Portable HPC for High-
Performance Simulation

Federico Carminati
Future of Many-Core
Computing in Science
29 May 2014 Wigner Datacenter

e

Thanks to

« John Apostolakis (CERN)

* Marilena Bandieramonte (Catania U.)
» Georgios Bitzes (CERN openlab)

* Rene Brun (CERN)

e Philippe Canal (FNAL)

* Federico Carminati (CERN)

» Johannes Christof De Fine Licht (CERN)
e Laurent Duhem (Intel)

e Daniel Elvira (FNAL)

* Andrei Gheata (CERN)

« Soon Yung Jun (FNAL)

e Guilherme Lima (FNAL)

* Mihaly Novak (CERN)

 Raman Sehgal (BARC)

» Oksana Shadura (CERN)

« Sandro Christian Wenzel (CERN)

A luminous future for HEP...

Start of LHC - 2009: Js = 900 GeV

Run1: Js=7-8 TeV,L = 2-7 x 10¥% cms "'
Bunch spacing: 75/50/25 ns (25 ns tests 2011. 2012) ~25 M

/L at

CERN openlab BoS — May 8, 2014

Start of LHC - 2009: Js = 900 GeV
Run 1: Js=7-8 TeV,L = 2-7 x 10% cms*

CERN openlab BoS - May 8, 2014

The Eight dimensions

The “dimensions of performance”

2 Vectors
. T Micro-parallelism: gain

2 |nstruction Pipelining in throughput and
J Instruction Level Parallelism (ILP) in time-to-solution
a0 Hardware threading
2 Clock frequency — Very little gain to be
2 Multi-core - > expected and no action

, to be taken
1 Multi-socket Gain o otorint
5 Multi-node B ain in memory footprin

= . i
and time-to-solution
but not in throughput

Possibly running different
jobs as we do now is the
best solution

The Eight dimensions

The “dimensions of performance”
0 Vectors

. T Micro-parallelism: gain
0 Instruction Pipelining

— In throughput and

0 Instruction Level Parallelism (ILP) in time-to-solution
a0 Hardware threading
2 Clock frequency — Very little gain to be
—_ .
5 Multi-core > expected and no action
_ to be taken
0 Multi-socket o .
o Multi-nod o Gain in memory footprint
ulti-node - and time-to-solution
Expected limits on performance scaling .
SIMD Lp HW but not in throughput
THEORY 8 4 1.35
OPTIMISED 6 1.57 1.25 _ _ _
HEP 1 0.8 1.25 Possibly running different
Expected limits on performance scaling (multiplied) jObS dsS we dO Nnow iS the
SIMD ILP HW :
THEORY 8 32 43.2 beSt SOlUt|On
ra— " e 77 OpenLab@CHEP12

4

Classical HEP transport is mostly local

 Event- or event track-

10°

10°

level parallelism will
better use resources
but won’t improve
these points

ﬁGeometry navigation \

(local)

 Material — X-section tables

» Particle type - physics
processes

\
50 per cent of the
time spent in 0.7%
volumes

ATLAS volumes sorted by transport time. The same
behavior is observed for most HEP geometries.

TGLU
TBPA
TGL2
XBH1
TBP2
XBS1
XBG1
TBAA
XRAS
XRA4
XRA3
PXBO
XBHO
TBVS
TBVO
XRA2
XGAS

XBST

XRA1

TBVE

ALA3

ALA2
ALASG
ALA7
ALA1
ALAS

ALA4
ALAS
ALAY9
XRAD

TBVT

ALAO
ALAD

ALAa

TBVSE

TBV3

TBvV4

TMOU
BWA1

TBVS

TMO1

PBM1

BWA7

BWAS

TBVA

TBV1

TBV2

PBL1

SCTT

BWAG

~/7_~

Navigating very large data
structures

No locality

OO abused: very deep
Instruction stack

Cache misses

Introduced basketized transport

Deal with particles in parallel

Output buffer(s) C\/

Introduced basketized transport

Deal with particles in parallel

Output buffer(s)

Introduced basketized transport

Deal with particles in parallel

Output buffer(s)

Particles are transported
per thread and put in output
buffers

Introduced basketized transport

Deal with particles in parallel

Output buffer(s)

[T TT T T TT T T T T 1 111

A dispatcher thread puts
particles back into transport
buffers

Particles are transported
per thread and put in output
buffers

Introduced basketized transport

Deal with particles in parallel

Output buffer(s)

[T TT T T TT T T T T 1 111

A dispatcher thread puts
particles back into transport
buffers

Everything happens
asynchronously and in
parallel

Particles are transported
per thread and put in output
buffers

Introduced basketized transport

Deal with particles in parallel

A dispatcher thread puts
particles back into transport
buffers

Everything happens

Output buffer(s) asynchronously and in
parallel

The challenge is to
minimise locks

Particles are transported
per thread and put in output
buffers

Introduced basketized transport

Deal with particles in parallel

A dispatcher thread puts
particles back into transport
buffers

Everything happens
Output buffer(s) asynchronously and in
parallel

The challenge is to
minimise locks

Keep long vectors

Particles are transported
per thread and put in output
buffers

Introduced basketized transport

Deal with particles in parallel

A dispatcher thread puts
particles back into transport
buffers

Everything happens
Output buffer(s) asynchronously and in
parallel

The challenge is to
] minimise locks

Keep long vectors

Avoid memory

\ explosion

Particles are transported
per thread and put in output
buffers

‘Schedulef| = A

Ve

Basket of W &_ Basket of 1

tracks | | tracks

\ __ Dispatching \ MIMD
= SIMD

{Geo-metry\ J — PhYSICS l

‘Geometry “x-sections | [Reactlons
algorithms \ —
@I AD
< h gD o
Y Kok W

Voo

/Schedule' =1 A y

N H=

Basket of W &_ Basket of
\ m Dispatching \ MIMD

tracks tracks
=N

T SIMD

{Geo-metry\ J — PhYSICS l

[T T Y
I

\Geor_netry | (x-sections | [Reactlog
algorithms e

@I AD 3 (FRmp=======

TNfb e 3

LY Kok ¥ |

e ®» & P EREEEEEEEENES
) - W0 »w 10 L) Ly e L) "W W 1 "w "i .\-_',J :’.‘“

Basket managers

One basket manager per volume
— Receiving tracks entering the volume from generator or scheduler
— Accessed by scheduler only

Pool of empty baskets, one current basket + one basket for prioritized tracks
Lock-free access for unique scheduler (only one thread can add tracks)

Transportability threshold per manager

— If threshold reached when adding tracks, the current basket is pushed in the work queue and replaced
from the pool. Tracks added with the priority flag go to the priority basket which gets pushed to the
priority side of the queue

— Threshold(vol) = Ntracks_in_flight(vol)/2N_threads rounded to %4 (min 4, max 256)

1...N

volumes

TGeoVolume

Basket pool Basket manager

~g
urrent
w

1...N

volumes

e O O O D N D N O D T D O D

Basket lifecycle

TGeoVolume

i Basket

pool Basket manager

’

AddTrack) P 4

’

Generator

Scheduler

Push on
threshold

Push on
garbage

collection

Transport
gueue

Propagator

W empty
' full
' transported

Scheduling policies

 Workload balancing
— Divide the work evenly to scale with number of workers
— Queue control: garbage collection on work queue depletion
— Improvement: schedule physics as separate task (process selection and
discrete processes post-step)
e Memory management
— Not active currently, the idea it to trigger hit/digits collection and memory
cleanup on thresholds
 Keep large vectors
— Raise transportability thresholds per volume
— Postpone sparse tracks when not in garbage collection mode

* Trigger single track mode when vectorization gives just
overhead

10

PNysics 9

* A lightweight physics for realistic shower development

e Select the major mechanisms

« Bremsstrahlung, e+ annihilation, Compton, Decay, Delta ray, Elastic hadron,
Inelastic hadron, Pair production, Photoelectric, Capture + dE/dx & MS

 Tabulate all x-secs (100 bins -> 90MB)
* Generate (10-50) final states (300kB per final state & element)
* Not good as Geant4, but it could be the seed of a fast S|mulat|on ootlon

* Independent from the 810} " Y S RN O B TR [
MonteCarlo that actually 10?: Td'féil vonUranlum
generates the tables :; j . ‘

[Geant4] [MC-x } 10’,;

l |

[Physics tables] ‘Z

[Geant-V prototype] 10°

Recap of performance status

*provided new optimized vector interfaces for some elementary
solids and geometric base classes (implemented important
functions for particle navigation)

*overall performance gain in a standard navigation benchmark (in toy

P detector with 4 boxes, 3 tubes, 2 cones) - comparison to ROOT/
IStFrominsiae
mothervolume 534 I 7

vector flow

pick next -
daughter volume |~ |6 particles | 1024 particles
* SIMD
transform Intel
dmightor frame IvyBridge ~2.8x ~4.0x
(AVX)
distToOutside Intel Haswell
daughtervol (AVXZ) 3 .OX 5 .OX
uDsloal’ﬁdS;ers ' Intel Xeon-Phi ~4 I ~4 8
(AVX512) 1 X -OX

Xeon-Phi and Haswell benchmarks by CERN
Openlab (Georgios Bitzes)

CHEP13 paper: http://arxiv.org/pdf/1312.0816.pdf
Sandro Wenzel, CERN-PH-SFT Annual Concurrency Forum Meeting, 02-04- 14 |2

http://arxiv.org/pdf/1312.0816.pdf

Portable HPC?

©)

~/~_~

e Straight “vectorisation” of existing code is difficult to

Impossible
* Resulting code is hard to read and maintain
 And it is largely compiler-dependency
e Porting to different high end devices is very di

ficult

e Explored solution is to use template speciticati

on for

solid placement, specialisation and code generation
* Highly optimised modular “codelets™ a la STL are

used to construct algorithms

13

Solid specialisation

CreateTube(rmin, rmax, all, al?2)

QOGN

Instantiate
tube section Instantiate

cyl section

Instantiate Instantiate

tube cylinder

14

lllustrating scalar/SIMD albstraction and kernels !!/\

Vector
interface

External
CUDA kernels

lllustrating scalar/SIMD albstraction and kernels !!/\

Vector External
Interface CUDA kernels
L 4

," : ~~~

s’ I ~~

A] %

Scalar Looper ~, Cilk Plus Looper
—

lllustrating scalar/SIMD albstraction and kernels !!J\

Vector External
Interface CUDA kernels
L 4
," : ~~~
o’] ~~
A] U

N
4

Backend instantiation

lllustrating scalar/SIMD albstraction and kernels g

Vector External
Interface CUDA kernels
L 4
," : ~~~
o’] ~~
A] U

'
4

Backend instantiation

v

Kernel instantiation

Performance examples '~

ntel C

e Performance of the inside
method for a tube on an

~U

* AS yOU

can see the

performance is improved
even for the scalar
vVersion

16

M Unspecialized scalar

W Specialized scalar (rot, trans)

m Specialized vector (rot, trans)

W Specialized scalar (rot, trans, type)
W Specialized vector (rot, trans, type)
B ROOT

W Usolids

Inside method

e \\/E
1 Trackng'Sp
/\\ Real Trajectory
€ € e ‘ﬂ"w fitance”
Detector and Magnetic Field EM Physics and pRNG Navigation and Transportation
Y
Primary/Secondary Particles | GPU Engme (CUDA C/C++) ~ Track Dispatcher
¢ J
—_
: i Tame]
.:',. | § T g*
= .u T B Anigwd b
g retremmeall — I

2= Fermilab

 Compare simulated physics outputs
RED BLUE

((Bremasirahiung: siep length] ey o/ | Bremsstrahlung: energy loss | W -
e o 2 [Bremsstrahlung: secondaries’ anguiar distribution |
= 10* 8 : [
2 5 1B 8 10°
c T i)
2 107 o < 10*
o o " >
® 402 S B o 10k
10°E 10°
10 .
B | 10
1 - :
1
2 e 2 " L | 1 1 alda 1 1 1.4.':-1.... 2 ‘
$rot——t— LR St | Sust ot L b B ™
= k.11 1 i i e etk R ST
%o.s- A N S R R 11 1 1 %’o.s— 2osp \
0o 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10 © (6027004006008 01 012014016018 02
step length [mm] Energy loss [MeV] Angle [rad)

2L Fermilab

 Hardware (host + device)

- Host (CPU) Device (GPU)

M2090 AMD Opteron™ 6134 Nvidia M2090 (Fermi)
32 cores @ 2.4 GH7, 512 cores @ 1.3 GHz,

K20 Intel® Xeon® E5-2620 NVidia K20 (Kepler)
24 cores @ 2.0 GHz 2496 cores @ 0.7GHz

* Performance measurement

* A simple calorimeter (CMS Ecal) with the CMS b-field map
* Tracking for one step: split kernels (GPIL+sorting+Dolt)

CPU [ms] GPU [ms] CPU/GPU
AMD+M2090 748 37.8 (62.6) 19.8 (11.9)*
Intel®+K20M 571 30.4 (81.9)* 18.7 (7.0)*

* Performance by each kernel (% of the total application time)

2= Fermilab

* Observed issues (by the Nvidia profiler)

 (Considerations

* HEP detector simulation (ex. Geant4) is a giant

» Coprocessor architectures

* Top-down approach

2L Fermilab

* The vector prototype started at CERN (talk by F. Carminati)

* Integration to the vector prototype (GPU broker)

multiple

threading

Vectorized
Transport
(SIMD)

Template
<scalar>
<vector>
<device>

baskets of tracks

hadrons

EM Particle

Transport

.....

(SIMT)

el fie e_/gamma

survived/secondaries

thread

blocks

2= Fermilab

CUDA in GeantV geometry

e Enable dispatching to CUDA as a co-processor
* Run separate to scalar and vectorized code

e Use same codebase

* Achieved by abstracted, templated algorithms

25

Separate compilation of backends

Source files Source files
lllllllllllllllll

: + CUDA interface
Optlonal modules
|nterface
Compile for C++1 | e Compile with NVCC
with vector backend with CUDA backend

Main namespace CUDA namespace
.0 \Linking / o)

Executable

Speedup

Shape measurements

Performance of Inside algorithm for tubes

- Scalar

| —< AVX

| =—= CUDA, best case memory overhead
CUDA, worst case memory overhead

vy Bridge vs. GTX 680

e e e T A T e S iy
O L N W P U ON OO OO FR N WU ON
I L L L L L L L e e 1

N

Input length

8 16 32 64 128 256 512 1024 2048 4096

e Scalar, vector and
CUDA code templated
from same abstracted
algorithm

* Dispatch on the tly to
optimal processor

e Typical GPU scaling;
high minimum input
threshold

Where are we now”

e Scheduler

 The new version, hopefully improved of the
scheduler has been committed and we are
testing it
e Solids

e The proof or principle that we can achieve large
speedups (3-5+) is there, however a lot of work
lays ahead

« Navigator

» “Percolating” vectors through the navigator is a
difficult business. We have a simplified
navigator that achieves that, but more work is
needed here

e Physics
« (Can generate x-secs and final states and

sample them, but there are still many points to
be clarified with Geant4 experts

28

-

Scheduler

_

-

Geometry

(&

-

Navigator

=

Physics

Testing - benchmarking Q)

Geant4 Prototype
G4 nav Prot nav
G4 phys Tab phys
G4 geom UGeom”

With small, large & venti geometries

0 “UGeom == USolid + navigation

Testing - benchmarking y

Geant4 Prototype
G4 nav G4 nav Prot nav
G4 phys Tab phys Tab phys
G4 geom G4 geom UGeom*

With small, large & venti geometries

0 “UGeom == USolid + navigation

Testing - benchmarking

Geant4 Prototype
G4 nav G4 nav G4 nav Prot nav
G4 phys Tab phys G4 phys Tab phys
V phys
G4 geom G4 geom G4 geom UGeom*

With small, large & venti geometries

0 “UGeom == USolid + navigation

Testing - benchmarking

Geant4 Prototype
G4 nav G4 nav G4 nav G4 nav Prot nav
G4 phys Tab phys G4 phys Tab phys Tab phys
V phys V phys
G4 geom G4 geom G4 geom G4 geom UGeom*

With small, large & venti geometries

0 “UGeom == USolid + navigation

Testing - benchmarking

Geant4 Prototype
G4 nav G4 nav G4 nav G4 nav Prot nav Prot nav
G4 phys Tab phys G4 phys Tab phys Tab phys Tab phys
V phys V phys V phys
G4 geom G4 geom G4 geom G4 geom UGeom* UGeom*

With small, large & venti geometries

0 “UGeom == USolid + navigation

Conclusion >

* Work on a full prototype is progressing

P

e
e

'OV

first performance figures are very encouraging
template specialisation technique seems to

ide a reasonable model for portable HPC

* \We hope to have a demonstrator by the end of the
year

30

