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Motivation

The pasta phases can appear in

Core-collapse supernova matter

◮ Neutrino opacity is thought to be affected by these heavy
inhomogeneities, and also by light clusters.

◮ These geometrical configurations can modify the neutrino
transport, affecting the cooling of PNS.

and in the inner crust of

Neutron stars

◮ Neutron stars are to date believed to be made of inner layers
enclosed in a crust and possibly, a shallow atmosphere.

◮ Will these structures modify the M(R) relation of the star?
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The pasta phase of nuclear matter

◮ It is the result of a frustrated system.
At low densities a competition
between the strong and the
electromagnetic interactions takes
place leading to a frustrated system.

◮ Under laboratory conditions the short
and large distance scales related to the
nuclear and Coulomb interactions are
well separated so that nucleons bind
into nuclei but at densities of the
order of 1013 − 1014 g/cm3 these
length scales are comparable.

◮ The pasta phase is the ground state
configuration if its free energy is lower
than the corresponding homogeneous
phase.
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RMF Lagrangian for npe matter

◮ The force between protons and neutrons is mediated by
exchange of mesons (σ, ω, ρ).

◮ Lagrangian density

LNLWM =
∑

i=p,n

Li + Le + Lmesons + Lγ + Lωρ,

◮ Nucleon contribution: Li = Lp + Ln

◮ Electron contribution: Le

◮ Meson contribution: Lmesons = Lσ + Lω + Lρ

◮ Electromagnetic contribution: Lγ

◮ nonlinear ωρ coupling contribution: Lωρ
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These terms are given by

Li = ψ̄i [γµiD
µ −M∗]ψi ,

Le = ψ̄e [γµ (i∂
µ + eAµ)−me ]ψe ,
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M∗ = M − gsφ, Ωµν = ∂µVν − ∂νVµ

Bµν = ∂µbν − ∂νbµ − gρ(bµ × bν), Fµν = ∂µAν − ∂νAµ
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The state that minimizes the energy of asymmetric nuclear matter
is characterized by the distribution functions, f0k±, of particles (+)
and antiparticles (−) k = p, n, e, given by:

f0j± =
1

1 + e(ǫ0j∓νj)/T
, j = p, n

with
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1
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,

with

ǫ0e =
√

p2 +m2
e ,

where µk is the chemical potential of particle k = p, n, e.
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In the mean field approximation, the thermodynamic quantities of
interest are given in terms of the meson fields, which are replaced
by their constant expectation values. For homogeneous stellar
matter, we have

ε =
1

π2

∑

j=p,n,e

∫

dp p2ǫ0j (f0j+ + f0j−) +
m2

v

2
V 2
0 +

ξg4
v

8
V 4
0 +

m2
ρ

2
b20

+
m2

s

2
φ20 +

k

6
φ30 +

λ

24
φ40 + 3Λvg

2
ρ g

2
vV

2
0 b

2
0,

S = −
1

π2

∑

j=p,n,e

∫

dp p2 [f0j+ ln f0j+ + (1− f0j+) ln(1− f0j+)
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F = ε− TS ,

P = µpρp + µnρn + µeρe −F
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Light clusters (d ≡2H, t ≡3H, α ≡4He, h ≡3He)
The Lagrangian density becomes

LNLWM =
∑

i=p,n,t,h

Li + Lα + Ld + Le + Lmesons + Lγ + Lωρ,

where
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Aµ, j = t, h, α, d ,

gvj = Ajgv , gρj = |Zj − Nj |gρ, µj = Njµn + Zjµp,

M∗
j = AjM − Bj
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The Thomas-Fermi approximation

◮ Nonuniform npe matter system described inside
Wigner-Seitz cell:

◮ Sphere, cilinder or slab in 3D (spherical symmetry), 2D (axial
symmetry around z axis) and 1D (reflexion symmetry).

◮ Matter is assumed locally homogeneous and, at each point, its
density is determined by the corresponding local Fermi
momenta.

◮ Fields are assumed to vary slowly so that baryons can be
treated as moving in locally constant fields at each point.

◮ Surface effects are treated self-consistently.

◮ Quantities such as the energy and entropy densities are
averaged over the cells. The free energy density and pressure
are calculated from these two thermodynamical functions.
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The Coexisting phases approximation

◮ Matter is organized into separated regions of higher and lower
density, the higher ones being the pasta phases, and the lower
ones a background nucleon gas. The interface between these
regions is sharp.

◮ Gibbs equilibrium conditions are used to get the lowest
energy state, and, for a temperature T = T I = T II , are
written as:

◮ µI
n = µII

n

◮ µI
p = µII

p

◮ P I = P II

◮ Finite size effects are taken into account by a surface and a
Coulomb terms in the energy density, after the coexisting

phases are achieved.
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◮ Total F and total ρp of the system:

F = fF I + (1− f )F II + Fe + εsurf + εCoul ,

ρp = ρe = ypρ = f ρIp + (1− f )ρIIp ,

◮ Minimizing εsurf + εCoul wrt r , one gets εsurf = 2εCoul with

εCoul =
2α

42/3
(

e2πΦ
)1/3

[

σD(ρIp − ρIIp )
]2/3

,

◮ α = f for droplets, rods, slabs; α = 1− f for tubes and
bubbles

◮ f is the volume fraction of phase I ; σ is the surface energy
coefficient
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The Compressible Liquid Drop approximation

◮ The total free energy density is minimized, including the

surface and Coulomb terms.

◮ This minimization is done with respect to four variables:
◮ rd , the size of the geometric configuration, which gives
εsurf = 2εCoul ,

◮ ρI , the baryonic density in the high-density phase,
◮ ρIp, the proton density in the high-density phase,
◮ f , the volume fraction.

◮ The equilibrium conditions become:
◮ µI

n = µII
n

◮ µI
p = µII

p − εsurf
f (1−f )(ρI

p−ρII
p )

◮ P I = P II − εsurf

(

1
2α + 1

2Φ
∂Φ
∂f

−
ρII
p

f (1−f )(ρI
p−ρII

p )

)

◮ Total P and the total µp of the system:

Ptot = µpρp + µnρn + µeρe −F , µp = f µIp + (1 − f )µIIp ,
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Free energy per particle
FSU interaction, T = 4 MeV, yp = 0.3
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F is lowered when pasta is present. The effect of light clusters is
only seen at small densities.
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Chemical potential and pressure
T = 4 MeV, yp = 0.3
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µB = (1− yp)µn + yp(µp + µe)
CP, CLD, TF ⇒ the negative curvature of µB is removed; at the
crust-core transition, they give similar results.
CLD and TF ⇒ P does not show any discontinuity.
CP presents a very large discontinuity at the onset of the pasta
phase (left) and at both the onset and the crust-core transition
(right), due to the non-consistent treatment of the surface energy.
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Entropy per particle
T = 4 MeV, yp = 0.3
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CP, CLD, TF ⇒ S/A is lowered with the inclusion of pasta. At
low densities, the same effect is seen in HMwC.
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Transition densities between pasta formations - FSU
yp = 0.3
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Slabs are omitted (except for T = 4) in TF (left) and occupy the
widest density range in CP (middle) and CLD (right).
The density range of each shape decreases with increasing T .
At T = 10 MeV, CLD no longer has pasta.
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Transition densities between pasta formations
yp = 0.3

However, the slab geometry is present in other parametrizations:
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In FSU, the difference between slabs and tubes for F is < 10−3.
Stable geometries depend on parametrizations: which properties
influence them should be investigated.
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Transition densities to uniform matter
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to 3DHFEOS is ∼ 0.015 fm−3 and decreases with increasing T .
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Summary

◮ The effect of light clusters is very weak and only noticeable at
very low densities.

◮ The density range of the pasta phase decreases with
increasing T .

◮ Crust-core transition density decreases with increasing T .

◮ The jumps in the pressure and chemical potential, as a
function of the density, indicate a first order phase transition
to uniform matter.
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◮ Stable geometries depend on the parametrizations: which
properties influence them should be investigated.

◮ CP method gives a larger correction than TF, and not so
realistic, though it predicts concordant transition densities to
uniform matter.

◮ TF and CLD calculations give very similar results in the whole
range of densities and temperatures considered.

◮ All the methods considered show a very good agreement with
respect to the transition density to homogeneous matter.
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THANK YOU!


	Motivation
	Pasta phases
	RMF framework
	Results
	Summary

