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Abstract. Using free-fermionic techniques we study the entanglement entropy
of a block of contiguous spins in a large finite quantum Ising chain in a transverse
field, with couplings of different types: homogeneous, periodically modulated and
random. We carry out a systematic study of finite-size effects at the quantum
critical point, and evaluate subleading corrections both for open and for periodic
boundary conditions. For a block corresponding to a half of a finite chain, the
position of the maximum of the entropy as a function of the control parameter (e.g.
the transverse field) can define the effective critical point in the finite sample. On
the basis of homogeneous chains, we demonstrate that the scaling behavior of the
entropy near the quantum phase transition is in agreement with the universality
hypothesis, and calculate the shift of the effective critical point, which has different
scaling behaviors for open and for periodic boundary conditions.
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1. Introduction

Entanglement describes nonlocal quantum correlations, and is one of the characteristic
peculiar features of quantum mechanics. Motivated by recent studies showing
intimate connections between entanglement and quantum phase transitions [1, 2],
the understanding of the degree of entanglement in quantum many-body systems
has prompted an enormous effort at the interface between condensed matter physics,
quantum information theory and quantum field theory [3].

A fundamental question in this research field is concerned with the scaling of the
entropy quantifying the degree of entanglement between a spatially confined region
and its complement in a quantum many-body system. Suppose a system, combined
by two subsystems A and B, is in a pure quantum state |ψ〉, with density matrix
ρ = |ψ〉〈ψ|. The entanglement entropy is just the von Neumann entropy of either
subsystem given by

SA = −Tr(ρA log2 ρA) = −Tr(ρB log2 ρB) = SB, (1)

where the reduced density matrix for A is constructed by tracing over the degrees
of freedom in B, given by ρA = TrB ρ. Analogously, ρB = TrA ρ. In order
to explore the behavior of quantum entanglement at different length scales, one
is particularly interested in how the entanglement entropy depends on the linear
size ℓ of the subsystem considered. An early conjectured scaling law relates the
entanglement entropy to the surface area ℓd−1, not the volume, of the region in
a d-dimensional system [4]. This area law of entropy scaling has been established
for gapped quantum many-body systems where the correlation length is finite. In
one-dimensional (1D) systems, the entanglement behavior changes drastically at a
quantum phase transition where the absence of gaps leads to long range correlations
and results in a logarithmically diverging entanglement entropy as the system size L
goes to infinity, i.e. SA ∼ log2 ℓ for L → ∞ [5, 6, 7, 8]. This connection between
entanglement entropy and quantum phase transitions is however lost in quantum
systems in higher dimensions [9, 10, 11, 12, 13].

The scaling behavior of quantum entanglement for 1+1-dimensional conformally
invariant systems has been derived by several authors [6, 7]. Here we summarize some
known results. For a critical chain of length L with periodic boundary conditions, the
entanglement entropy of a subsystem of length ℓ embedded in the chain scales as

S
(p)
L (ℓ) =

c

3
log2

[
L

π
sin

(
ℓπ

L

)]
+ c1, (2)

where the prefactor c is universal and given by the central charge of the associated
conformal field theory, whereas the constant c1 is non-universal. For the leftmost
segment of length ℓ in a finite open chain of length L at criticality, the entanglement
entropy reads

S
(o)
L (ℓ) =

c

6
log2

[
2L

π
sin

(
ℓπ

L

)]
+ log2 g +

c1
2
, (3)

where log2 g is the boundary entropy[14] and the constant c1 is the same to the one
in Eq. (2). For an infinite system L→ ∞, the critical entanglement entropy becomes

S∞(ℓ) =
c

3
log2 ℓ+ c1. (4)

Away from the critical point, where the correlation length ξ ≪ ℓ, we have

S∞ ≃ b
c

6
log2 ξ. (5)
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where b is the number of boundary points between the subsystem and the rest of
the chain. Some of the results given above have been verified by analytic and
numerical calculations on integrable 1D quantum spin chains, in particular on the
antiferromagnetic XX-chain and on the quantum Ising chain [5, 15, 16, 17]. Notice
that an exact relationship between the entanglement entropy of these two models has
been recently established [18].

Remarkably, the logarithmic scaling law of entanglement entropy in the
thermodynamic limit is valid even for critical quantum chains that are not conformally
invariant. In those cases the central charge determining the prefactor of the
logarithmic scaling law is replaced by an effective one. For disordered quantum Ising
and XX chains at infinite-randomness fixed points, the effective central charge was
determined as ceff = c ln 2 for the disorder-average entropy [8] by using strong disorder
renormalization group method [19, 20, 21]. Also the average entropy of other types of
random quantum spin chains with infinite-randomness fixed points has been studied
by similar methods[22, 23, 24]. In aperiodic quantum Ising chains, where the couplings
follow some quasi-periodic or aperiodic sequence, the coefficient in Eq. (4) is shown
to depend on the ratio of the couplings[25], provided the perturbation caused by the
aperiodicity is marginal or relevant.

In this paper we consider the quantum Ising chain with three different types
of couplings: homogeneous, periodically modulated and random. We calculate the
entanglement entropy for large finite systems up to L = 4096 by free fermionic
techniques. For the homogeneous chain, conformal predictions about the entropy at
the critical point for finite chains with different boundary conditions are checked, and
subleading corrections are investigated. We also study the finite-size scaling behavior
of SL(L/2) around its maximum and use the position of the maximum to identify the
finite-size critical transverse field. The model with periodically modulated couplings
belongs to the same critical universality class as the homogeneous model. In this case
we study the entropy for finite chains and check whether the logarithmic scaling law is
valid. Finally, for random chains we calculate the average entropy, check the validity
of the strong disorder renormalization group prediction, and compare the average
entropy with the corresponding conformal result in Eq.(2).

The structure of the paper is the following. In Sec. 2 we present the model, its
free-fermion solution and the way of calculating the entanglement entropy. Results of
the numerical calculations at the critical point are shown in Sec. 3 for homogeneous,
periodically modulated and random chains. For homogeneous chains finite-size scaling
of the maximum of the entropy close to the critical point is analyzed in Sec. 4. Our
results are discussed in Sec. 5. In Appendix A, the correlationmatrix, which is relevant
to the calculation of entanglement entropy, is determined for the homogeneous chain
at its critical point. In Appendix B the shift exponent of homogeneous closed chains
is calculated.
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2. The quantum Ising chain and its entropy in the fermionic

representation

2.1. The model and its free-fermion representation

The model we consider is an Ising chain with nearest neighbor couplings Ji in a
transverse field of strength hi, defined by the Hamiltonian:

H = −1

2

L∑

i=1

Jiσ
x
i σ

x
i+1 −

1

2

L∑

i=1

hiσ
z
i (6)

in terms of the Pauli-matrices σx,z
i at site i. Here we consider three types of couplings:

(i) homogeneous case with Ji = 1 and hi = h (> 0); (ii) staggered case with
J2i−1 = λ (> 0), J2i = 1/λ, and hi = h; (iii) random case with {Ji} and {hi}
being independent and identically distributed random variables.

The essential technique in the solution of H is the mapping to spinless free
fermions [26, 27]. First we express the spin operators σx,y,z

i in terms of fermion creation

(annihilation) operators c†i (ci) by using the Jordan-Wigner transformation: c†i =

a+i exp
[
πi

∑i−1
j a+j a

−
j

]
and ci = exp

[
πi

∑i−1
j a+j a

−
j

]
a−i , where a

±
j = (σx

j ± iσy
j )/2.

Doing this, H can be rewritten in a quadratic form in fermion operators:

H = −
L∑

i=1

hi

(
c†i ci −

1

2

)
− 1

2

L−1∑

i=1

Ji(c
†
i − ci)(c

†
i+1 + ci+1)

+
1

2
wJL(c

†
L − cL)(c

†
1 + c1). (7)

Here the parameter w = exp(iπNc) depends on the number of fermions Nc =∑L
i=1 c

†
i ci = 1/2

∑L
i=1(1 + σz

i ), therefore one should consider two separated sectors
depending on the parity ofNc. The ground state corresponds to the fermionic vacuum,
thus w = 1.

In the second step, the Hamiltonian is diagonalized by a Bogoliubov
transformation:

ηk =

L∑

i=1

[
1

2
(Φk(i) + Ψk(i)) ci +

1

2
(Φk(i)−Ψk(i)) c

†
i

]
(8)

where the Φk(i) and Ψk(i) are real and normalized:
∑L

i Φ2
k(i) =

∑L
i Ψ2

k(i) = 1, so
that we have

H =
L∑

k=1

Λk(η
†
kηk − 1/2). (9)

The fermionic excitation energies, Λk, and the components of the vectors, Φk and Ψk,
are obtained from the solution of the following eigenvalue problem[28]: TVk = ΛkVk.
Here T is a symmetric 2L× 2L matrix:

T =




0 h1 −wJL
h1 0 J1

J1 0 h2
. . .

. . .
. . .

JL−1 0 hL
−wJL hL 0




(10)
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and the eigenvectors have the components: Vk = (−Φk(1),Ψk(1),−Φk(2),Ψk(2), . . . ,
− Φk(L),Ψk(L)). Transforming Φk(i) into −Φk(i), Λk is changed to −Λk. Thus we
only restrict ourselves to the sector corresponding to Λk ≥ 0, k = 1, 2, . . . , L. To
obtain the quantum critical point of the system we make use of the condition that the
energy of the first fermionic excitation vanishes in the thermodynamic limit. From
Eq.(10) with w = −1 we obtain [27, 29]:

lim
L→∞

1

L

L∑

i=1

ln Ji = lim
L→∞

1

L

L∑

i=1

lnhi (11)

Consequently, the critical point of the homogeneous chain as well as the staggered
chain is located at hc = 1. For the random chain the criticality condition is given by
ln J = lnh, where the overbar denotes an average over quenched disorder.

2.2. Calculation of the entanglement entropy

Now we turn to the procedure for calculating the entanglement entropy of the system
in its ground state |0〉. We consider a subsystem of length ℓ, consisting of spins
i = 1, 2, . . . , ℓ. The reduced density matrix ρℓ = TrL−ℓ |0〉〈0| can be calculated from
the restricted correlation matrix G [30, 5], the elements of which are given by

Gm,n = 〈0|(c†n − cn)(c
†
m + cm)|0〉

= −
L∑

k=1

Ψk(m)Φk(n), m, n = 1, 2, . . . , ℓ (12)

For the homogeneous critical chain, the eigenvalue problem of T in Eq. (10) and thus
the matrix elements of G can be solved analytically. The results, both for periodic
and for open finite chains with an even L, as well as for L→ ∞, are given in Appendix
A.

The von Neumann entropy of the considered subsystem, SL(ℓ) = −Tr(ρℓ log2 ρℓ),
is fully determined by the spectrum of the reduced density matrix ρℓ. To diagonalize
ρℓ, we transform the ℓ fermionic modes into non-correlated fermions with operators:

µq =

ℓ∑

i=1

[
1

2
(vq(i) + uq(i)) ci +

1

2
(vq(i)− uq(i)) c

†
i

]
, (13)

where the vq(i) and uq(i) are real and normalized:
∑ℓ

i v
2
q(i) =

∑ℓ
i u

2
q(i) = 1. In the

transformed basis, we have

〈0|µqµp|0〉 = 0, 〈0|µ†
qµp|0〉 = δqp

1 + νq
2

, (14)

for p, q = 1, 2, . . . ℓ, which means that the fermionic modes are uncorrelated. Thus the
reduced density matrix is the direct product ρℓ =

⊗ℓ
q=1 ρq, where ρq has eigenvalues

(1± νq)/2. The entanglement entropy is then given by the sum of binary entropies:

SL(ℓ) = −
ℓ∑

q=1

(
1 + νq

2
log2

1 + νq
2

+
1− νq

2
log2

1− νq
2

)
. (15)

The νq-s in Eq. (15) are the solutions of the equations

Guq = νqvq, GTvq = νquq , (16)
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or, equivalently, are related to the eigenvalue problem:

GGTvq = ν2qvq, GTGuq = ν2quq . (17)

In numerical calculations, many eigenvalues ν2q are found to be very close to zero and
these small eigenvalues are often out of the computer precision, resulting in instability
in the calculations. To circumvent the problem, we can introduce a symmetric 2ℓ× 2ℓ
matrix U with elements:

Ui,j =

[
0 Gi,j

Gj,i 0

]
, (18)

whose eigenvalue problem corresponds to UWq = νqWq. Here the eigenvector Wq

is given by Wq = (−vq(1), uq(1),−vq(2), uq(2), . . . ,−vq(ℓ), uq(ℓ)). Only non-negative
eigenvalues νq ≥ 0 are taken into account.

3. Scaling at the critical point

Here we calculate the entanglement entropy of the quantum Ising chain for different
types of interactions (homogeneous, staggered and random) at the quantum critical
point, defined in Eq.(11). The numerical results obtained for finite periodic and open
chains are compared with the conformal results in Eqs.(2) and (3), respectively.

3.1. Homogeneous chain

For a critical Ising chain of finite length L with periodic boundary conditions,
the expression for the entanglement entropy of a subsystem of size ℓ is given by
Eq. (2) with the central charge c = 1/2, while with open boundary conditions it
corresponds to Eq. (3) with the theoretical value g = 1 [31] for the boundary entropy
log2 g. To calculate the non-universal constant c1 we use the exact relationship:
SXX
2L (2ℓ) = 2SL(ℓ) [18], between the entropy of the XX-chain, SXX

L (ℓ), and the
entropy of the quantum Ising chain, yielding c1 = 1

2c
XX
1 + 1

3c, where cXX
1 is the

constant for the XX-chain and is given in Ref. [16] in terms of a definite integral. In
this way we obtain c1 = 0.6904132738 · · ·, which agrees with the value evaluated in a
recent paper using a different method [32]. In Table 1, the constant c1 is calculated
by

c1(L) = S
(p)
L (ℓ)− c

3
log2

[
L

π
sin

(
ℓπ

L

)]
, (19)

with ℓ = L/2. It, indeed, converges to the asymptotic value of c1 as the system size L
is increasing.

A comparison between the conformal expressions (in Eq. (2) and Eq. (3)) and
the entropy calculated by exact diagonalization for L = 2048 is shown in Fig. 1, both
with periodic and open boundary conditions; an excellent agreement is achieved. The
accuracy of the functional form can be checked by the ratio

r(L) =
SL(L/2)− SL(L/4)

S2L(L)− SL(L/2)
→

L→∞

1

2
. (20)

The numerical results for r(L) for different system sizes L up to L = 2048 are given
in Table 1, and the first correction term is found to be O(L−2).

Furthermore, we are interested in the finite-size correction terms for the coefficient
c and the boundary entropy log2 g given in Eq. (3). To evaluate c for different system
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Table 1. Finite-size dependence of the ratio r(L) defined in Eq. (20) for chains
with periodic boundary conditions, the constant c1(L) in Eq.(19) with ℓ/L = 1/2,
and g for the boundary entropy log2 g in Eq.(3). The finite-size correction
coefficients are: r2 = 0.3334(2) and g1 = 0.3095(2)

L r c1 g
128 0.5000203756 0.6904174985 0.9975945594
256 0.5000050926 0.6904143299 0.9987944047
512 0.5000012731 0.6904135378 0.9993964859
1024 0.5000003182 0.6904133397 0.9996980631
2048 0.5000000795 0.6904132903 0.9998489873
4096 0.6904132780 0.9999244833
∞ 0.5 + r2/L2 0.6904132738 1− g1/L

0 500 1000 1500 2000
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

staggered; c
(--)

 = 0.549

staggered; c
(+-)

 = 0.784

staggered; c
(++)

= 1.020
homogeneous; periodic
homogeneous; open

PSfrag replacements

ℓ

S
2
0
4
8
(ℓ

)

Figure 1. Entropy of finite chains of length L = 2048 vs subsystem size ℓ: the
full curves for ℓ ≤ L/2 are calculated numerically; the dashed curves for ℓ ≥ L/2
are the corresponding conformal results, described by Eq. (2) with c = 1/2 and
c1 = 0.690413 for homogeneous chains with periodic boundary conditions, and
by Eq. (3) with g = 1 for open homogeneous chains. For chains with staggered
interactions, there are four branches, depending on the type of the couplings on
the boundary of the subchain. Data presented here are for staggered chains with
λ = 0.5 and with periodic boundary conditions. The fits for ℓ ≥ L/2 using

Eq. (2) are fulfilled with c = 1/2, c
(++)
1 = 1.02009 (two strong couplings on the

boundary), c
(+−)
1 = c

(−+)
1 = 0.78446 (one strong and one weak coupling) and

c
(−−)
1 = 0.54883 (two weak couplings), respectively.

size, we first calculate the entropy difference ∆S(L) = SL(L/2) − SL/2(L/4). For
a chain with periodic boundary conditions, we have ∆S(L) = c(L)/3 and obtain
an L−2 - correction for the coefficient: c(L) = 0.5 − 0.623(1)/L2 + O(L−3); for an
open chain, we obtain a L−1 - correction, c(L) = 0.5 + 1.339(1)/L + O(L−2), via
∆S(L) = c(L)/6. To compute the boundary entropy g(L), we make use the relation

between S
(p)
L and S

(o)
L for periodic and open boundary conditions, respectively, via

2S
(o)
L (ℓ) − S

(p)
L (ℓ) = log2 g(L) + c/3. In Table 1, the values of g(L) using ℓ = L/2

and c = 1/2 are given for system sizes up to L = 4096, and it shows a correction of
O(1/L).
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In conclusion, our numerical results for the entanglement entropy of the
homogeneous quantum Ising chain agree with all the known conformal predictions.

3.2. Chains with staggered interactions

Now we consider the quantum Ising chain with periodically varying interactions of
period 2, corresponding to a chain with staggered interactions: J2i−1 = λ and
J2i = 1/λ. According to Eq. (11), the critical point of the system is located at hc = 1.
This quantum Ising chain with staggered interactions has been solved in Ref. [33], and
its critical singularities were found to be the same as for the homogeneous chain. Here
we study the entanglement entropy of the staggered chain and check its relationship
with the entropy of the homogeneous chain.

First, we calculate the entanglement entropy, SL(ℓ), as a function of the subsystem
size ℓ, for a finite chain. As shown in Fig. 1 for a chain of length L = 2048 with
λ = 0.5, there are four branches with a twofold degeneracy, depending on the type of
the couplings (λ or λ−1) at the boundaries of the subsystem. For each ℓ, the largest and
smallest value of SL(ℓ) correspond to the case in which both boundary couplings are
strong (denoted by (++)) and weak ((−−)), respectively, and the twofold degeneracy
lying in between occurs when one boundary coupling is strong and one weak ((+−) and
(−+)). All branches are well fitted by the conformal form in Eq. (2) with coefficient
c = 1/2 corresponding to the central charge of the homogeneous case, but with
different additive constants c1. The additive constants for the above mentioned four
branches satisfy the relation: c

(++)
1 + c

(−−)
1 = 2c

(+−)
1 . This means that the boundary

effect is strictly additive: c
(++)
1 = 2c

(+)
1 , c

(+−)
1 = c

(+)
1 + c

(−)
1 and c

(−−)
1 = 2c

(−)
1 ,

here the subscript + (−) corresponds to one strong (weak) boundary coupling. For

λ = 0.5 we have c
(+)
1 = 0.510045 and c

(−)
1 = 0.274415, whereas for λ = 0.25 these

are c
(+)
1 = 0.663435 and c

(−)
1 = 0.262845. Furthermore, c

(+)
1 (c

(−)
1 ) is found to be a

monotonously increasing (decreasing) function of 1/λ ≥ 1, and the average, c
(+−)
1 /2, is

minimal for the homogeneous chain λ = 1. Consequently, for irrelevant perturbations
represented by the staggered interaction the average critical entanglement entropy is
increasing, compared with the fixed point value of the homogeneous chain.

To see how the coefficient c(L) for a finite chain of length L approaches the
conformal value c = 1/2, we follow the procedure described in Sec. 3.1 for the
homogeneous chain. Like the homogeneous chain, the leading term of the finite-
size correction to c(L) is found to be O(L−2) for periodic boundary conditions, and
O(L−1) for open boundary conditions.

3.3. Random chains

The entanglement entropy of the quantum Ising model with random couplings and/or
transverse fields can be conveniently studied by the strong disorder renormalization
group (RG) method[8, 21]. In this RG representation, the ground state of the quantum
Ising model consists of a collection of independent ferromagnetic clusters of various
sizes; each cluster of n spins is in a n-site entangled state 1√

2
(|↑〉⊗n

+ |↓〉⊗n
). The

entanglement entropy of a subsystem is just given by the number of the clusters
that cross the boundary of the subsystem. In 1D the asymptotic number of such
clusters that contribute to the entropy of a subsystem of length ℓ has been analytically
calculated by Refael and Moore [8] and the disorder average entropy in the long chain
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6
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g
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(5

12
/ℓ

)
Figure 2. Average entropy of the random chain with uniform disorder (with
D = 1) as a function of ln ℓ for different system sizes L. The slope of the broken
straight line is given by 1/6, corresponding to the RG prediction ceff = ln2/2.
Inset: scaling plot of the entropy vs. ℓ for different sizes L using the scaling
prediction in Eq. (22). The solid line corresponds to the conjecture of conformal
invariance, given in Eq. (2), with c replaced by ceff = ln(2)/2 and an additive
constant as the fit parameter.

limit is found to scale as:

S(ℓ) =
ceff
3

log2 ℓ+ c′1 (21)

where the effective central charge, ceff = ln 2/2, is expected to be universal, i.e. does
not depend on the form of disorder, whereas the additive constant, c′1, is disorder
dependent.

For a finite chain of length L with periodic boundary conditions, the entropy of
a subsystem of length ℓ is expected to behave as:

SL(ℓ) =
ceff
3

log2[Lf(ℓ/L)] + c′1 (22)

where the scaling function f(v) is reflection symmetric, f(v) = f(1 − v), and
limv→0 f(v) ≃ v. Consequently f(v) can be expanded as a Fourier series: f(v) =∑∞

k=1 Ak sin(2k − 1)πv, with
∑∞

k=1Ak(2k − 1)π = 1. We note that for conformally
invariant models only the first term of this expansion exists (cf. Eq. (2)).

In our numerical calculations we used a power-law distribution:

PD(x) =
1

D
x−1+1/D , (23)

both for the couplings and the transverse fields, which ensures that the random model

is at the critical point. Here D2 = ln2 x − lnx
2
measures the strength of disorder.

For the random chains we have treated finite chains up to a length L = 1024, and
considered at least 104 independent realizations for each length L, plus different
positions of a subsystem in the chain for a given ℓ.

In Fig. 2 we plot the average entropy SL(ℓ) vs. ln ℓ. The curves tend to approach
an asymptotic linear behavior with a slope which is, in the large ℓ regime, well
described by the renormalization group prediction ceff = ln(2)/2. To estimate ceff(L)
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Table 2. Finite-size estimates of ceff/ ln 2 for the random model using the
relation in Eq.(24).

n L = 128 L = 256 L = 512
2 0.531 0.503 0.502
4 0.532 0.502 0.506
8 0.533 0.502 0.501
16 0.534 0.504 0.499

Table 3. The ratio defined in Eq. (25) for the average entropy SL(ℓ) for disorder
strength D = 0.5 and D = 1.

L D = 0.5 D = 1.0
32 0.548 0.587
64 0.588 0.605
128 0.573 0.584
256 0.619 0.608
512 0.615 0.606

quantitatively for different chain sizes L, we average over the entropy in the large ℓ
region and make use of the relation between S2L and SL, given by

1

2n+ 1

L/2+n∑

ℓ=L/2−n

[S2L(2l)− SL(l)] = ceff(2L)/3. (24)

The estimated values of ceff(L)/ ln 2 are presented in Table 2 for uniform disorder.
The results for the two largest finite systems are compatible with the estimate:
ceff/ ln 2 = 0.501(3), which is in excellent agreement with the RG prediction.

Finally we turn to a study of the form of the average entropy SL(ℓ) as a function of
ℓ, in particular we are interested in how well it can be approximated by the conjecture
of conformal invariance given in Eq. (2) with an effective central charge ceff . As shown
in the inset of Fig. 2, the approximation is seemingly good. To have a quantitative
comparison, we have calculated the ratio r(L), similar to Eq. (20), defined as

r(L) =
SL(L/2)− SL(L/4)

S2L(L)− SL(L/2)
, (25)

whose asymptotic value is given, in terms of the Fourier coefficients, by:

r =
1

2
+ log2

[ ∞∑

k=1

(−1)k+1Ak

]

− log2

[ ∞∑

k=1

(−1)k+1(A2k−1 +A2k)

]
. (26)

For conformal invariant cases, we have r = 1/2. The numerically calculated values
of r(L), presented in Table 3 for disorder strength D = 0.5 and D = 1, deviate
significantly from r = 1/2 for large L. This means that the higher order terms in
the Fourier expansion are not negligible. The scaling function f(v) is presumably
universal, i.e. independent of the form of the disorder.
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Figure 3. The entanglement entropy of a half of a chain with J = 1 as a function
of the strength of the transverse field h, for periodic (a) and open (b) boundary
conditions. On increasing the system size L, the maximum gets more pronounced,
and the position of the maximum tends towards the critical point hc = 1.

4. Scaling close to the critical point

So far we have studied the entanglement entropy at the critical point. In this section,
we consider the entanglement between two halves of a finite chain with homogeneous
interactions, and study its behavior approaching to the critical point hc = 1.

According to Eq. (4) and Eq. (5), a divergence of the maximal entanglement
entropy occurs at the quantum critical point, which can be traced back to the
divergence of the correlation length with ξ ∼ |h−hc|−ν . In a finite system of length L,
the finite size effects induce a rounding and a shift of the maximum of the entropy, as
shown in Fig. 3 for SL(L/2) vs. h. In the following we denote the entropy of a half of a
finite chain of length L as a function of the transverse field h by SL(L/2, h) ≡ Ŝ(L, h).
The position of the maximum of Ŝ(L, h), denoted by hm(L), can be used to define a
finite-size effective critical point and its shift from the true critical point is expected to
scale as: hc−hm(L) ∼ L−λ, where λ is the shift exponent. The numerically calculated
finite-size transition points are listed in Table 4 both for closed and open chains.
The maximum of the entropy Ŝ(L, hm(L)), like Ŝ(L, hc), depends logarithmically on
the system sizes L [insets in Fig. 4 and Fig. 5]. As a matter of fact the difference
∆S(L) = Ŝ(L, hm(L))− Ŝ(L, hc) approaches a well defined limiting value for L→ ∞.
Note, however that for open chains ∆S(L) tends to a finite value, whereas for closed
chains the entropy difference goes to zero.

We first study the rounding of the maximum of the entropy. Making use of the
finite-size scaling ansatz[34]:

Ŝ(L, h)− Ŝ(L, hm(L)) = F̃ [L1/ν(h− hm(L))] . (27)

with ν = 1, we can make all data for different system sizes perfectly collapse onto a
single curve, as shown in Fig. 4 for open chains and Fig. 5 for closed chains. In both
cases the scaling function is F̃ [x̃] ∼ x̃2 for small x̃.

In order to obtain the shift of the finite-size critical points, we take the derivative
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Figure 4. A scaling plot of the entanglement entropy for chains with open
boundary conditions. Data collapse is obtained for ν = 1, consistent with the
universality hypothesis. In the inset is shown the divergence of the value at the
maximum as the system size increases. The slope is given by 0.08, consistent with
the exact value 1/12 (cf. Eq. (5)).

of both sides of Eq.(27) at h = hc:

∂Ŝ(L, h)
∂h

∣∣∣∣∣
hc

∼ L2/ν(hc − hm(L)) . (28)

For open chains the derivative at the l.h.s. is proportional to L1/ν , leading to
conventional finite-size scaling relation: hc − hm(L) ∼ L−1/ν . For closed chains this
derivative has a much weaker L-dependence, which can be identified as logarithmic
in L. From Eq. (28), we then expect the relation: hc − hm(L) ∼ log2 L/L

2. This
prediction can be checked by calculating the shift exponent λ through the finite-size
estimates: λ(L) = log2[hc − hm(L/2)]− log2[hc − hm(L)] [Table 4]. For open chains
the exponent approaches λ = 1/ν = 1 for large L, in accordance with our previous
discussion. For closed chains the effective shift exponent is around 1.87 for the largest
system size, which, however, cannot rule out a true value λ = 2 with a logarithmic
finite-size-correction. In Appendix B we present an argument in favor of the log2 L/L

2

behavior of the shift for closed chains. As a numerical check of this scenario we have
calculated the scaling combination: sc = (1 − hm(L)) × L2/(log2 L + a), which are
shown in Table 4. Indeed the value of sc seems to approach a finite limiting value.

Having clarified the finite-size scaling behavior of the rounding and the shift of
the maximum of the entropy, let us consider the scaling form of the entropy in the
critical region. In the conventional finite-size scaling theory we have the ansatz:

Ŝ(L, h)− Ŝ(L, hc) = F [L1/ν(h− hc)] . (29)

The l.h.s. of Eq.(29) can be rewritten as: Ŝ(L, h) − Ŝ(L, hm(L)) + ∆S(L) =

F̃ [x̃]+∆S(L), where the argument of F̃ (x̃) is given by: x̃ = x−xc with x = L1/ν(h−hc)
and xc = L1/ν(hc − hm(L)). Now using the fact that F̃ [x̃] is quadratic for small x̃ we
obtain for the scaling function in Eq.(29):

F (x) ≈ A(x− xc)
2 +∆S, x ≈ xc . (30)
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Figure 5. The finite size scaling is performed for chains with periodic boundary
conditions, using the scaling form in Eq. (27) and ν = 1. The inset shows the
logarithmic dependence of the value at the maximum on the system size L. The
slope is consistent with the theoretical value 1/6 for a half subchain taken from a
closed chain.

Table 4. Finite-size critical transverse fields of the homogeneous quantum Ising
chain of L sites with periodic [p] and open [o] boundary conditions calculated
from the location of the maxima of the entropy for ℓ = L/2. The effective shift
exponents, λ(L), are calculated by two point fits. The scaling combinations are:
sc = (1− hm(L)) × L2/(log2 L+ a) with a = 2 − 1/ ln 2 (s. Appendix Appendix
B), for periodic chains and xc = (1− hm(L)) × L for open chains.

L hm(L)[p] λ(L) sc hm(L)[o] λ(L) xc

128 0.9983031 1.813 3.679 0.9636656 1.077 4.651
256 0.9995225 1.829 3.656 0.9822266 1.045 4.550
512 0.9998671 1.845 3.644 0.9912353 1.027 4.487
1024 0.9999633 1.858 3.641 0.9956543 1.015 4.450
2048 0.9999900 1.876 3.629 0.9978379 1.007 4.424

For open chains in the large L limit, we have xc > 0 and ∆S > 0, so that shift
exponent is λ = 1/ν. On the other hand, for closed chains both limiting values
vanish: xc = 0 and ∆S = 0. Therefore conventional finite-size scaling is not valid and
the shift exponent is λ > 1/ν.

We close this section by two remarks. First we note that in Ref [1] the derivatives
of the nearest-neighbor concurrence, ∂JC(1), with respect to the control parameter
J is studied. The position of the minimum of ∂JC(1), which defines the effective
quantum critical point of a finite closed chain of length L, is shifted from the true
critical point by L−1.87 (see Fig. 1, in Ref. [1]), with a shift exponent that is very
close to the effective exponent given in Table 4. One might think that the shift of the
minimum of ∂JC(1) has the same scaling behavior as discussed here for the position
of the maximum of the entropy.

Our second remark concerns random chains. The position of the maximum of the
average entanglement entropy of a half chain can be used to define sample dependent
pseudocritical point. Its scaling has been studied in detail in Ref. [29].
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5. Discussion

In this paper we have studied finite size effects of entanglement entropy of the quantum
Ising chain at/near its order-disorder quantum phase transition. The model considered
can be expressed in terms of free fermions, which enables us to perform large scale
numerical investigations. Three types of couplings were considered: homogeneous,
periodically modulated and random couplings.

For the homogeneous system at the critical point we have verified the finite size
form predicted by the conformal field theory, both for periodic and open boundary
conditions. We have also calculated the additive constant to the entropy and
subleading corrections. In the off-critical region, we have studied the finite-size scaling
behavior of the entropy, SL(L/2), in the vicinity of its maximum, and confirmed
the intimate connection between entanglement and universality. The position of the
maximum, hm(L), can be regarded as an indicator of the effective critical point in
the finite sample. For an open chain the shift of hm(L) from the true critical point
is shown to be O(L−1), whereas for a chain with periodic boundary conditions it is
O(L−2 lnL). We have provided analytical results for the off-critical entropy in infinite
chains to explain these findings. We expect that the shift of hm(L) for other critical
quantum spin chain has the same type differences for open and periodic boundary
conditions.

The quantum Ising chain with periodically modulated couplings belongs to the
same critical universality class as the homogeneous model. In the case of staggered
couplings, we have found that the critical entropy is split into four branches, each of
which has the same prefactor (the central charge) of the logarithm but has different
additive constants. This is expected to be generic to critical quantum spin chains with
all kinds of periodically modulated couplings.

For random quantum Ising chains, we have numerically verified the prefactor of
the logarithm predicted by the analysis of the strong disorder renormalization group.
The functional form of the average entropy versus subsystem size, which is presumably
universal for any strength of disorder, has been found to deviate from the results for
conformally invariant models.

The results obtained in this paper, though only based on quantum Ising chains,
are expected to be valid in some other cases of quantum spin chains. For example,
the XY-chain is related with the Ising chain via an exact mapping, so that the results
obtained for the Ising chain can be directly transferred to those for the XY-chain
through the mapping. This mapping is also applicable for random cases. Moreover,
for random cases the criticality of many quantum spin chains belongs to the same
universality class (cf. random XX-chains and random Heisenberg chains), known
from the strong-disorder renormalization group, and the universality of the associated
effective central charge was numerically confirmed [35]. Therefore, our results for
the random cases, e.g. the functional form of the average entropy vs. ℓ, should be
universal for a wide range of models.
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Appendix A. The correlation matrix for homogeneous chains

For the critical homogeneous chain the free-fermion transformation can be performed
analytically, both for closed and for open finite chains. In the following we consider
the case where the length of the chain L is even.

Appendix A.1. Closed chain

For a closed chain with JL = J = 1 and h = 1 the positive eigenvalues of Eq.(10) are
two-fold degenerate, which are given by:

Λk = 2 sin

[
2k − 1

L

π

2

]
, (A.1)

for k = 1, 2, . . . , L/2. One set of the eigenvectors is:

φ
(1)
k (j) = (−1)j

√
2

L
sin

[
2k − 1

L
(j − 1/2)π

]

ψ
(1)
k (j) = (−1)j

√
2

L
cos

[
2k − 1

L
jπ

]
, (A.2)

and the second set is:

φ
(2)
k (j) = (−1)j+1

√
2

L
cos

[
2k − 1

L
(j − 1/2)π

]

ψ
(2)
k (j) = (−1)j

√
2

L
sin

[
2k − 1

L
jπ

]
, (A.3)

Then the reduced correlation matrix is given by:

Gm,n =
(−1)m−n

L sin
(

π
2L [2(m− n) + 1]

) . (A.4)

Appendix A.2. Open chain

For open chains with JL = 0 the solution at the critical point reads:

φk(j) = (−1)j
2√

2L+ 1
cos

[
2k − 1

2L+ 1
(j − 1/2)π

]

ψk(j) = (−1)j+1 2√
2L+ 1

sin

[
2k − 1

2L+ 1
jπ

]
, (A.5)

and the energy of the free-fermionic modes are given by:

Λk = 2 sin

[
2k − 1

2L+ 1

π

2

]
. (A.6)

for k = 1, 2, . . . L. The reduced correlation matrix reads:

Gm,n =
(−1)m+n

L+ 1/2

{
sin2(β−

m,nL)

sin(β−
m,n)

+
sin2(β+

m,nL)

sin(β+
m,n)

}
(A.7)

with β±
m,n = π[m± (n− 1/2)]/(2L+ 1).
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Appendix A.3. Infinite chain limit

In the infinite system limit, L → ∞, n/L = O(1), m/L = O(1) and m − n ≤ ℓ for
both boundary conditions we recover the known result[26, 27]:

Gm,n =
2

π

(−1)m−n

2(m− n) + 1
. (A.8)

Appendix B. The shift exponent for closed chains

To explain the finite-size scaling behavior of Ŝ(L, h) for closed chains, we recall the
entropy in the infinite system analytically obtained in Ref. [15, 16]. Here we write it
in terms of the variable, γ = (1− h)/(1 + h), as:

S =
1

12

{
log2

[
4(1− γ)4

(1 + γ)2|γ|

]

+
2

π ln 2
(1 + 6γ + γ2)I(γ)I(γ′)

}
, (B.1)

where I(γ) denotes the complete elliptic integral of the first kind and γ′ =
√
1− γ2.

The advantage of the form given in Eq. (B.1) is that it is valid both for h < 1 and
h > 1.

We note that the entropy is not symmetric with respect to hc = 1; if we compare
its value at h and h−1, it is larger in the ordered phase, h < 1, by an amount of
∆S(h) = S(h)− S(h−1):

∆S(h) =
1

2

[
log2

1− γ

1 + γ
+

4

π ln 2
I(γ)I(γ′)

]

→
γ≪1

γ

[
− log2 γ + 2− 1

ln 2

]
. (B.2)

The last equation for small γ is valid in the vicinity of the critical point. Next we
define for each h < 1 a transverse field h′ > 1 via the relation: S(h) = S(h′). Close
to the critical point the distance between h−1 and h′ is given by:

∆h = h−1 − h′ ≈ ∆S(h)

∂S/∂h
≈ γ2

[
− log2 γ + 2− 1

ln 2

]
. (B.3)

which vanishes only at the critical point. Now let us consider a large finite system of
length L at the transverse field h = h(L), where the singularity of the entropy starts
to be rounded (this happens when [Ŝ(L, h) − Ŝ(∞, h)]/Ŝ(∞, h) exceeds some small
limiting value). For closed chains, in which there are the same number of couplings
and transverse fields, the same is true at the corresponding point, h′(L), too. The
position of the maximum of Ŝ(L, h) is about at hm(L) ≈ [h(L) + h′(L)]/2. If the
entropy is symmetric at h and h−1, the estimate of the transition point would be:
hsymc (L) ≈ [h(L) + h−1(L)]/2, and the distance between hm(L) and hsymc (L) is about
∼ ∆h(L)/2. This value is in the same order as the shift of the finite-size transition
point. Making use of the fact that L ∼ ξ ∼ γ−1, we obtain from Eq.(B.3)

∆h(L) ∼ (hc − hm(L)) ∼ L−2 [log2 L+ a] (B.4)

with a ≈ 2 − 1/ ln 2. This means that the true value of the shift exponent is λ = 2,
but there is a strong logarithmic correction, which makes the numerical calculation of
λ very difficult.
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[21] For a review, see: F. Iglói and C. Monthus, Physics Reports 412, 277, (2005).
[22] R. Santachiara, J. Stat. Mech. Theor. Exp. L06002 (2006).
[23] N.E. Bonesteel and Kun Yang, Phys. Rev. Lett. 99, 140405 (2007).
[24] G. Refael and J. E. Moore, Phys. Rev. B 76, 024419 (2007).
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