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Prelude: why solar energy?



Grand Energy Challenge

Demand gap

- double demand by 2050, triple demand by 2100
- gap between production and demand:
14TW(2050)-33TW(2100)

2100: 40-50 TW
. 2050: 25-30 TW
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The Solar Moore's Law
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Price drops by 20% for every doubling of production
No doubling per 18 months as area is not scaled down as in chips
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Sources of Renewable Energy

/ SOIGr' \ ener a
1.2 x 10° TW on Earth's surface ~ 14 Tvs%yg 2050
36,000 TW on land (world) ~ 33 TW by 2100
2,200 TW on land (US)
Wind
2-4 TW extractable b P < Biomass
“IUAE 5-7 TW gross (world)
0.29% efficiency for
all cultivatable land
not used for food
Tide/Ocean
Currents
2 TW gross
Hydroelectric
Geothermal 4.6 TW gross (world)

1.6 TW technically feasible
0.6 TW installed capacity

9.7 TW gross (world) 0.33 gross (US)
0.6 TW gross (US)

(small fraction technically feasible)



Solar is the Most Promising Energy Resource

Sunlight is a singularly suitable energy resource
1. the only resource in sufficient quantity
2. environmental impact is minimal and benign
3. no catastrophic breakdown mode
4. politically safest, conflict-free

5. price volatility is minimal



Outline

Third generation solar cells
Multiple exciton generation (MEG)
MEG in colloids and MEG device
Results



Generations

Value: Power/Price

1s* generation: Increase power by increasing quality
crystalline silicon: SunPower. 20-22%

2"d generation: Decrease price (decrease production
temperature) amorphous Si, CIGS,
CdTe: First Solar: 13-15%

3rd generation: Increase power, decrease price




Generations

Definition of 3rd generation:

(1) a power conversion efficiency
greater than the Shockley-
Queisser limit of 31%

(2) a very low cost per unit area.
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Fig. 1. The cost of electrical power from photovad taic systems is shown as a function of the
total upfront cost and the module power conversion efficiency. MC, SP, SlII, and SI are the
manufacturing cost, average selling price, installed cost for a utility scale system, and installed
cost for a residential system, respectively. SHI includes BOS cost for an on-grd system, and S|
includes BOS foron- and off-grid operation with battery storage. The $/Wp were converted to
¢/kWh assuming a module lifetime of 20 years, a 5% cost of borrowing, a 1% yearly operating
(maintenance) cost, and an average solar insolation of 200 W/m? (which is about 5 h of full
intensity sunlight/day). Costs are based on 2009 data. The designation of 1st, 2nd, or 3rd
Generation is based on the manufacturing cost and potential module efficiency.
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1. Third generation solutions
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First & Second generation

® Shockley-Quessier limit

510
\CB e
» single junction

* Fermi-Dirac absorption above band edges

@ * one exciton/photon

* relaxation to band edges

Q.
% }

* 47% heat

* 18% transmission of sub band gap photons
* 1.5% radiative recombination

VB
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Improving the absorber material I

Physics:
1. Nanostructure forms on surface,
multiple reflections enhance absorption
2. High density of defect states in gap
3. "Hyper-doping” of top junction layer: sulfur (Mazur @ Harvard)

Nano-sized "coaxial cable” (M. Naughton @ BC)
formed in amorphous Si
can optimize these constraints

Redirect and capture light with plasmon resonance of Ag nanoparticles

17.9% efficiency

5X enhancement over
the past 5 years

Stability and Toxicity?? 13

New materials:

Perovskite crystals

ABX,

Nature Materials 13, 838—-842 (2014)




Improving the absorber material V

Tin monosulfide (SnS) crystals (Roy Gordon @ Harvard)

Absorbs light much more
effectively than Si

But
crystal is p-type “self-doped”

Calculations by p—Type."self-doping" due to Sn-
Malone, Kaxiras @ Harvard vacancies
& Sb is suggested for compensation

Gali @ Wigner
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Third generation solutions
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2. Multiple Exciton Generation
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Achieving MEG

Carrier Multiplication faster than phonon assisted decay and gives us
additional excitons (enhanced current)

. Confine charge carriers in normal semiconductors (Nozik)

+ phonon bottleneck
(a) electron (b)

Semiconductor
Nanocrystals

Proof of MEG in solution # MEG in device
. MEG in colloids, simplified situtation
. MEG in devices, more complicated issue

one experimental proof so far
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3. MEG in the lab and MEG device
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MEG in silicon NPs

Rpop = look at populations right after pump (t=0) and after AR is comple (ps)

Look at pump flux — o limit!
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>100% MEG solar cell

Science 334, 1530 (2011)
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EQE, External Quantum Efficiency:

° 101 0
Quantum efficiency of the whole device Overall efficiency reached >4%

* 4% of total photocurrent from MEG!

IQE, Internal Quantum Efficiency: * key: hydrazine treatment

After removal of reflectance
20




4. Results
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Solar nanocomposites with complementary charge extraction pathways
for electrons and holes: Si embedded in ZnS

S. Wippermann, M. Vorés, A. Gali, F. Gygi, G. Zimanyi, and G. Galli
Physical Review Letters 112 106801 (2014).
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http://prl.aps.org/

Si NCs in a-ZnS matrix: charge extraction

density of states [a. u.]

a)

I ; I

total density of states for
Si,, in a-ZnS

123

S-shell

nanopatrticle

8.0
O PR ] T
7HF
= — CBM
o, — VBM
B TOf
g
3 5
NP | G | a-ZnS matrix
W
AR R0 s nos L Ry |"--

6‘00 5 llD IIE: ‘EIU
Radial distance from NP center [Bohr]

25

Complementary charge extraction
pathways and small gap
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Result II: using Mott-insulators instead of NPs

Limitations of the hybrid functional approach to electronic structure of

transition metal oxides
John E. Coulter, Efstratios Manousakis, and Adam Gali

Physical Review B 88 041107(R) (2013).

Optoelectronic excitations and photovoltaic effect in strongly correlated

materials
John E. Coulter, Efstratios Manousakis, and Adam Gali

Physical Review B accepted, arXiv:1409.8261
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http://prb.aps.org/abstract/PRB/v88/i4/e041107
http://prb.aps.org/
http://prb.aps.org/
http://arxiv.org/abs/1409.8261

VO2 as a prototypical strongly correlated crystal
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Experiments: long recombination lifetime (microseconds) in VO2

strongly correlated materials are promising and completely new candidates
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Thank you for your attention
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