs as we do now is the
best solution

}
Gain in memory footprint
and time-to-solution
but not in throughput

Very little gain to be
expected and no action
to be taken

Micro-parallelism: gain
in throughput and
in time-to-solution

Expected	
 limits	
 on	
 performance	
 scaling
SIMD ILP HW	

THEORY 8 4 1.35
OPTIMISED 6 1.57 1.25
HEP 1 0.8 1.25

Expected	
 limits	
 on	
 performance	
 scaling	
 (mulKplied)
SIMD ILP HW	

THEORY 8 32 43.2
OPTIMISED 6 9.43 11.79
HEP 1 0.8 1 OpenLab@CHEP12

4

Classical HEP transport is mostly local

ATLAS volumes sorted by transport time. The same
behavior is observed for most HEP geometries.

50 per cent of the
time spent in 0.7%

volumes

5

• Navigating very large data
structures

• No locality
• OO abused: very deep

instruction stack
• Cache misses

• Event- or event track-
level parallelism will
better use resources
but won’t improve
these points

•Geometry navigation
(local)

• Material – X-section tables
• Particle type - physics

processes

Introduced basketized transport
Deal with particles in parallel

Output buffer(s)

6

Introduced basketized transport
Deal with particles in parallel

Output buffer(s)

6

Introduced basketized transport
Deal with particles in parallel

Output buffer(s)

Particles are transported
per thread and put in output
buffers

6

Introduced basketized transport
Deal with particles in parallel

Output buffer(s)

Particles are transported
per thread and put in output
buffers

A dispatcher thread puts
particles back into transport
buffers

6

Introduced basketized transport
Deal with particles in parallel

Output buffer(s)

Particles are transported
per thread and put in output
buffers

A dispatcher thread puts
particles back into transport
buffers

Everything happens
asynchronously and in
parallel

6

Introduced basketized transport
Deal with particles in parallel

Output buffer(s)

Particles are transported
per thread and put in output
buffers

A dispatcher thread puts
particles back into transport
buffers

Everything happens
asynchronously and in
parallel

The challenge is to
minimise locks

6

Introduced basketized transport
Deal with particles in parallel

Output buffer(s)

Particles are transported
per thread and put in output
buffers

A dispatcher thread puts
particles back into transport
buffers

Everything happens
asynchronously and in
parallel

The challenge is to
minimise locks

Keep long vectors

6

Introduced basketized transport
Deal with particles in parallel

Output buffer(s)

Particles are transported
per thread and put in output
buffers

A dispatcher thread puts
particles back into transport
buffers

Everything happens
asynchronously and in
parallel

The challenge is to
minimise locks

Keep long vectors

Avoid memory
explosion

6

Scheduler

Geometry
navigator

Geometry
algorithms

Physics

Basket of
tracks

Basket of
tracks

x-sections Reactions

7

Dispatching MIMD
SIMD

Scheduler

Geometry
navigator

Geometry
algorithms

Physics

Basket of
tracks

Basket of
tracks

x-sections Reactions

7

Dispatching MIMD
SIMD

Basket	
 managers
• One	
 basket	
 manager	
 per	
 volume	

– Receiving	
 tracks	
 entering	
 the	
 volume	
 from	
 generator	
 or	
 scheduler	

– Accessed	
 by	
 scheduler	
 only	

• Pool	
 of	
 empty	
 baskets,	
 one	
 current	
 basket	
 +	
 one	
 basket	
 for	
 prioritized	
 tracks	

• Lock-­‐free	
 access	
 for	
 unique	
 scheduler	
 (only	
 one	
 thread	
 can	
 add	
 tracks)	

• Transportability	
 threshold	
 per	
 manager	

– If	
 threshold	
 reached	
 when	
 adding	
 tracks,	
 the	
 current	
 basket	
 is	
 pushed	
 in	
 the	
 work	
 queue	
 and	
 replaced	

from	
 the	
 pool.	
 Tracks	
 added	
 with	
 the	
 priority	
 flag	
 go	
 to	
 the	
 priority	
 basket	
 which	
 gets	
 pushed	
 to	
 the	

priority	
 side	
 of	
 the	
 queue	

– Threshold(vol)	
 =	
 Ntracks_in_flight(vol)/2N_threads	
 rounded	
 to	
 %4	
 (min	
 4,	
 max	
 256)

Basket	
 pool

TGeoVolume

Basket	
 manager

current

1…Nvolumes

priority
8

Basket	
 lifecycle

empty

full
Basket	
 pool

TGeoVolume

Basket	
 manager

current

Generator Scheduler

1…Nvolumes Transport	

queue

Propagator

transported

recycle
AddTrack

priority

AddTrack

Push	
 on	
 	

threshold

Push	
 on	
 	

garbage	

collection

9

Scheduling	
 policies

• Workload	
 balancing	

– Divide	
 the	
 work	
 evenly	
 to	
 scale	
 with	
 number	
 of	
 workers	

– Queue	
 control:	
 garbage	
 collection	
 on	
 work	
 queue	
 depletion	

– Improvement:	
 schedule	
 physics	
 as	
 separate	
 task	
 (process	
 selection	
 and	

discrete	
 processes	
 post-­‐step)	

• Memory	
 management	

– Not	
 active	
 currently,	
 the	
 idea	
 it	
 to	
 trigger	
 hit/digits	
 collection	
 and	
 memory	

cleanup	
 on	
 thresholds	

• Keep	
 large	
 vectors	

– Raise	
 transportability	
 thresholds	
 per	
 volume	

– Postpone	
 sparse	
 tracks	
 when	
 not	
 in	
 garbage	
 collection	
 mode	

• Trigger	
 single	
 track	
 mode	
 when	
 vectorization	
 gives	
 just	

overhead

10

Physics
• A lightweight physics for realistic shower development
• Select the major mechanisms

• Bremsstrahlung, e+ annihilation, Compton, Decay, Delta ray, Elastic hadron,
Inelastic hadron, Pair production, Photoelectric, Capture + dE/dx & MS

• Tabulate all x-secs (100 bins -> 90MB)
• Generate (10-50) final states (300kB per final state & element)
• Not good as Geant4, but it could be the seed of a fast simulation option
• Independent from the  
MonteCarlo that actually  
generates the tables

11

γ on Uranium
Total

PhotoelCompton
Conversion

Inelastic

11
Geant-V prototype

Physics tables

Geant4 MC-x

Sandro Wenzel, CERN-PH-SFT Annual Concurrency Forum Meeting, 02-04-14

Recap of performance status
provided new optimized vector interfaces for some elementary
solids and geometric base classes (implemented important
functions for particle navigation)	

overall performance gain in a standard navigation benchmark (in toy
detector with 4 boxes, 3 tubes, 2 cones) - comparison to ROOT/
5.34.17

12

distFromInside
mothervolume

pick next
daughter volume

transform
coordinates to
daughter frame

distToOutside
daughtervol

update step +
boundary

vector flow

SIMD

SIMD

SIMD

SIMD

CHEP13 paper: http://arxiv.org/pdf/1312.0816.pdf

16 particles 1024 particles

Intel 	

IvyBridge

(AVX)
~2.8x ~4.0x

Intel Haswell
(AVX2) ~3.0x ~5.0x

Intel Xeon-Phi	

(AVX512) ~4.1x ~4.8x

Xeon-Phi and Haswell benchmarks by CERN

Openlab (Georgios Bitzes)

http://arxiv.org/pdf/1312.0816.pdf

Portable HPC?

• Straight “vectorisation” of existing code is difficult to
impossible

• Resulting code is hard to read and maintain
• And it is largely compiler-dependency

• Porting to different high end devices is very difficult
• Explored solution is to use template specification for
solid placement, specialisation and code generation

• Highly optimised modular “codelets” à la STL are
used to construct algorithms

13

Solid specialisation
CreateTube(rmin, rmax, al1, al2)

rmin=0?
yes

Instantiate
cylinder

Instantiate
 tube

no
al1=al2?

yes

no

Instantiate
 tube section

al1=al2?

yes

no

Instantiate
 cyl section

14

Illustrating scalar/SIMD abstraction and kernels

Single particle
interface

C-like abstract
kernels

Vector
interface

External
CUDA kernels

Illustrating scalar/SIMD abstraction and kernels

Single particle
interface

C-like abstract
kernels

Vector
interface

External
CUDA kernels

Vc Looper Thread access

Scalar Looper Cilk Plus Looper

Illustrating scalar/SIMD abstraction and kernels

Single particle
interface

C-like abstract
kernels

Backend instantiation

Cilk Plus Backend

Vector
interface

External
CUDA kernels

Vc Looper Thread access

Scalar Looper Cilk Plus Looper

Scalar Backend Vc Backend CUDA Backend

Illustrating scalar/SIMD abstraction and kernels

Single particle
interface

C-like abstract
kernels

Backend instantiation

Cilk Plus Backend

Vector
interface

External
CUDA kernels

Vc Looper Thread access

Scalar Looper Cilk Plus Looper

C-like specialized
kernels

Scalar Backend Vc Backend CUDA Backend

Kernel instantiation

Performance examples

• Performance of the inside
method for a tube on an
Intel CPU

• As you can see the
performance is improved
even for the scalar
version

16
Inside method

EM Particle Transportation on the GPU - S.Y. Jun @Annual Concurrent Forum Meeting

Particle Transport on the GPU
– Initial scope: charged particle transportation in a magnetic field

as a demonstrator!
– propagate {tracks} for {given step lengths} through a simple

geometry (similar to the CMS electromagnetic calorimeter)!
– lesson learnt (see backup for performance)!

• arithmetic intensity = instructions/(memory load) is too low !
• data transfer is costly (compared to kernel execution time)!

• Extension: full EM particle tracking on the GPU !
– implemented physics processes and models for e-/γ!
– nothing is free: additional divergences and memory accesses !

• Restructuring the simulation flow !
– separate kernels and regroup tracks for each subtask

April 2, 201417

EM Particle Transportation on the GPU - S.Y. Jun @Annual Concurrent Forum Meeting

GPU Prototype: Three Core Components

• Geometry!
– detector!
– B-field!
– navigator!

• EM Physics !
– e-/gamma!
– cross section!
– final state!

• GPU Scheduler!
– task stealing!
– load balance

April 2, 201418

EM Particle Transportation on the GPU - S.Y. Jun @Annual Corcurrent Forum Meeting

Physics Validation of GPU Physics

• Compare simulated physics outputs !
– device code (RED) vs. Geant4 (BLUE) !
– ex. Bremsstrahlung process (1 GeV e-) !
– interaction length, energy loss, angular distribution of secondary

photons, etc.

April 2, 201419

EM Particle Transportation on the GPU - S.Y. Jun @Annual Corcurrent Forum Meeting

Performance Evaluation

• Hardware (host + device)!
!
!

!
!
!
!

• Performance measurement !
– (4096x32) tracks !
– Gain = Time (1 CPU core)/Time (total GPU cores) !
 Time = (data transfer + kernel execution)!
– default <<< Blocks, Threads >>> organization

M2090<<<32,128>>> and K20<<<26,192>>>

Host (CPU) Device (GPU)

M2090 AMD Opteron™ 6134
32 cores @ 2.4 GHz

Nvidia M2090 (Fermi)
512 cores @ 1.3 GHz

K20 Intel® Xeon® E5-2620
24 cores @ 2.0 GHz

NVidia K20 (Kepler)
2496 cores @ 0.7GHz

April 2, 201420

EM Particle Transportation on the GPU - S.Y. Jun @Annual Corcurrent Forum Meeting

Performance: Realistic Simulation
• A simple calorimeter (CMS Ecal) with the CMS b-field map!
• Tracking for one step: split kernels (GPIL+sorting+DoIt)!
!

!

!

!

!
()*: GPU time using one kernel (sequential stepping) !

• Performance by each kernel (% of the total application time)!
– random states (MTwister) : 5.8% (one time initialization)!
– physical interaction length and transportation: 47%!
– count_by_process: 2.2%!
– sort_by_process: 2.7%!
– post step actions and writing secondary particles: 42.3%

CPU [ms] GPU [ms] CPU/GPU

AMD+M2090 748 37.8 (62.6)* 19.8 (11.9)*

Intel®+K20M 571 30.4 (81.9)* 18.7 (7.0)*

April 2, 201421

EM Particle Transportation on the GPU - S.Y. Jun @Annual Corcurrent Forum Meeting

Performance Issues and Considerations
• Observed issues (by the Nvidia profiler)!

– low arithmetic intensity and high branch divergence!
– high memory latencies and low multiprocessor occupancy !

• Considerations!
– memory access!

• global: aligned, coalesced and pre-allocated DMA!
• shared: block-based reduction (ex. atomic counter)!
• texture memory (spatial locality, ex. magnetic field map)!

– data structure (AoS vs. SoA)!
– floating point consideration (double vs. float)!
– random number generation (different SIMD pRNGs)!
– efficient sorting (bucket vs. thrust::sort)!
– multiple streams and concurrent kernels

April 2, 201422

EM Particle Transportation on the GPU - S.Y. Jun @Annual Corcurrent Forum Meeting

Challenges and New Strategies
• HEP detector simulation (ex. Geant4) is a giant!

– complicated, object oriented physics simulation!
– designed for efficient memory footprints (data driven) !
– random sampling (ex. acceptance and rejection)!

• Coprocessor architectures !
– hard to scale performance for conventional HEP detector simulation

(non-deterministic) - almost impossible (?) !
– fine tuning is critical, but restructuring simulation with efficient

memory accesses is much more important!
• Top-down approach!

– develop fully optimized (cudarized) and vectorized components of
geometry and physics!

– Incorporate into a concurrent simulation framework

April 2, 201423

EM Particle Transportation on the GPU - S.Y. Jun @Annual Corcurrent Forum Meeting

Incorporating into the Vector prototype
• The vector prototype started at CERN (talk by F. Carminati) !

– scheduler based on p-thread (Andrei Gheata)!
– vectorized geometry (talk by S. Wenzel and J. De Fine Licht)!
– tabulated physics (cross section, final states sampling, etc.)!

• Integration to the vector prototype (GPU broker)

April 2, 201424

CUDA in GeantV geometry

• Enable dispatching to CUDA as a co-processor
• Run separate to scalar and vectorized code
• Use same codebase
• Achieved by abstracted, templated algorithms

25

Separate compilation of backends

Main namespace	

.o

Compile for C++11
with vector backend

Source files	

.cu

Compile with NVCC
with CUDA backend

CUDA namespace	

.o

Optional modules

Source files	

.cpp

+ CUDA interface	

.cu

+

Executable

Linking

Interface
header

Shape measurements

• Scalar, vector and
CUDA code templated
from same abstracted
algorithm

• Dispatch on the fly to
optimal processor

• Typical GPU scaling;
high minimum input
threshold

27

Ivy Bridge vs. GTX 680

Where are we now?
• Scheduler

• The new version, hopefully improved of the
scheduler has been committed and we are
testing it

• Solids
• The proof or principle that we can achieve large

speedups (3-5+) is there, however a lot of work
lays ahead

• Navigator
• “Percolating” vectors through the navigator is a

difficult business. We have a simplified
navigator that achieves that, but more work is
needed here

• Physics
• Can generate x-secs and final states and

sample them, but there are still many points to
be clarified with Geant4 experts

28

Scheduler

Geometry

Navigator

Physics

Testing - benchmarking

Geant4

G4 nav

G4 phys

G4 geom

Prototype

Prot nav

Tab phys

UGeom*

With small, large & venti geometries

*UGeom == USolid + navigation29

Testing - benchmarking

Geant4

G4 nav

G4 phys

G4 geom

Prototype

Prot nav

Tab phys

UGeom*

G4 nav

Tab phys

G4 geom

With small, large & venti geometries

*UGeom == USolid + navigation29

Testing - benchmarking

Geant4

G4 nav

G4 phys

G4 geom

Prototype

Prot nav

Tab phys

UGeom*

G4 nav

Tab phys

G4 geom

G4 nav

G4 phys

G4 geom

V phys

With small, large & venti geometries

*UGeom == USolid + navigation29

Testing - benchmarking

Geant4

G4 nav

G4 phys

G4 geom

Prototype

Prot nav

Tab phys

UGeom*

G4 nav

Tab phys

G4 geom

G4 nav

G4 phys

G4 geom

V phys

G4 nav

Tab phys

G4 geom

V phys

With small, large & venti geometries

*UGeom == USolid + navigation29

Testing - benchmarking

Geant4

G4 nav

G4 phys

G4 geom

Prototype

Prot nav

Tab phys

UGeom*

G4 nav

Tab phys

G4 geom

G4 nav

G4 phys

G4 geom

V phys

G4 nav

Tab phys

G4 geom

V phys

Prot nav

Tab phys

UGeom*

V phys

With small, large & venti geometries

*UGeom == USolid + navigation29

Conclusion

• Work on a full prototype is progressing
• The first performance figures are very encouraging
• The template specialisation technique seems to
provide a reasonable model for portable HPC

• We hope to have a demonstrator by the end of the
year

30

