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Brightness distribution of galaxies

We can measure: flux, distance
Use formula: L = 4πr2F
Luminosity function:

φ(L;β, u, l) := φ0 ·
(
1− exp

(
−L

l

))
·
(

L
u

)β
· exp

(
−L

u

)
β: shape p., l: lower scale p., u: upper scale p., φ0: norm.
const.
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We can measure: flux, distance
Use formula: L = 4πr2F
Luminosity function:

φ(L;β, u, l) := φ0 ·
(
1− exp
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·
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L
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(
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)
β: shape p., l: lower scale p., u: upper scale p., φ0: norm.
const.
Main goal: estimate full probability distribution of β, l and u
and refine luminosity measurements
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Solution

Method: hierarchical Bayesian model
Input: data + model
Output: p(parameters) and φ(L;β, u, l)
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General formulation

Figure : N objects in a population

characteristics (χ ∈ X)
I e.g. distance, size,

brightness. . .
I parametrized PDF: p(χ|θ)

population parameters
(θ ∈ Θ)
measurements (D)

I χ with noise
χ := {χi}Ni=1, D := {Di}Ni=1
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Goals

Inference of distribution of population parameters

A "classic" method: MLE

I Likelihood function: L(θ|D1, . . . ,DN ) =
∏N

i=1 p(Di |θ)
I Finding a value of θ that maximizes L

However, suppose we have detail info about measurement
errors and
Further goals:

I Not only model fitting but iterative improvement for
estimation of probability distribution of population parameters
and characteristics

I Refinement on measurements

=⇒ Hierarchical Bayesian approach:

I Dealing with not only probabilities but distribution functions
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Hierarchical Bayesian Model

Drawing samples from joint posterior distribution:
I p(χ, θ|D) ∝ p(D|χ) · p(χ|θ) · p(θ)

By a so-called Metropolis-within-Gibbs (MWG) sampling
This is an MCMC method run over Θ×XN parameter space
Alternate estimation θ and χ (Gibbs)
N + 1 Markov chains (Metropolis)
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Computational approaches

θ ∼ p(θ|χ) (CPU)
χi ∼ p(χi |θ,Di) for i = 1, . . . ,N (GPU)

p(θ|χ) ∝ p(θ)︸︷︷︸
prior

·
N∏

i=1
p(χi |θ)︸ ︷︷ ︸

L(θ|χ1, . . . , χN )

p(χi |θ,Di) ∝ p(Di |χi)︸ ︷︷ ︸
error

·p(χi |θ)

Posterior mean < χi > directly from MCMC
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Previous knowledge

Prior PDF
Initial values
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Burn-in period
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Sampling result
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Tradeoff

CPU + data move ?
< single-threaded GPU kernel
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Use case: luminosity function

θ = (β, l, u)
If each object is "visible" =⇒ looks pretty good
If there is flux limit =⇒ difficulties
We have implementation for both cases which is written in
C/C++ with CUDA and works with simulated data.
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A possible difficulty

Complicated numerical integration, e.g.:∫∞
0
∫∞

0 ζ
(

L
4πr2 ,T , σ0

)
· φ(L; θ) · δ(r) dL dr

δ(r): distance PDF
T : flux limit
ζ
(

L
4πr2 ,T , σ0

)
= 1

2

(
1 + erf

(
χ−T√
2σ(χ)

))
erf: error function
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Performance tests I

NVIDIA Tesla
K40c
Linear scaling
1M obj.
2M iter.
ca. 2.6 hours
(For a simple
model)
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Performance tests II

For more
complex model
e.g. with time-
consuming
num. int.
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Future works

Utilization cosmological distance
I The expansion of Universe hasn’t been taking into account yet
I More complex numerical integration etc.

Application on SDSS data set
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HB method for object characteristics and population-level
parameters estimation
Characteristics computation with MC on GPU cores
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Thank you for your attention!
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