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Introduction

Janus-faced GR: No clear distinction in general relativity

The arena:

All the pre-GR physical theories provide a distinction between the arena in which
physical phenomena take place and the phenomena themselves.

arena: phenomena:

classical mechanics phase space dynamical trajectories

electrodynamics Minkowski spacetime dynamics of the Maxwell field

general relativity curved spacetime the geometry of the spacetime

Such a clear distinction between the arena and the phenomenon is simply not
available in general relativity

the metric plays both roles.

GR is more than merely a field theoretic description of gravity.
It is a certain body of universal rules:

modeling the space of events by a four-dimensional differentiable manifold
the use of tensor fields and tensor equations to describe physical phenomena
use of the (otherwise dynamical) metric in measuring of distances, areas,
volumes, angles ...
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Introduction

The degrees of freedom in GR:

What are the degrees of freedom?

in a theory possessing an initial value formulation: “degrees of freedom” is a
synonym of “how many” distinct solutions of the equations exist

in ordinary particle mechanics: the number of degrees of freedom is the
number of quantities that must be specified as initial data divided by two

The degrees of freedom in the linearized theory:

Einstein (1916, 1918): the field equations involve two degrees of freedom per
spacetime point when studying linearized theory

Is the full nonlinear theory characterized by two degrees of freedom?

Darmois (1927): probably the earliest answer in the confirmatory based on
consideration of the Cauchy (or initial value) problem
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Introduction

The degrees of freedom in GR:

What are the main issues?

“... no way singles out precisely which functions (i.e., which of the 12
metric or extrinsic curvature components or functions of them) can be freely
specified, which functions are determined by the constraints, and which
functions correspond to gauge transformations. Indeed, one of the major
obstacles to developing a quantum theory of gravity is the inability to
single out the physical degrees of freedom of the theory. ”

R.M. Wald: General Relativity, Univ. Chicago Press, (1984)

How these two degrees of freedom may be expressed in terms of the
components of the metric tensor and its derivatives (or such combinations of
these as, e.g. the Riemann tensor)?

Notably, there may be many possible representations.

The main issue is not to find the only legitimate quantities representing
the gravitational degrees of freedom.

Rather, finding a particularly convenient embodiment of this information
which could be used in solving various problems of physical interest.
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Introduction

The outline:

Based on three recent papers
1 I. Rácz: Is the Bianchi identity always hyperbolic?, Class. Quantum Grav. 31 (2014) 155004

2 I. Rácz: Cauchy problem as a two-surface based ‘geometrodynamics’, to appear in Class. Quantum Grav.

3 I. Rácz: Dynamical determination of the gravitational degrees of freedom, submitted to Class. Quantum Grav.

The main message:

1 smooth Einsteinian spaces of Euclidean and Lorentzian signature

smoothly foliated by a two-parameter family of codimension-two-surfaces
which are orientable compact without boundary in M

2 the Bianchi identity and a pair of nested 1 + n and 1 + [n− 1] decompositions

explore the relations of the various projections of the field equations
indicate: mixed hyperbolic–hyperbolic initial value problem can be introduced

3 solving the constraints:
since the early works by A. Lichnerowicz (1944) and J.W. York (1972) the constraints
are solved by transforming them into a semilinear elliptic system by applying the
“conformal method” ... as opposed to this ...
a new gauge fixing and some geometrically distinguished variables
regardless whether the primary space is Riemannian or Lorentzian
the 1 + n momentum constraint as a first order symmetric hyperbolic syst..
the Hamiltonian constraint as a parabolic or an algebraic equation

4 the true degrees of freedom to gravity?
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Introduction

Assumptions:

The primary space: (M, gab)
M : n+ 1-dim. (n ≥ 3), smooth, paracompact, connected, orientable manifold
gab: smooth Lorentzian or Riemannian metric

Einsteinian space: Einstein’s equation restricting the geometry

Gab − Gab = 0

with source term Gab having a vanishing divergence, ∇aGab = 0.

or, more conventionally,

[Rab − 1
2
gabR] + Λ gab = 8π Tab

matter fields satisfying their field equations with energy-momentum tensor Tab
and with cosmological constant Λ

Gab = 8π Tab − Λ gab
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Nested projections and their use

The primary 1 + n splitting:

No restriction on the topology by Einstein’s equations! (local PDEs)

Assume: M is foliated by a one-parameter family of homologous
hypersurfaces, i.e. M ' R× Σ, for some codimension one manifold Σ.

known to hold for globally hyperbolic spacetimes (Lorentzian case)
equivalent to the existence of a smooth function σ : M → R with
non-vanishing gradient ∇aσ such that the σ = const level surfaces
Σσ = {σ} × Σ comprise the one-parameter foliation of M .
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Nested projections and their use

Projections:

The projection operator:

na the ‘unit norm’ vector field that is normal to the Σσ level surfaces

nana = ε

the sign of the norm of na is not fixed. ε takes the value −1 or +1 for
Lorentzian or Riemannian metric gab, respectively.

the projection operator

hab = gab − ε nanb [gab is the identity operator]

to the level surfaces of σ : M → R.

the induced metric on the σ = const level surfaces

hab = heah
f
b gef

while Da will denote the covariant derivative operator associated with hab.
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Nested projections and their use

Decompositions of various fields:

Examples:

a form field: La = δea Le = (hea + ε nena)Le = λna + La

where λ = ε ne Le and La = hea Le

“time evolution vector field”

σa : σe∇eσ = 1

σa = σa⊥ + σa‖ = N na +Na Σσ
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σ

σ
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where N and Na denotes the ‘laps’ and ‘shift’ of σa = (∂σ)a:

N = ε (σene) and Na = hae σ
e
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Nested projections and their use

Decompositions of various fields:

Any symmetric tensor field Pab can be decomposed

in terms of na and fields living on the σ = const level surfaces as

Pab = π nanb + [na pb + nb pa] + Pab

where π = nenf Pef , pa = ε hean
f Pef , Pab = heah

f
b Pef

It is also rewarding to inspect the decomposition of the contraction ∇aPab:

ε (∇aPae)ne = Lnπ +Depe + [π (Ke
e)− εPefKef − 2 ε ṅepe]

(∇aPae)heb = Lnpb +DePeb + [(Ke
e)pb + ṅb π − ε ṅePeb]

ṅa := ne∇ena = −εDa lnN

back
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Nested projections and their use

Decompositions of various fields:

Examples:

the metric
gab = ε nanb + hab

the “source term”
Gab = nanb e + [na pb + nb pa] + Sab

where e = nenf Gef , pa = ε hean
f Gef , Sab = heah

f
b Gef

the r.h.s. of our basic field equation Eab = Gab − Gab

Eab = nanbE
(H)

+ [naE
(M)

b + nbE
(M)

a ] + (E
(EVOL)

ab + habE
(H)

)

E
(H)

= nenf Eef , E
(M)

a = ε hean
f Eef , E

(EVOL)

ab = heah
f
bEef − habE

(H)
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Nested projections and their use

Relations between various parts of the basic equations:

The decomposition of the covariant divergence ∇aEab = 0 of Eab = Gab − Gab:

LnE
(H)

+DeE
(M)

e + [E
(H)

(Ke
e)− 2 ε (ṅeE

(M)

e ) back

− εKae (E
(EVOL)

ae + haeE
(H)

) ] = 0

LnE
(M)

b +Da(E
(EVOL)

ab + habE
(H)

) + [ (Ke
e)E

(M)

b + E
(H)

ṅb

− ε (E
(EVOL)

ab + habE
(H)

) ṅa ] = 0

a first order symmetric hyperbolic linear homogeneous system for (E
(H)

, E
(M)

i )T fosh

Theorem

Let (M, gab) be as specified above. Assume that the metric hab induced on the
σ = const level surfaces is Riemannian. Then, regardless whether gab is of
Lorentzian or Euclidean signature, any solution to the reduced equations

E
(EVOL)

ab = 0 is also a solution to the full set of field equations Gab − Gab = 0

provided that the constraint expressions E
(H)

and E
(M)

a vanish on one of the
σ = const level surfaces. back
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Nested projections and their use

Relations between various parts of the basic equations:

Corollary

If the constraint expressions E
(H)

and E
(M)

a vanish on all the σ = const level
surfaces then the relations

KabE
(EVOL)

ab = 0

DaE
(EVOL)

ab − ε ṅaE
(EVOL)

ab = 0

hold for the evolutionary expression E
(EVOL)

ab .
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Nested projections and their use

The secondary 1 + [n− 1] splitting:

Assume now that on one of the σ = const level surfaces—say on Σ0—there exists
a smooth function ρ : Σ0 → R, with nowhere vanishing gradient such that:

the ρ = const level surfaces Sρ are homologous to each other and such that
they are orientable compact without boundary in M .
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The metric hij on Σ0 can be decomposed as

hij = γ̂ij + n̂in̂j

in terms of the positive definite metric γ̂ij , induced on the Sρ hypersurfaces,
and the unit norm field

n̂i = N̂
−1

[ (∂ρ)
i − N̂ i ]

normal to the Sρ hypersurfaces on Σ0, where N̂ and N̂ i denotes the ‘laps’
and ‘shift’ of an ‘evolution’ vector field ρi = (∂ρ)

i on Σ0.
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Nested projections and their use

Secondary projections:

The Lie transport of this foliation of Σ0 along the integral curves of the vector
field σa yields then a two-parameter foliation Sσ,ρ:

Σσ
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the fields n̂i, γ̂ij and the
associated projection op.

γ̂kl = hkl − n̂kn̂l to the

codimension-two surfaces
Sσ,ρ get to be well-defined
throughout M .

with some algebra

heah
f
bEef = E

(EVOL)

ab + habE
(H)

can be put into the form

heah
f
bEef =

(n)

Eij =
(n)

Gij −
(n)

Gij
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Nested projections and their use

The integrability condition for
(n)

Gij −
(n)

Gij = 0

(n)

Eab = Ê
(H)

n̂an̂b + [n̂aÊ
(M)

b + n̂bÊ
(M)

a ] + (Ê
(EVOL)

ab + γ̂abÊ
(H)

)

Ê
(H)

= n̂en̂f
(n)

Eef , Ê
(M)

a = γ̂ean̂
f (n)

Eef , Ê
(EVOL)

ab = γ̂eaγ̂
f
b
(n)

Eef − γ̂abÊ
(H)

Lemma

The integrability condition Da[
(n)

Gab] = 0 holds on Σσ if the momentum

constraint expression E
(M)

b , along with its Lie derivative LnE
(M)

b , vanishes there.

Lemma

Ê
(H)

and Ê
(M)

a vanish identically along a worldline representing a regular origin.

Corollary

Assume that E
(M)

b = 0 on all the Σσ level surfaces and a regular origin exist in

M . Then any solution to the secondary reduced equations Ê
(EVOL)

ij = 0 is also a

solution to the full set of secondary equations
(n)

Gij −
(n)

Gij = 0. Theorem
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Nested projections and their use

Set up for a mixed initial value problem:

We have seen ...

1 E
(M)

b ≡ 0 =⇒ Da[
(n)

Gab] = 0 =⇒ it suffices to solve the reduced equations

Ê
(EVOL)
ij = 0 & a regular origin exist WSρ∗ in M =⇒ to get solution to the full set

of equations
(n)

Eij =
(n)

Gij −
(n)

Gij = 0.

2
(n)

Eij = heah
f
bEef = E

(EVOL)
ab + habE

(H)

= 0 & E
(M)

b ≡ 0 ∇aEab = 0

=⇒ LnE
(H)

+ E
(H)

(Ke
e) = 0 =⇒ E

(H)

≡ 0 : E
(H)

= 0 on Σ0

Theorem

To get solution to the full set of the primary Einstein’s equations Gab − Gab = 0 it
suffices—regardless whether the primary metric gab is Riemannian or

Lorentzian—to solve the secondary reduced equations Ê
(EVOL)

ij = 0, along with

E
(M)

b = 0 on all the Σσ hypersurfaces, provided that E
(H)

= 0 holds on Σ0 and
there exists a regular origin WSρ∗

in M .

István Rácz (Wigner RCP, Budapest) The degrees of freedom in GR 14 November 2014 20 / 35



Nested projections and their use

The explicit forms:

Expressions in the 1 + n decomposition:

E
(H)

= nenfEef = 1
2 {−ε

(n)

R+ (Ke
e)

2 −KefK
ef − 2 e}

E
(M)

a = hean
fEef = DeK

e
a −DaK

e
e − ε pa

E
(EVOL)

ab =
(n)

Rab + ε
{
−LnKab − (Ke

e)Kab + 2KaeK
e
b − εN−1DaDbN

}
+ 1+ε

(n−1) habE
(H)

−
(
Sab − 1

n−1 hab [Sef h
ef + ε e]

)
where

e = nenf Gef , pa = ε hean
f Gef , Sab = heah

f
b Gef

and the extrinsic curvature Kab which is defined as

Kab = hea∇enb = 1
2 Lnhab

where Ln stands for the Lie derivative with respect to na
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Nested projections and their use

The explicit forms:

Expressions in the 1 + [n− 1] decomposition:

Ê
(H)

= 1
2 {−R̂+ (K̂l

l)
2 − K̂klK̂

kl − 2 ê} ,

Ê
(M)

i = D̂lK̂li − D̂iK̂
l
l − p̂i ,

Ê
(EVOL)

ij = R̂ij −Ln̂K̂ij − (K̂l
l)K̂ij + 2 K̂ilK̂

l
j − N̂

−1
D̂iD̂jN̂

+ γ̂ij{Ln̂K̂
l
l + K̂klK̂

kl + N̂
−1
D̂lD̂lN̂} − [Ŝij − ê γ̂ij ]

where D̂i, R̂ij and R̂ denote the covariant derivative operator, the Ricci tensor
and the scalar curvature of γ̂ij , respectively. The ‘hatted’ source terms ê, p̂i and

Ŝij and the extrinsic curvature K̂ij are defined as

ê = n̂kn̂l
(n)

Gkl , p̂i = γ̂ki n̂
l (n)

Gkl and Ŝij = γ̂kiγ̂
l
j

(n)

Gkl

and

K̂ij = γ̂liDl n̂j = 1
2 Ln̂γ̂ij
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Gauge fixing and solving the constraints
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Gauge fixing and solving the constraints

So far only completely generic decompositions were used.

There is an obvious need for a suitable gauge choice:

in local coordinates xα the Ricci tensor reads as

Rµν = − 1
2 g

εσ {∂ε∂σgµν + ∂µ∂νgεσ − ∂ε∂νgµσ − ∂µ∂σgεν}+ Fµν(gλκ, ∂γgλκ)

Fµν is quadratic in the Christoffel symbols:

Γγαβ = 1
2g
γε {∂αgεβ + ∂βgαε − ∂εgαβ}

Γγαβ involves the inverse metric gµν which can be given as g′µν/det(g),
where g′µν can at best be determined as a polynomial of degree n of the
components gµν in an n+ 1 dimensional space.

Fµν = F ′µν/[det(g)]2, where F ′µν and [det(g)]2 are separately polynomials of
degree 2(n+ 1) in gεσ and ∂γgεσ
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Gauge fixing and solving the constraints

The complexity can be reduced

by the following gauge fixing:

There exist a smooth function Ω : M → R—which does not vanish except at an
origin where the foliation Sρ smoothly reduces to a point on the Σ0 level
surfaces—such that the induced metric γ̂ij can be decomposed as

γ̂ij = Ω2 γij

where γij is such that

γij(Lργij) = 0

on each of the Sρ surfaces.

What does the second relation mean?

In virtue of

γij(Lργij) = Lρ ln[det(γij)]

the determinant is independent of ρ but may depend on the ‘angular’ coordinates.
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Gauge fixing and solving the constraints

Verifications

The conformal structure:

Do the desired smooth function Ω : M → R and the metric γij exist?

γ̂ij(Lργ̂ij) =�����
γij(Lργij) + (n− 1) Lρ(ln Ω2)

for any smooth distribution of the induced [n− 1]-metric γ̂ij on the Sρ

surfaces one may integrate the above relation along the integral curves of ρa

on Σ0, starting at S0.

one gets Ω2 = Ω2(ρ, x3, . . . , xn+1) as

Ω2 = Ω2
0 · exp

[
1

n−1
∫ ρ
0

(
γ̂ij(Lργ̂ij)

)
dρ̃
]

where Ω0 = Ω0(x3, . . . , xn+1) denotes the conformal factor at S0.
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Gauge fixing and solving the constraints

The decomposition of the extrinsic curvature:

The Σσ hypersurfaces in both cases are spacelike:

Kij = κ n̂in̂j + [n̂i kj + n̂j ki] + Kij

κ = n̂kn̂lKkl = n̂k(Lnn̂
k)

ki = γ̂kin̂
lKkl = 1

2 γ̂
k
i (Lnn̂k)− 1

2 γ̂ki (Lnn̂
k)

Kij = γ̂kiγ̂
l
j Kkl = 1

2 γ̂
k
iγ̂
l
j (Lnγ̂kl)

Kl
l = γ̂klKkl = 1

2 γ̂
ij(Lnγ̂ij) = n−1

2 Ln ln Ω2

(conformal invariant) projection taking the trace free parts on the Sσ,ρ surfaces:

Πkl
ij = γ̂kiγ̂

l
j − 1

n−1 γ̂ij γ̂
kl = γkiγ

l
j − 1

n−1 γijγ
kl

◦
Kij = Kij − 1

n−1 γij(γ
efKef ) and

◦
K̂ij = K̂ij − 1

n−1 γij(γ
ef K̂ef )
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Gauge fixing and solving the constraints

The 1 + n constraints

The momentum constraint:

E
(M)

a = hean
fEef = DeK

e
a −DaK

e
e − ε pa = 0 div

(K̂l
l)ki + D̂l ◦Kli + κ ˙̂ni + Ln̂ki − ˙̂nlKli − D̂iκ− n−2

n−1 D̂i(K
l
l)− ε pl γ̂li = 0

κ (K̂l
l) + D̂lkl −KklK̂

kl − 2 ˙̂nl kl −Ln̂(Kl
l)− ε pl n̂l = 0

where ˙̂nk = n̂lDln̂k = −D̂k(ln N̂)

After some algebra in coordinates (ρ, x3, . . . , xn+1) adopted to the foliation Sσ,ρ:

 n−1

(n−2) N̂
γ̂AB 0

0 1

∂ρ +

− (n−1) N̂K

(n−2) N̂
γ̂AB −γ̂AK

−γ̂BK −N̂K

∂K


 kB

KEE

 +

BA
(k)

B(K)

 = 0

Is a first order symmetric hyperbolic system for the vector valued variable

(kB ,K
E
E)T

where the ‘radial coordinate’ ρ plays the role of ‘time’. ... with characteristic cone

(apart from the surfaces Sρ with n̂iξi = 0) [γ̂ij − (n− 1) n̂in̂j ] ξiξj = 0
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Gauge fixing and solving the constraints

The 1 + n constraints
The Hamiltonian constraint:

E
(H)

= nenfEef = 1
2 {−ε

(n)

R+ (Ke
e)

2 −KefK
ef − 2 e} = 0

using
(n)

R = R̂−
{

2 Ln̂(K̂l
l) + (K̂l

l)
2 + K̂klK̂

kl + 2 N̂
−1
D̂lD̂lN̂

}

−ε R̂+ ε
{

2 Ln̂(K̂l
l) +(K̂l

l)
2 + K̂kl K̂

kl + 2 N̂
−1
D̂lD̂lN̂

}
+ 2κ (Kl

l) + (Kl
l)
2 − 2klkl −KklK

kl − 2 e = 0

�ε = ±1 elliptic equation for Ω: using K̂l
l = n−1

2
Ln̂ ln Ω2 − N̂−1

DkN̂k and

γ̂ij = Ω2 γij =⇒ R̂ = Ω−2
[
(γ)

R− (n− 2)
{
DlDl ln Ω2 + (n−3)

4
(Dl ln Ω2)(Dl ln Ω2)

}]
parabolic equation for N̂ : K̂l

l = N̂
−1

[n−1
2

Lρ ln Ω2 − D̂kN̂k] & N̂
−1
D̂lD̂lN̂

R. Bartnik (1993), R. Weinstein & B. Smith (2004)

algebraic equation for κ provided that KE
E does not vanish
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Gauge fixing and solving the constraints

Solving the constraints:

The momentum constraint (satisfying a hyperbolic system) can always be solved as
an initial value problem with initial data specified at some Sρ ⊂ Σσ for the
variables kB ,K

E
E = n−1

2
Ln ln Ω2.

In solving the coupled initial value problem the dependent variables,
i.e. Ω, N̂A, γAB , κ = n̂k(Lnn̂

k),Ln γAB = 2 Ω−2 ◦
Kij are all freely specifiable on

Σσ whereas N̂ is determined by the Hamiltonian constraint.

Theorem

In terms of the geometrically distinguished variables the Hamiltonian and
momentum constraints can be given as a parabolic–hyperbolic system. This
coupled parabolic–hyperbolic system can be solved on the hypersurfaces Σ0 for

N̂,kB ,LnΩ

once a sufficiently regular choice for the variables

Ω, γAB , N̂
A,κ = n̂k(Lnn̂

k),Ln γAB

had been made throughout Σ0. We also have the freedom to choose initial data
to the parabolic–hyperbolic system on one of the two-surfaces Sρ foliating Σ0.
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Summary:

1 smooth Einsteinian spaces of Euclidean and Lorentzian signature
[n+ 1-dim. (n ≥ 3)]

smoothly foliated by a two-parameter family of codimension-two-surfaces:

2 the Bianchi identity and a pair of nested 1 + n and 1 + [n− 1]
decompositions

explored relations of the various projections of the field equations =⇒
mixed hyperbolic–hyperbolic initial value problem can be introduced

3 solving the constraints:

a new gauge fixing and some geometrically distinguished variables
regardless whether the primary space is Riemannian or Lorentzian
the 1 + n momentum constraint as a first order symmetric hyperbolic
system.
the Hamiltonian constraint as a parabolic or an algebraic equation

4 the conformal structure γij , defined on the foliating codimension-two
surfaces Sρ, appears to provide a convenient embodiment of the true
degrees of freedom to various metric theories of gravity
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Thanks for your attention
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First order symmetric hyperbolic linear homogeneous system for (E
(H)

, E
(M)

i )T :

LnE
(H)

+DeE
(M)

e + [E
(H)

(Ke
e)− 2 ε (ṅeE

(M)

e )

− εKae (E
(EVOL)
ae + haeE

(H)

) ] = 0

LnE
(M)

b +Da(E
(EVOL)
ab + habE

(H)

) + [ (Ke
e)E

(M)

b + E
(H)

ṅb

− ε (E
(EVOL)
ab + habE

(H)

) ṅa ] = 0

When writing them out explicitly in some local coordinates (σ, x1, . . . , xn) adopted

to the vector field σa = N na +Na: σe∇eσ = 1 and the foliation {Σσ}, read
as {(

1
N

0
0 1

N
hij

)
∂σ +

(
− 1
N
Nk hik

hjk − 1
N
Nk hij

)
∂k

}(
E

(H)

E
(M)

i

)
=

(
E
E j

)

where the source terms E and E j are linear and homogeneous in E
(H)

and E
(M)

i . back

It is also informative to inspect the characteristic cone associated with the above
equation which—apart from the hypersurfaces Σσ with niξi = 0—can be given as

(hij − ninj) ξiξj = 0
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Having an origin

A world-line Wρ∗ represents an origin in M :

If the foliating codimension-two-surfaces
smoothly reduce to a point on the Σσ level
surfaces at the location ρ = ρ∗. back

Note that then Ω vanishes at ρ = ρ∗. =⇒
The existence of an origin on the individual Σσ
level surfaces is signified by the limiting
behavior γ̂ij(Lργ̂ij)→ ±∞ while ρ→ ρ±∗ .

n
a n

a

n
a

n
a

n
a

n
a

n
a

n
a

n
a

n
a

n
a

n
a

n
a

σσ

σ

σ

σσ

aa

a

a

a

a

σ
σa

a

σ
a

wρ
*

To have a regular origin in M :

One needs to impose further conditions excluding the occurrence of various
defects such as the existence of a conical singularity.

An origin Wρ∗ will be referred as being regular if there exist smooth functions
N̂ (2),Ω(3) and N̂A

(1) such that, in a neighborhood of the location ρ = ρ∗ on

the Σσ level surfaces, the basic variables N̂,Ω and N̂A can be given as

N̂ = 1 + (ρ− ρ∗)2 N̂ (2), Ω = (ρ− ρ∗) + (ρ− ρ∗)3 Ω(3), N̂
A = (ρ− ρ∗) N̂A

(1)
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