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•
HEP now risks to compromise physics because of lack of computing 

resources 

-
Has not been tru

e for ~20 years

CERN openlab BoS – May 8, 2014



The Eight dimensions
n The “dimensions of performance” 

q Vectors  
q Instruction Pipelining  
q Instruction Level Parallelism (ILP)  
q Hardware threading  
q Clock frequency  
q Multi-core  
q Multi-socket  
q Multi-node

Possibly running different 
jobs as we do now is the 
best solution

}
Gain in memory footprint  
and time-to-solution 
but not in throughput

Very little gain to be 
expected and no action 
to be taken

Micro-parallelism: gain 
in throughput and  
in time-to-solution
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Expected	
  limits	
  on	
  performance	
  scaling
SIMD ILP HW	
  

THEORY 8 4 1.35
OPTIMISED 6 1.57 1.25
HEP 1 0.8 1.25

Expected	
  limits	
  on	
  performance	
  scaling	
  (mulKplied)
SIMD ILP HW	
  

THEORY 8 32 43.2
OPTIMISED 6 9.43 11.79
HEP 1 0.8 1 OpenLab@CHEP12
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Classical HEP transport is mostly local

ATLAS volumes sorted by transport time. The same 
behavior is observed for most HEP geometries.

50 per cent of the 
time spent in 0.7% 

volumes
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• Navigating very large data 
structures 

• No locality 
• OO abused: very deep 

instruction stack 
• Cache misses

• Event- or event track-
level parallelism will 
better use resources 
but won’t improve 
these points

•Geometry navigation 
(local) 

• Material – X-section tables 
• Particle type - physics 

processes



Introduced basketized transport
Deal with particles in parallel

Output buffer(s)

6



Introduced basketized transport
Deal with particles in parallel

Output buffer(s)

6



Introduced basketized transport
Deal with particles in parallel

Output buffer(s)

Particles are transported 
per thread and put in output 
buffers

6



Introduced basketized transport
Deal with particles in parallel

Output buffer(s)

Particles are transported 
per thread and put in output 
buffers

A dispatcher thread puts 
particles back into transport 
buffers

6



Introduced basketized transport
Deal with particles in parallel

Output buffer(s)

Particles are transported 
per thread and put in output 
buffers

A dispatcher thread puts 
particles back into transport 
buffers

Everything happens 
asynchronously and in 
parallel

6



Introduced basketized transport
Deal with particles in parallel

Output buffer(s)

Particles are transported 
per thread and put in output 
buffers

A dispatcher thread puts 
particles back into transport 
buffers

Everything happens 
asynchronously and in 
parallel

The challenge is to 
minimise locks

6



Introduced basketized transport
Deal with particles in parallel

Output buffer(s)

Particles are transported 
per thread and put in output 
buffers

A dispatcher thread puts 
particles back into transport 
buffers

Everything happens 
asynchronously and in 
parallel

The challenge is to 
minimise locks

Keep long vectors

6



Introduced basketized transport
Deal with particles in parallel

Output buffer(s)

Particles are transported 
per thread and put in output 
buffers

A dispatcher thread puts 
particles back into transport 
buffers

Everything happens 
asynchronously and in 
parallel

The challenge is to 
minimise locks

Keep long vectors

Avoid memory 
explosion
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Scheduler

Geometry 
navigator

Geometry 
algorithms

Physics

Basket of 
tracks

Basket of 
tracks

x-sections Reactions
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Basket	
  managers
• One	
  basket	
  manager	
  per	
  volume	
  

– Receiving	
  tracks	
  entering	
  the	
  volume	
  from	
  generator	
  or	
  scheduler	
  
– Accessed	
  by	
  scheduler	
  only	
  

• Pool	
  of	
  empty	
  baskets,	
  one	
  current	
  basket	
  +	
  one	
  basket	
  for	
  prioritized	
  tracks	
  
• Lock-­‐free	
  access	
  for	
  unique	
  scheduler	
  (only	
  one	
  thread	
  can	
  add	
  tracks)	
  
• Transportability	
  threshold	
  per	
  manager	
  

– If	
  threshold	
  reached	
  when	
  adding	
  tracks,	
  the	
  current	
  basket	
  is	
  pushed	
  in	
  the	
  work	
  queue	
  and	
  replaced	
  
from	
  the	
  pool.	
  Tracks	
  added	
  with	
  the	
  priority	
  flag	
  go	
  to	
  the	
  priority	
  basket	
  which	
  gets	
  pushed	
  to	
  the	
  
priority	
  side	
  of	
  the	
  queue	
  

– Threshold(vol)	
  =	
  Ntracks_in_flight(vol)/2N_threads	
  rounded	
  to	
  %4	
  (min	
  4,	
  max	
  256)

Basket	
  pool

TGeoVolume

Basket	
  manager

current

1…Nvolumes

priority
8



Basket	
  lifecycle

empty

full
Basket	
  pool

TGeoVolume

Basket	
  manager

current

Generator Scheduler

1…Nvolumes Transport	
  
queue

Propagator

transported

recycle
AddTrack

priority

AddTrack

Push	
  on	
  	
  
threshold

Push	
  on	
  	
  
garbage	
  
collection
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Scheduling	
  policies

• Workload	
  balancing	
  
– Divide	
  the	
  work	
  evenly	
  to	
  scale	
  with	
  number	
  of	
  workers	
  
– Queue	
  control:	
  garbage	
  collection	
  on	
  work	
  queue	
  depletion	
  
– Improvement:	
  schedule	
  physics	
  as	
  separate	
  task	
  (process	
  selection	
  and	
  

discrete	
  processes	
  post-­‐step)	
  
• Memory	
  management	
  

– Not	
  active	
  currently,	
  the	
  idea	
  it	
  to	
  trigger	
  hit/digits	
  collection	
  and	
  memory	
  
cleanup	
  on	
  thresholds	
  

• Keep	
  large	
  vectors	
  
– Raise	
  transportability	
  thresholds	
  per	
  volume	
  
– Postpone	
  sparse	
  tracks	
  when	
  not	
  in	
  garbage	
  collection	
  mode	
  

• Trigger	
  single	
  track	
  mode	
  when	
  vectorization	
  gives	
  just	
  
overhead
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Physics
• A lightweight physics for realistic shower development 
• Select the major mechanisms 

• Bremsstrahlung, e+ annihilation, Compton, Decay, Delta ray, Elastic hadron, 
Inelastic hadron, Pair production, Photoelectric, Capture + dE/dx & MS 

• Tabulate all x-secs (100 bins -> 90MB) 
• Generate (10-50) final states (300kB per final state & element) 
• Not good as Geant4, but it could be the seed of a fast simulation option 
• Independent from the  
MonteCarlo that actually  
generates the tables

11

γ on Uranium
Total

PhotoelCompton
Conversion

Inelastic

11
Geant-V prototype

Physics tables

Geant4 MC-x



Sandro Wenzel, CERN-PH-SFT Annual Concurrency Forum Meeting, 02-04-14

Recap of performance status
provided new optimized vector interfaces for some elementary 
solids and geometric base classes ( implemented important 
functions for particle navigation )	



overall performance gain in a standard navigation benchmark ( in toy 
detector with 4 boxes, 3 tubes, 2 cones ) - comparison to ROOT/
5.34.17
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distFromInside
mothervolume

pick next 
daughter volume

transform 
coordinates to 
daughter frame

distToOutside
daughtervol

update step + 
boundary

vector flow

SIMD

SIMD

SIMD

SIMD

CHEP13 paper: http://arxiv.org/pdf/1312.0816.pdf

16 particles 1024 particles

Intel 	


IvyBridge 

(AVX)
~2.8x ~4.0x

Intel Haswell 
(AVX2) ~3.0x ~5.0x

Intel Xeon-Phi	


(AVX512) ~4.1x ~4.8x

Xeon-Phi and Haswell benchmarks by CERN 

Openlab (Georgios Bitzes) 

http://arxiv.org/pdf/1312.0816.pdf


Portable HPC?

• Straight “vectorisation” of existing code is difficult to 
impossible 

• Resulting code is hard to read and maintain 
• And it is largely compiler-dependency 

• Porting to different high end devices is very difficult 
• Explored solution is to use template specification for 
solid placement, specialisation and code generation 

• Highly optimised modular “codelets” à la STL are 
used to construct algorithms

13



Solid specialisation
CreateTube(rmin, rmax, al1, al2)

rmin=0?
yes

Instantiate 
cylinder

Instantiate 
 tube

no
al1=al2?

yes

no

Instantiate 
 tube section

al1=al2?

yes

no

Instantiate 
 cyl section
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Illustrating scalar/SIMD abstraction and kernels

Single particle 
interface

C-like abstract 
kernels

Vector 
interface

External 
CUDA kernels
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Illustrating scalar/SIMD abstraction and kernels

Single particle 
interface

C-like abstract 
kernels

Backend instantiation

Cilk Plus Backend

Vector 
interface

External 
CUDA kernels

Vc Looper Thread access

Scalar Looper Cilk Plus Looper

C-like specialized 
kernels

Scalar Backend Vc Backend CUDA Backend

Kernel instantiation



Performance examples

• Performance of the inside 
method for a tube on an 
Intel CPU 

• As you can see the 
performance is improved 
even for the scalar 
version

16
Inside method



EM Particle Transportation on the GPU - S.Y. Jun @Annual Concurrent Forum Meeting

Particle Transport on the GPU
– Initial scope: charged particle transportation in a magnetic field 

as a demonstrator!
– propagate {tracks} for {given step lengths} through a simple 

geometry (similar to the CMS electromagnetic calorimeter)!
– lesson learnt (see backup for performance)!

• arithmetic intensity = instructions/(memory load) is too low  !
• data transfer is costly (compared to kernel execution time)!

• Extension: full EM particle tracking on the GPU  !
– implemented physics processes and models for e-/γ!
– nothing is free: additional divergences and memory accesses !

• Restructuring the simulation flow !
– separate kernels and regroup tracks for each subtask 

April 2, 201417



EM Particle Transportation on the GPU - S.Y. Jun @Annual Concurrent Forum Meeting

GPU Prototype: Three Core Components

• Geometry!
– detector!
– B-field!
– navigator!

• EM Physics !
– e-/gamma!
– cross section!
– final state!

• GPU Scheduler!
– task stealing!
– load balance

April 2, 201418



EM Particle Transportation on the GPU - S.Y. Jun @Annual Corcurrent Forum Meeting

Physics Validation of GPU Physics 

• Compare simulated physics outputs !
– device code (RED) vs. Geant4 (BLUE) !
– ex. Bremsstrahlung process (1 GeV e-) !
– interaction length, energy loss, angular distribution of secondary 

photons, etc. 

April 2, 201419



EM Particle Transportation on the GPU - S.Y. Jun @Annual Corcurrent Forum Meeting

Performance Evaluation

• Hardware (host + device)!
!
!

!
!
!
!

• Performance measurement !
– (4096x32) tracks !
– Gain = Time (1 CPU core)/Time (total GPU cores)             !
    Time = (data transfer + kernel execution)!
– default <<< Blocks, Threads >>> organization       

M2090<<<32,128>>> and K20<<<26,192>>> 

Host (CPU) Device (GPU)

M2090 AMD Opteron™ 6134 
32 cores @ 2.4 GHz

Nvidia M2090 (Fermi)     
512 cores @ 1.3 GHz 

K20 Intel® Xeon® E5-2620  
24 cores @ 2.0 GHz

NVidia K20 (Kepler)     
2496 cores @ 0.7GHz

April 2, 201420



EM Particle Transportation on the GPU - S.Y. Jun @Annual Corcurrent Forum Meeting

Performance: Realistic Simulation 
• A simple calorimeter (CMS Ecal) with the CMS b-field map!
• Tracking for one step: split kernels (GPIL+sorting+DoIt)!
!

!

!

!

!
()*: GPU time using one kernel (sequential stepping)  !

• Performance by each kernel (% of the total application time)!
– random states (MTwister) : 5.8% (one time initialization)!
– physical interaction length and transportation: 47%!
– count_by_process: 2.2%!
– sort_by_process: 2.7%!
– post step actions and writing secondary particles: 42.3% 

CPU [ms] GPU [ms] CPU/GPU

AMD+M2090 748 37.8 (62.6)* 19.8 (11.9)*

Intel®+K20M 571 30.4 (81.9)* 18.7 (7.0)*

April 2, 201421



EM Particle Transportation on the GPU - S.Y. Jun @Annual Corcurrent Forum Meeting

Performance Issues and Considerations 
• Observed issues (by the Nvidia profiler)!

– low arithmetic intensity and high branch divergence!
– high memory latencies and low multiprocessor occupancy !

• Considerations!
– memory access!

• global: aligned, coalesced and pre-allocated DMA!
• shared: block-based reduction (ex. atomic counter)!
• texture memory (spatial locality, ex. magnetic field map)!

– data structure (AoS vs. SoA)!
– floating point consideration (double vs. float)!
– random number generation (different SIMD pRNGs)!
– efficient sorting (bucket vs. thrust::sort)!
– multiple streams and concurrent kernels

April 2, 201422



EM Particle Transportation on the GPU - S.Y. Jun @Annual Corcurrent Forum Meeting

Challenges and New Strategies
• HEP detector simulation (ex. Geant4) is a giant!

– complicated, object oriented physics simulation!
– designed for efficient memory footprints (data driven) !
– random sampling (ex. acceptance and rejection)!

• Coprocessor architectures !
– hard to scale performance for conventional HEP detector simulation 

(non-deterministic) - almost impossible (?) !
– fine tuning is critical, but restructuring simulation with efficient 

memory accesses is much more important!
• Top-down approach!

– develop fully optimized (cudarized) and vectorized components of 
geometry and physics!

– Incorporate into a concurrent simulation framework 

April 2, 201423



EM Particle Transportation on the GPU - S.Y. Jun @Annual Corcurrent Forum Meeting

Incorporating into the Vector prototype
• The vector prototype started at CERN (talk by F. Carminati) !

– scheduler based on p-thread (Andrei Gheata)!
– vectorized geometry (talk by S. Wenzel and J. De Fine Licht)!
– tabulated physics (cross section, final states sampling, etc.)!

• Integration to the vector prototype (GPU broker)

April 2, 201424



CUDA in GeantV geometry

• Enable dispatching to CUDA as a co-processor 
• Run separate to scalar and vectorized code 
• Use same codebase 
• Achieved by abstracted, templated algorithms

25



Separate compilation of backends

Main namespace	


.o

Compile for C++11 
with vector backend

Source files	


.cu

Compile with NVCC 
with CUDA backend

CUDA namespace	



.o

Optional modules

Source files	


.cpp

+ CUDA interface	


.cu

+

Executable

Linking

Interface 
header



Shape measurements

• Scalar, vector and 
CUDA code templated 
from same abstracted 
algorithm 

• Dispatch on the fly to 
optimal processor 

• Typical GPU scaling; 
high minimum input 
threshold

27

Ivy Bridge vs. GTX 680



Where are we now?
• Scheduler 

• The new version, hopefully improved of the 
scheduler has been committed and we are 
testing it 

• Solids 
• The proof or principle that we can achieve large 

speedups (3-5+) is there, however a lot of work 
lays ahead 

• Navigator 
• “Percolating” vectors through the navigator is a 

difficult business. We have a simplified 
navigator that achieves that, but more work is 
needed here 

• Physics 
• Can generate x-secs and final states and 

sample them, but there are still many points to 
be clarified with Geant4 experts

28

Scheduler

Geometry

Navigator

Physics
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Conclusion

• Work on a full prototype is progressing 
• The first performance figures are very encouraging 
• The template specialisation technique seems to 
provide a reasonable model for portable HPC 

• We hope to have a demonstrator by the end of the 
year
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