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Quantum Chromodynamics (QCD)

Field theoretic description of the strong interaction

Theory of quarks and gluons

They are the building blocks of hadronic matter, like proton

They come in three different colors

Three quarks are bound together to form a proton

S. Katz and F. Pittler: QCD on the lattice 2



Introduction Monte-Carlo methods Parallelization Krylov-Schur algorithm

Basic properties of QCD

Confinement

Free quark cannot be observed

The interaction at large distances is very strong

Meson in QCD Dipole field in electrodynamics
http://www.physics.adelaide.edu.au

Flux tube between the two quarks, the energy density is
constant in the tube!
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Basic properties of QCD

Asymptotic freedom

In high energy hadronic collisions the interaction between
the quarks is small

At high energy the quarks and gluons form a so-called
quark gluon plasma

Transition between the two forms of strongly interacting matter

To study the transition we need a non-perturbativ definition of QCD.
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Lattice QCD

Discretize the space-time on a hypercubic Lattice

Quarks: complex 3D vectors on the sites: ψ (x) =

 ψ1 (x)
ψ2 (x)
ψ3 (x)


Gluons: SU(3) matrices on the links Uµ (x)

Finite number of degrees of freedom : stat. mech. system.

Computation of observables O (U,ψ, ψ̄) by taking into
account all possible configurations:

1
Z

∫
∏
x ,µ

dUµ (x)dψ (x)dψ̄ (x)

O (U,ψ, ψ̄)exp(−S (U,ψ, ψ̄))

S contains the form of the
interaction
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Monte-Carlo integration and Importance sampling

In a typical simulation number of integrations scales with
the volume: Ns ∼O (50) ,Nt ∼O (100)→ V ∼O(107)

Direct evaluation is unfeasible

Monte Carlo methods and importance sampling

Selecting points randomly in the configuration space

Average O over these configurations with weight P (U)

Problem: Most configurations will have small weight

Solution: Sampling the
configurations with P (U).

〈O〉= ∑i∈ all config O (i)
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Parallel improvement

Even in this case the problem is computationally
demanding

Today’s trend: Computing using many cores

Locality

All field theoretic models
have this property

Common task: Computing
plaquettes

P(x) = Uµ (x)Uν (x + µ)U†
µ (x + ν)U†

ν (x)

Translational invariance

We have to do the same
operation on all sites

Communication only between neighbors
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Lattice QCD on the GPU

We have a lattice QCD code in CUDA

Each site is processed by one cuda thread

Global sum is needed in

∑
x∈ all sites

P (x)

〈ψ|χ〉= ∑
x∈ all sites

ψ
† (x) χ (x)
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Graphical cards at the Eötvös Loránd University

Nvidia 670 Kepler architecture

1344 cores

980 MHz clock speed

2048 MB memory

192 GB
s mem. bandwidth

3.9 Tflop
s peak performance

250 Gflop
s max. performance with our

code
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Graphical cards at the Eötvös Loránd University

GPU cluster

176 nodes

352 GPUs: GTX 670 and GTX 470

387072 cores

1.1 Pflop
s peak performance

78 Tflop
s max. performance with our

code
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GPU cluster at the Eötvös Loránd University

S. Katz and F. Pittler: QCD on the lattice 10



Introduction Monte-Carlo methods Parallelization Krylov-Schur algorithm

Computations in Lattice QCD

Dirac operator : D(U) + m

Fermionic action is bilinear: Sf = ψ̄ (D (U) + m)ψ

D (U) is a large and sparse matrix

We need to compute D−1χ for many χ

Conjugate gradient algorithm (CG)

The large number of small eigenvalues slows the
convergence of the CG

Solution: Explicitly determine and deflate the low modes

Krylov-Schur algorithm
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Krylov-Schur algorithm

Sparse eigenvalue solver, only needs a multiplication
routine

Determines only a part of the full spectrum

From a random vector v we generate a Krylov subspace
(V ):

v ,Dv ,D2v · · ·Dmv m� n

Using Gram Schmidt orthogonalization (GSO) we obtain
the decomposition:

H is the projection of D on V .

H contains the best approximation of the eigenvalues of D
in V : Hyi = θiyi → Restore approx. eigenv. of D from yi

S. Katz and F. Pittler: QCD on the lattice 12



Introduction Monte-Carlo methods Parallelization Krylov-Schur algorithm

Krylov-Schur continued

Problem: m vectors (U) have to be stored

m has to be as small as possible→ slow convergence

Solution

Restart: Truncate to order p and extend to order m

Parallelization

Most of the time is spent on Gram Schmidt Orthogonalization

Parallelize the linear algebra:
1 Multiplication of a vector with scalar
2 Addition of two vectors
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CUDA implementation

Vector plus scalar times vector kernel routine

__global__ void kernel_latvec_Vp_StV ( int par,
handler v0, double s, handler v1 )

{
//Get the index of the vector component
int tid= blockIdx.x*blockDim.x+threadIdx.x;
if ( tid>=CONST(nsites)[par] ) return;
int i= tid + CONST(oddoffs)[par];
//Move the components to the registers
double2 rvec0[3], rvec1[3];
d_read_fvec(rvec0, v0.pt+i, v0.stride);
d_read_fvec(rvec1, v1.pt+i, v1.stride);
//Do the arithmetic
FVEC_V_VpStV(rvec0, rvec0, s, rvec1);
//Write back to the global memory
d_write_fvec(v0.pt+i, rvec0, v0.stride);

}

S. Katz and F. Pittler: QCD on the lattice 14



Introduction Monte-Carlo methods Parallelization Krylov-Schur algorithm

Performance of the parallel CPU and GPU
implementation
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Summary

We presented the GPU cluster at the Eötvös Loránd
University

We showed one piece of our code: The Krylov-Schur
algorithm

Plans:

Further code optimization

Implementing the domain decomposition based multigrid
method for the inverter

Thank you for your attention!
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