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Context

● Radiation belts: hot plasma

(energized charged 
particles)
– T~ 0.1-10 MeV (electrons) ~ 10-100 

MeV (protons)

– Flux ~-10000/cm2/s

● Plasmasphere: cold plasma
– Temperature: T~ 1 eV

– Charge density: N~100-10000/cm3
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 Space weather:
changes in the upper atmosphere due to 

the effect of our Sun
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  Effects of space weather
on our infrastructure:

● satellites (electronics, orbit)
● flight (radiation dose, navigation)
● communication (both land and satellite)
● geolocation (GPS and also compass)
● transmission lines, disturbances in electricity 

supply
● electrochemical corrosion of pipelines
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Motivation

● Goal 1: Measure plasma densities at known location  
(“v.ö. whistler inverziós eljárás”)

● Goal 2: Do it in real time and feed it into space 
weather models, predicting changes in the 
plasmasphere
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Method

A whistler group + spherics + VLF radio transmitter signals
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Whistlers

• Their shape is indicative of the 
total electron density along their 
path

•  VLF (3-30 kHz) impulses 
generated by lightning, 

• propagating along magnetic 
field lines

• Can be observed on the 
ground and in space

• During propagation in the plasmasphere, they acquire a typical 
shape on a frequency-time diagram
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Whistler inversion

● Goal: obtaining physical parameters: plasma density and 
determining propagation path (“whistler inversion method”)
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Whistler inversion
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Traditional method:

1. identifying curves
2. curve parameters → physical parameters
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“AWA = automatic whistler analysis algorithm”
(Lichtenberger, 2000)

● Advantages:

1. doesn't involve the determination of the whistler curve (f
i
 – t

i
 

pairs), can be automatized

2. multiple path whistlers, are handled as a group (more 
information, more consistent inversion)
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Automatic whistler inversion
(wrong parameters)
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Automatic whistler inversion
(right parameters)
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Test on a modelled multipath whistler group
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Test on a measured multipath whistler group



18

AWDANet
Automatic Whistler Detection and Analysis Network

Stations around the world
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Station setup
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Obvious optimizations:

● Improving the code (100x)

● Using some lookup tables (500x)

● Cutting and discarding noise from spectrogram (100x)

→ processing 1 trace takes 3-4 hrs (on an average CPU, = 
2.8GHz Core2 Duo)

● Number of whistler detection varies strongly by station and 
season

- annual detections 100000 or even millions

- in active periods, few hundred potentially invertable whistlers 
per hour
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● We're studying plasmaspheric changes on the scale of hours

● 10-15 snapshots per hour is acceptable

● Necessary: processing a trace group in 250-300 seconds

● We need to accelerate processing 100x

Other condideration:

● Compact solution (light, small volume)

● Affordable (15 global stations)

→ GPU cards
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● 2 db GeForce GTX 590 cards per host = 4 GPU cores

● 1-3 such hosts per station = 4-12 GPU cores per station

● Easy to scale

● 6000 matlab code lines + 4500 C/CUDA code lines

● Inversoin of 1 trace ~ 2 seconds
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● Testing: GPU core freeze

- occasional, 1 in 10000 runs, continues smoothly

- long-term: freezes for hours, days, software/hardware(!) 
reset no remedy, firmware update is risky

→ turn off “bad” cores

● Additional redundancy: if a GPU host goes down, the others 
are not affected
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Data Assimilation
(A. Jorgensen)

● Data assimilation is expressed in Bayesian way: a sprobability 
distribution evolves through time, determined by

● (1) The range of possible evolution, taking into account the probability 
distribution of unknown physics and drivers which are not measured.

● (2) Measurements which partially                                                 
constrain the model and thus eliminate                                                
some possible evolutionary paths

● Example:
● A plasmasphere model might implement quiet and storm time behavior, 

and without other knowledge (e.g. solar wind or observations in the 
plasmasphere) all scenarios are included in the probability distribution

● Useful data assimilation narrows the probability distribution.
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Event Study
15 July 2012 – Plasma density maps

Initial model conditioning, then storm onset and 
shrinking plasmasphere
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Event Study
15 July 2012 – Plasma density maps

Recovery phase, plasmasphere refilling
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