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A luminous future for HEP...

Start of LHC - 2009: Js = 900 GeV

Run1: Js=7-8 TeV,L = 2-7 x 10¥% cms "'
Bunch spacing: 75/50/25 ns (25 ns tests 2011. 2012 ) ~25 M

/L at

CERN openlab BoS — May 8, 2014
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The Eight dimensions

The “dimensions of performance”

2 Vectors
. T Micro-parallelism: gain

2 |nstruction Pipelining in throughput and
J Instruction Level Parallelism (ILP) in time-to-solution
a0 Hardware threading
2 Clock frequency — Very little gain to be
2 Multi-core - > expected and no action

, to be taken
1 Multi-socket Gain o otorint
5 Multi-node B ain in memory footprin

= . i
and time-to-solution
but not in throughput

Possibly running different
jobs as we do now is the
best solution
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Classical HEP transport is mostly local

 Event- or event track-

10°

10°

level parallelism will
better use resources
but won’t improve
these points

ﬁGeometry navigation \

(local)

 Material — X-section tables

» Particle type - physics
processes

\
50 per cent of the
time spent in 0.7%
volumes

ATLAS volumes sorted by transport time. The same
behavior is observed for most HEP geometries.
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Navigating very large data
structures

No locality

OO abused: very deep
Instruction stack

Cache misses
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Introduced basketized transport

Deal with particles in parallel

A dispatcher thread puts
particles back into transport
buffers

Everything happens
Output buffer(s) asynchronously and in
parallel

The challenge is to
] minimise locks

Keep long vectors

Avoid memory

\ explosion

Particles are transported
per thread and put in output
buffers
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Basket managers

One basket manager per volume
— Receiving tracks entering the volume from generator or scheduler
— Accessed by scheduler only

Pool of empty baskets, one current basket + one basket for prioritized tracks
Lock-free access for unique scheduler (only one thread can add tracks)

Transportability threshold per manager

— If threshold reached when adding tracks, the current basket is pushed in the work queue and replaced
from the pool. Tracks added with the priority flag go to the priority basket which gets pushed to the
priority side of the queue

— Threshold(vol) = Ntracks_in_flight(vol)/2N_threads rounded to %4 (min 4, max 256)

1...N

volumes

_________________________________________________

TGeoVolume

Basket pool  Basket manager
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Scheduling policies

 Workload balancing
— Divide the work evenly to scale with number of workers
— Queue control: garbage collection on work queue depletion
— Improvement: schedule physics as separate task (process selection and
discrete processes post-step)
e Memory management
— Not active currently, the idea it to trigger hit/digits collection and memory
cleanup on thresholds
 Keep large vectors
— Raise transportability thresholds per volume
— Postpone sparse tracks when not in garbage collection mode

* Trigger single track mode when vectorization gives just
overhead
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PNysics 9

* A lightweight physics for realistic shower development

e Select the major mechanisms

« Bremsstrahlung, e+ annihilation, Compton, Decay, Delta ray, Elastic hadron,
Inelastic hadron, Pair production, Photoelectric, Capture + dE/dx & MS

 Tabulate all x-secs (100 bins -> 90MB)
* Generate (10-50) final states (300kB per final state & element)
* Not good as Geant4, but it could be the seed of a fast S|mulat|on ootlon

* Independent from the 810} " Y S RN O B TR [
MonteCarlo that actually 10?: ...... Td'féil ......... ........... vonUranlum ......... .......
generates the tables :; j . ‘

[ Geant4 ] [ MC-x } 10’,;

l |

[ Physics tables ] ‘Z

[ Geant-V prototype ] 10°




Recap of performance status

*provided new optimized vector interfaces for some elementary
solids and geometric base classes ( implemented important
functions for particle navigation )

*overall performance gain in a standard navigation benchmark ( in toy

P detector with 4 boxes, 3 tubes, 2 cones ) - comparison to ROOT/
IStFrominsiae
mothervolume 534 I 7

vector flow

pick next -
daughter volume |~ |6 particles | 1024 particles
* SIMD
transform Intel
dmightor frame IvyBridge ~2.8x ~4.0x
(AVX)
distToOutside Intel Haswell
daughtervol ( AVXZ) 3 .OX 5 .OX
uDsloal’ﬁdS;ers ' Intel Xeon-Phi ~4 I ~4 8
(AVX512) 1 X -OX

Xeon-Phi and Haswell benchmarks by CERN
Openlab (Georgios Bitzes)

CHEP13 paper: http://arxiv.org/pdf/1312.0816.pdf
Sandro Wenzel, CERN-PH-SFT Annual Concurrency Forum Meeting, 02-04- 14 |2



http://arxiv.org/pdf/1312.0816.pdf

Portable HPC?

©)

~/~_~

e Straight “vectorisation” of existing code is difficult to

Impossible
* Resulting code is hard to read and maintain
 And it is largely compiler-dependency
e Porting to different high end devices is very di

ficult

e Explored solution is to use template speciticati

on for

solid placement, specialisation and code generation
* Highly optimised modular “codelets™ a la STL are

used to construct algorithms

13



Solid specialisation

CreateTube(rmin, rmax, all, al?2)

QOGN

Instantiate
tube section Instantiate

cyl section

Instantiate Instantiate

tube cylinder

14



lllustrating scalar/SIMD albstraction and kernels !!/\

Vector
interface

External
CUDA kernels
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Backend instantiation
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Kernel instantiation




Performance examples '~

ntel C

e Performance of the inside
method for a tube on an

~U

* AS yOU

can see the

performance is improved
even for the scalar
vVersion
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M Unspecialized scalar

W Specialized scalar (rot, trans)

m Specialized vector (rot, trans)

W Specialized scalar (rot, trans, type)
W Specialized vector (rot, trans, type)
B ROOT

W Usolids

Inside method
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 Compare simulated physics outputs
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 Hardware (host + device)

- Host (CPU) Device (GPU)

M2090  AMD Opteron™ 6134  Nvidia M2090 (Fermi)
32 cores @ 2.4 GH7, 512 cores @ 1.3 GHz,

K20 Intel® Xeon® E5-2620 NVidia K20 (Kepler)
24 cores @ 2.0 GHz 2496 cores @ 0.7GHz

* Performance measurement



* A simple calorimeter (CMS Ecal) with the CMS b-field map
* Tracking for one step: split kernels (GPIL+sorting+Dolt)

CPU [ms] GPU [ms] CPU/GPU
AMD+M2090 748 37.8 (62.6)  19.8 (11.9)*
Intel®+K20M 571 30.4 (81.9)*  18.7 (7.0)*

* Performance by each kernel (% of the total application time)

2= Fermilab



* Observed issues (by the Nvidia profiler)

 (Considerations



* HEP detector simulation (ex. Geant4) is a giant

» Coprocessor architectures

* Top-down approach

2L Fermilab



* The vector prototype started at CERN (talk by F. Carminati)

* Integration to the vector prototype (GPU broker)

multiple

threading

Vectorized
Transport
(SIMD)

Template
<scalar>
<vector>
<device>

baskets of tracks

hadrons

EM Particle

Transport

.....

(SIMT)

el fie e_/gamma

survived/secondaries

thread

blocks

2= Fermilab



CUDA in GeantV geometry

e Enable dispatching to CUDA as a co-processor
* Run separate to scalar and vectorized code

e Use same codebase

* Achieved by abstracted, templated algorithms

25



Separate compilation of backends

Source files Source files
lllllllllllllllll

: + CUDA interface
Optlonal modules
|nterface .................
Compile for C++1 | e Compile with NVCC
with vector backend with CUDA backend

Main namespace CUDA namespace
.0 \Linking / o)

Executable



Speedup

Shape measurements

Performance of Inside algorithm for tubes

- Scalar

| —< AVX

| =—= CUDA, best case memory overhead
CUDA, worst case memory overhead

vy Bridge vs. GTX 680

e e e T A T e S iy
O L N W P U ON OO OO FR N WU ON
I L L L L L L L e e 1

N

Input length

8 16 32 64 128 256 512 1024 2048 4096

e Scalar, vector and
CUDA code templated
from same abstracted
algorithm

* Dispatch on the tly to
optimal processor

e Typical GPU scaling;
high minimum input
threshold




Where are we now”

e Scheduler

 The new version, hopefully improved of the
scheduler has been committed and we are
testing it
e Solids

e The proof or principle that we can achieve large
speedups (3-5+) is there, however a lot of work
lays ahead

« Navigator

» “Percolating” vectors through the navigator is a
difficult business. We have a simplified
navigator that achieves that, but more work is
needed here

e Physics
« (Can generate x-secs and final states and

sample them, but there are still many points to
be clarified with Geant4 experts

28
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Testing - benchmarking Q)

Geant4 Prototype
G4 nav Prot nav
G4 phys Tab phys
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Testing - benchmarking

Geant4 Prototype
G4 nav G4 nav G4 nav G4 nav Prot nav Prot nav
G4 phys Tab phys G4 phys Tab phys Tab phys  Tab phys
V phys V phys V phys
G4 geom G4 geom G4 geom G4 geom UGeom* UGeom*

With small, large & venti geometries

0 “UGeom == USolid + navigation



Conclusion >

* Work on a full prototype is progressing

P

e
e

'OV

first performance figures are very encouraging
template specialisation technique seems to

ide a reasonable model for portable HPC

* \We hope to have a demonstrator by the end of the
year
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