
Accelerated 
Monte Carlo Particle Generators 

for the LHC

(MC@GPU)

 Gergely Gábor Barnaföldi1& Máté Ferenc Nagy-Egri1,2

1Wigner RCP of the HAS, Budapest, Hungary 
2Eötvös Loránd University, Budapest, Hungary

  



G.G. Barnaföldi: MC@GPU 2

O U T L I N E

● MC generators in high-energy heavy-ion physics
● The biggest data challenge: LHC & WLCG with GPUs?
● GPU based PRNG for MC generators
● Performance tests by GPU based MC
● What can we learn from pp MC simulations?
● Outlook



G.G. Barnaföldi: MC@GPU 3

MC generators in high-energy collisions
Why do we need Monte Carlo generators?

There are problems with no analytical expression, no 
closed form, or no deterministic description, like: 

● stohastic processes (independent events)
● numerical (multi-D) integration 
● optimalization

Solution & errors

Random sampling of numerical results

Error estimation by standard devitaion

Fast random numbers  Computing & IT→  



G.G. Barnaföldi: MC@GPU 4

The biggest data challenge: LHC

WLCG – Worldwide LHC Computing GRID:
15-20 Petabytes data per year

...and more after LHC upgrades



G.G. Barnaföldi: MC@GPU 5

Fast computing=parallel computing
● Moore's law: 

Every 2nd year the number 
of transistors (integrated 
circuits) are doubled in 
computing hardwares.

● Amdalh's law:

The theoretical speedup is 
given by the portion of 
parallelizable program, p, & 
number of processors, N, is: 



G.G. Barnaföldi: MC@GPU 6

How to improve the WLCG resources

WLCG:
● Critical points are the number 

and performance of the WNs

● There are multicore machines 
with single thread. 

● If there are free multicores or 
GPU resources, improvement can 
be made at the sofrware  and 
middleware level (cheap).

● Certainly, there is a budget 
issue as well.



G.G. Barnaföldi: MC@GPU 7

When is the moment to use GPUs?

No direct answer! 
● Pilot study to define parameters to be optimized
● Need for large scale and large-large scale computing
● Have time (5-10 times more code development)
● Manpower high-level (close to hardware) programming
● $$$$$$

What has been done so far to help us? – without CUDA, etc... 

● Several libs & toolkits (BLAS, FFTW, CUBLAS, CUFFT)
● Wrappers (C, FORTRAN  CUDA)→

● OpenCL standards (Ati, NVidia) 
● Mathematica, MatLab (with GPU support)



G.G. Barnaföldi: MC@GPU 8

GPU based PRNG 
for 

MC event generators



G.G. Barnaföldi: MC@GPU 9

GPU based PRNG for MC event generators
● Software frameworks

CERN
● OS: SLC 2.6.32-279.1.1.el6.x86_64
● Graphics: fglrx 9.002 (Catalyst 12.10)
● GCC: 4.4.6 20120305 (Red Hat 4.4.6-4)
● OpenCL: 1.2 AMD APP SDK 2.8

ALICE 
● Aliroot: v5-03-73-AN
● Root: v5-34-02
● Geant3: v1-14

PRNG tester
● Dieharder: 3.31.1



G.G. Barnaföldi: MC@GPU 10

GPU based PRNG for MC event generators

AliRoot framework for ALICE 
data simualtion, 
reconstruction, analysis

Math



G.G. Barnaföldi: MC@GPU 11

GPU based PRNG for MC event generators
● The tested PRNG codes

Trandom1 (RANLUX) 

TRandom2 (Tausworthe)

TRandom3
● Original CPU based Mersenne 

Twister) algorithm 

TRandom4
● CPU/GPU based SFMT 

(SIMD-oriented Fast Mersenne 
Twister) algorithm 

TRandom5 
● CPU/GPU based MWC64X 

algorithm



G.G. Barnaföldi: MC@GPU 12

GPU based PRNG for MC event generators

● From the user side
– Installation:

Driver + OpenCL (SDK)

Pre-complied modules

– Usage:

TRandomX, can be take as 
a regular PRNG.

CPU/GPU run can be 
choosen via parameters: 

GPU: parameter > 200

CPU: parameter < 200



G.G. Barnaföldi: MC@GPU 13

GPU based PRNG for MC event generators

● Behind the scene 
– TRandom4 & TRandom5

– No single random number 
generation only in 500k blocks

– RAM buffer is for random 
numbers. 

– Only speeddown is the 'stack 
depth check'. 

– Copy work from buffer is by the 
CPU.

– Due to OpenCL platform this 
works on both CPU/GPU 

● Constructor 
– It contains all tasks

● Platform check
● Context creation
● Device info
● Kernel compilation
● Command queue
● Buffer allocation
● Sending random seeds to 

devices
● Tread ID settings



G.G. Barnaföldi: MC@GPU 15

The PRNG quality test

TRandom3 TRandom4 TRandom5



G.G. Barnaföldi: MC@GPU 16

The PRNG quality test

● Summary of the DieHard quality tests of PRNGs

TRandom3 – Original CPU based Mersenne Twister

TRandom4 – CPU/GPU based SFMT (SIMD-oriented Fast MT) 

TRandom5 – CPU/GPU based MWC64X algorithm

P
er

fo
rm

an
ce



G.G. Barnaföldi: MC@GPU 17

Performance tests by GPU based MC
● Hardware framework

gpu001 at GPU Laboratory of the Wigner RCP
● MB: ASUS P6T6 PCIExpress 2.0x16
● CPU: Core i7 920 (2.76 Ghz, 8 KB cache)
● Memory: 12GB DDR3 (1333 MHz)
● HDD: 1 TB
● GPU: 3 pcs. ATi  Radeon HD5970

(2 GPUs, 735 MHz, 1+1 GB GDDR, 4.64 TFlop)



G.G. Barnaföldi: MC@GPU 18

● Hardware framework

gpu001 at GPU Laboratory of the Wigner RCP
● MB: ASUS P6T6 PCIExpress 2.0x16
● CPU: Core i7 920 (2.76 Ghz, 8 KB cache)
● Memory: 12GB DDR3
● HDD: 1 TB
● GPU: 3 pcs. ATi  Radeon HD5970 (735 MHz 2GB VRAM)

Performance tests by GPU based MC



G.G. Barnaföldi: MC@GPU 19

The main question is: How about SPEED?
● Levels of speedtest

Kernel speed
● Real geneation time of a PRNG in 

CPU or in GPU. 

Total speed
● Generation time of the PRNGs 

within the proper program 
framework

Real speed 
● The above two, but with real 

(V)RAM usage.

Here we used a 200 million event 
sample! 



G.G. Barnaföldi: MC@GPU 20

SPEED without writing (V)RAM
Kernel time Full calculation

C
P

U
G

P
U



G.G. Barnaföldi: MC@GPU 21

SPEED without writing (V)RAM
Kernel time Full calculation

C
P

U
G

P
U

42
x

+
30

%



G.G. Barnaföldi: MC@GPU 22

SPEED with writing (V)RAM

C
P

U
G

P
U

Kernel time Full calculation



G.G. Barnaföldi: MC@GPU 23

SPEED with writing (V)RAM

C
P

U
G

P
U

Kernel time Full calculation

-5
%

-1
4%



G.G. Barnaföldi: MC@GPU 24

So, how about SPEED test?
+

10
x

+
10

x

+
3x

+
3x

● For this setup (Core i7 vs. ATi Radeon HD5970) 
TRandom3 < TRandom4 < Trandom5



G.G. Barnaföldi: MC@GPU 25

So, how about SPEED test?

+45x +30%

+
10

x
+

10
x

+
3x

+
3x

● For this setup (Core i7 vs. ATi Radeon HD5970) 
TRandom3 < TRandom4 < Trandom5

Kernel calculation is faster (NW)



G.G. Barnaföldi: MC@GPU 26

So, how about SPEED test?

-5% -14%

+45x +30%

+
10

x
+

10
x

+
3x

+
3x

● For this setup (Core i7 vs. ATi Radeon HD5970) 
TRandom3 < TRandom4 < Trandom5

Kernel calculation is faster (NW), but real speed (RW) is slower

Note
1
: New GPU cards are 2-5 times faster



G.G. Barnaföldi: MC@GPU 27

So, how about SPEED test?

+2x faster+2x faster

● For this setup (Core i7 vs. ATi Radeon HD5970) 
TRandom3 < TRandom4 < Trandom5

Kernel calculation is faster (NW), but real speed is slower

Note
2
: Parallel computing (OpenCL) improves speed!



G.G. Barnaföldi: MC@GPU 28

Some Physics: proton-proton collisions
● Theoretical model of a pp collisions



G.G. Barnaföldi: MC@GPU 29

Some Physics: proton-proton collisions
● A reconstructed pp event in the ALICE experiment



G.G. Barnaföldi: MC@GPU 30

Some Physics: pp collisions at GPU
● 400k TRandom5 PRNG 

Transverse momentum spectrum

dN/dp
T 
(Tsallis distr.)

Rapidity distribution

dN/dy (Gaussian distr.)

Angular distribution

dN/dφ (Isotropy)



G.G. Barnaföldi: MC@GPU 31

● To check the validity of the 'physics':
Compare calulated distributions to the original Trandom3 CPU

TRandomX/TRandom3 must be ~1 depending on statistics

 

Some Physics: pp collisions at GPU



G.G. Barnaföldi: MC@GPU 32

● To check the validity of the 'physics':
Compare calulated distributions to the original Trandom3 CPU

TRandomX/TRandom3 must be ~1 depending on statistics

10% agreement 5% agreement 5% agreement

up to p
T
<6 GeV/c in |y|<5 in the whole φ

 

Some Physics: pp collisions at GPU



G.G. Barnaföldi: MC@GPU 33

S U M M A R Y
● Aim

● Faster MC event generation for HIC
● Resuts for pp MC @ GPUs 

● Diehard test of open source PRNGs: (SFMT, MWC64X) on 
GPUs

●  Implementation of new GPU based modules (TRandom4, 
TRandom5) to Root/AliRoot framework

● Tests: simulation of high-energy pp collisions
● Take away message

● GPUs can be used for Monte Carlo generators in HIC
● One needs more programming (CUDA/OpenCL/...)
● Need to optimize (price/speed) since other technologies 

available (e.g. Intel Xeon Phi)



G.G. Barnaföldi: MC@GPU 34

O U T L O O K
● The presented results are on

● AliRoot, especially AliPYTHIA for proton-proton
● CPU/GPU SIMD-oriented Fast MT & MWC64X
● Standalone machine (with ATi Radeon HD5970)

● How to improve?
● Ongoing: HIJING calculations (need for more PRNGs), so might be 

more efficient, faster
● Trivial: Buy new fast cards and re-test – we are on it and we hope the 

funding agency on it as well.
● The framework is almost ready to test in the GRID using JDL 

(required HW: GPUs, SW: OpenCL/CUDA/...) 
● More faster PRNGs on CPUs/GPUs (Tiny MT, MTGP), but note, faster 

PRNG less randomness quality. 
● Further modules can be moved to GPU



  B A C K U P



G.G. Barnaföldi: MC@GPU 36

The PRNG quality test

Some DieHard tests by George Marsaglia
Birthday spacings: Choose random points on a large interval. The spacings between the points should be asymptotically exponentially distributed. 
The name is based on the birthday paradox.

Overlapping permutations: Analyze sequences of five consecutive random numbers. The 120 possible orderings should occur with statistically equal 
probability.

Ranks of matrices: Select some number of bits from some number of random numbers to form a matrix over {0,1}, then determine the rank of the 
matrix. Count the ranks.

Monkey tests: Treat sequences of some number of bits as "words". Count the overlapping words in a stream. The number of "words" that don't 
appear should follow a known distribution. The name is based on the infinite monkey theorem.

Count the 1s: Count the 1 bits in each of either successive or chosen bytes. Convert the counts to "letters", and count the occurrences of 
five-letter "words".

Parking lot test: Randomly place unit circles in a 100 x 100 square. If the circle overlaps an existing one, try again. After 12,000 tries, the number 
of successfully "parked" circles should follow a certain normal distribution.

Minimum distance test: Randomly place 8,000 points in a 10,000 x 10,000 square, then find the minimum distance between the pairs. The square of 
this distance should be exponentially distributed with a certain mean.

Random spheres test: Randomly choose 4,000 points in a cube of edge 1,000. Center a sphere on each point, whose radius is the minimum distance 
to another point. The smallest sphere's volume should be exponentially distributed with a certain mean.

The squeeze test: Multiply 231 by random floats on [0,1) until you reach 1. Repeat this 100,000 times. The number of floats needed to reach 1 
should follow a certain distribution.

Overlapping sums test: Generate a long sequence of random floats on [0,1). Add sequences of 100 consecutive floats. The sums should be normally 
distributed with characteristic mean and sigma.

Runs test: Generate a long sequence of random floats on [0,1). Count ascending and descending runs. The counts should follow a certain 
distribution.

The craps test: Play 200,000 games of craps, counting the wins and the number of throws per game. Each count should follow a certain 
distribution.)


	Slide 1
	Folie 1
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36

