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INTRODUCTION

The most often encountered numerical problem in physics is

Integration 

One of the main sources are

Differential Equations (DEs).

These equations state a relation between an unknown function and 
its derivatives.

The main goal is to reconstruct this unknown function

or at least some specific values of it



INTRODUCTION

Two main types of DEs to be discussed here:

• Ordinary Differential Equations: 

the unknown function depends on ONE variable.

Examples: classical point mechanics, reaction equations, 

population dynamics, …

• Partial Differential Equations: 

the unknown function depends on MULTIPLE variables .

Examples: diffusion, waves, hydrodynamics, electrodynamics, …
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INTRODUCTION

In many cases, especially for coupled equation systems the 

solutions cannot be determined analitically and numerics

must be used…

𝜕𝑓(𝑥, 𝑦)

𝜕𝑥
+
𝜕𝑓(𝑥, 𝑦)

𝜕𝑦
= ⋯

𝜕𝑔(𝑥, 𝑦)

𝜕𝑥
+
𝜕𝑔(𝑥, 𝑦)

𝜕𝑦
= ⋯

𝜕ℎ(𝑥, 𝑦)

𝜕𝑥
+
𝜕ℎ(𝑥, 𝑦)

𝜕𝑦
= ⋯



INTRODUCTION

The (simplified)

workflow of a physicist:

1. Select the phenomena of interest

2. Formulate a model in terms of equations

3. Choose or Write a program

to solve the equations

4. Produce article with nice figures

5. Goto 1.
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CHALLENGES

• Interesting / realistic models result in very complex equations.

• Some interesting phenomena are only visible after long time or in 

large systems or in high precision calculations

• Models have free parameters (often function parameters!) whose 

effect must be investigated over a wide range of possibilities

 Parameter scans

Most physics problems has 

large computation cost!



WHY CODE-GENERATION?

• The toughest part today is not the unavailability of potent hardware 

but the development of fast and reliable codes for specific problems.

• The way from the original statement of the model until the 

publication of results can be full of mistakes/bugs/misprints etc.

• The software / API landscape is getting wider and hard to choose 

among them!

Why code-generation?

• Automatic specialization from generic to specific problems

• User input is at the first step, consistency is guaranteed during 

processing

• Can support multiple languages/frontends, easier to change or update



CODE-GENERATION

Proposed solution in terms of Abstract Syntax Trees (ASTs):

• Mathematical formulas and equations can be represented by trees:
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CODE-GENERATION

Proposed solution in terms of Abstract Syntax Trees (ASTs):

• Imperative programming constructs can also be represented by trees:

• Not to mention functional programming…
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CODE-GENERATION

Since all of the needed constructs are trees the workflow can be seen as a 

series of transformations on the ASTs!

Generic Model equations

Specific Model equations

Specialized Numeric Solvers

Source code file

symbolic constants, expansions

math  code

export tree to target language



CODE-GENERATION

To provide error checking and collect information for optimalizations
and parallelization the trees should be processed at the different stages:

• Symbolic (math) stage:
simplifications (0 ∙ 𝑎 → 𝑎, 3𝑎 + 4𝑎 → 7𝑎)
symbolic differentiation ( 

𝑑sin(𝑥)

𝑑𝑥
→ cos(𝑥) )

series expansions ( 𝑓(𝑥) →  𝑖=0
𝑛 𝑓𝑖Φ𝑖 (𝑥)

check for argument sanity and rank mismatch

• Programming stage:
Infer types, further sanity checks

a = dot(vector<2, double>(2.5, 9.1) , vector<2, double>(1., 0.)) →a is scalar double

Parallelization from data dependency (consider matrix operations):

A = Z ∗ X;
B = Y ∗ X;
C = A ∗ Y;

A = Z ∗ X;
C = A ∗ Y;

B = Y ∗ X;

thread1 thread2



SYMBOLIC STAGE

At the symbolic stage a general model is specialized according to user 

defined constants and parameters and simplified symbolically.
Numerical solvers are just higher-order functions operating on the equations.

Example: Spectral Expansion (like Fourier, Chebyshev series)

1. Equation:

2. Expansion:𝑓 𝑥 =  𝑖=0
𝑁 𝑓𝑖Φ𝑖 (𝑥)

3. Differentiation: Φ𝑖 𝑥 = cos(𝑖𝑁𝑥)
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SYMBOLICPROGRAMMING CONVERSION

All Math objects are given a type deduced from the leaves and 

propagated upwards.

Function definitions, signatures constructed, defunctionalization applied.

One important construct: ParallelFunction created from vector, matrix 

operations!

Calls are generated as:

f1(a, x, y):=ax + y

 z = f1(a, x, y)

void f1(range1 i, double a, double* z, 

double* x, double* y)

{

z[i] = a * x[i] + y[i];

}

ParallelCall( f1, RangeOf(z), a, z, x, y);



FINAL CODE-GENERATION

When all the conversions are ready the program tree is traversed and all

the branch operators are converted to their textual equivalents in the

selected languages.

Currently C++ / C / OpenCL export is considered.

Why C?

Largest common set of features supported by the compute and rendering

APIs:

OpenCL kernel C, OpenGL GLSL, 

DirectCompute, DirectX HLSL 



CURRENT IMPLEMENTATIONS

The outlined solutions are tested in two separate projects:

1.: A full spectral solver for 1D / 2D DEs was developed.

• Input of Equations, Variables and ranges in C++ code.

• Automatic symbolic simplification and spectral expansion

• Construction of the spectral coefficient matrix

• Inversion on the GPU (naïve non-generated LU decomposition)

Limited by the available memory on the GPU
(possible workaround: partition of the coefficient matrix)







CURRENT IMPLEMENTATIONS

The outlined solutions are tested in two separate projects:

2.: Host/Client OpenCL GPU code generator:

• An 8th order Runge-Kutta stepper was implemented

• Full pseudo-source code is written in C++ with wrapper classes

• Pseudo-code is exported and processed runtime (defunctionalization, 

parallel call construction)

• The host side C++ code and GPU side OpenCL Kernel is generated 

and compiled runtime into a DLL and loaded back to the program

Successfully tested with simple ODEs. 
Asynchronous execution based on data dependency is currently being  developed.



SUMMARY

Code generation from Abstract Syntax Trees is a nice versatile tool 

because:

• Can represent constructs from Mathematics and Programing and 

easily map to source code 

• Symbolic manipulations can be performed

• Reusable, flexible language independent solver templates can be 

created

• Can generate all the low-level buffer manipulation between the CPU 

and GPU.

High-performance user friendly DE solvers are almost here.


