Nucleosynthesis and transients in the ν -driven wind from the remnant of binary neutron star mergers

Albino Perego

in collaboration with A. Arcones and D. Martin (TU Darmstadt), O. Korobkin and S. Rosswog (U.

Stockholm), R. Cabezon, M. Liebendörfer and F.-K. Thielemann (U. Basel), R. Käppeli (ETH Zürich)

albino.perego@physik.tu-darmstadt.de

Technische Universität Darmstadt

Institute for Nuclear Physics, Theory

v-driven wind nucleosynthesis and transients from BNS merger remnants - CompStar annual conference, Budapest 15 June 2015 - p. 1/24

Final stage of a binary NS (BNS) system evolution:

- double BNS systems do exist
- merger rate: $\sim 10^{-6} \, \mathrm{events} \, \mathrm{Myr}^{-1} \mathrm{galaxy}^{-1}$

PSR	Р	P_b	a sin i	е	$\dot{\omega}$	M	$ au_{ m GW}$
	ms	days	lt-s		deg yr $^{-1}$	M_{\odot}	Gyr
Double neutron star binaries							
B1913+16	59.0	0.323	2.34	0.617	4.227	2.83	0.31
B1534+12	37.9	0.421	3.73	0.274	1.756	2.75	2.69
B2127+11C	30.5	0.335	2.52	0.681	4.457	2.71	0.22
J1518+4904	40.9	8.634	20.04	0.249	0.011	2.62	9600
J1811-1736	104.2	18.779	34.78	0.828	0.009	2.6	1700
J0737-3039A	22.7	0.102	1.42	0.088	16.88	2.58	0.087
J0737-3039B	2773.5	0.102	1.51	0.088		2.58	0.087
J1829+2456	41.0	1.17	7.24	0.14	0.28	2.53	60
J1756-2251	28.5	0.319	2.75	0.18	2.59	2.57	1.7
Neutron star-white dwarf binaries							
B2303+46	1066.4	12.34	32.69	0.66	0.010	2.53	4500
J1141-6545	393.9	0.20	1.86	0.17	5.33	2.30	0.59

PSR1913+16 periastron shift

millisecond pulsars in relativistic binaries

Credit: Weisberg+10, Lorimer 05

Final stage of a binary NS (BNS) system evolution:

- double BNS systems do exist
- merger rate: $\sim 10^{-6} \, \mathrm{events} \, \mathrm{Myr}^{-1} \mathrm{galaxy}^{-1}$
- inspiral phase, driven by GW emission

$$t_{\rm insp} \approx 4.56 \,\mathrm{Gyr} \,\left(\frac{T_{\rm orb}}{10\mathrm{h}}\right)^{8/3} \left(\frac{M}{M_{\odot}}\right)^{-2/3} \left(\frac{\mu}{M_{\odot}}\right)^{-1} \left(1-e^2\right)^{7/2}.$$

(see, e.g., Lorimer 05)

- T_{orb} orbital period
- M total mass
- μ reduced mass
- *e* eccentricity

Final stage of a binary NS (BNS) system evolution:

- double BNS systems do exist
- merger rate: $\sim 10^{-6} \, \mathrm{events} \, \mathrm{Myr}^{-1} \mathrm{galaxy}^{-1}$
- inspiral phase, driven by GW emission
- coalescence phase

Matter temperature from a SPH simulations. Credit: S. Rosswog.

ν-driven wind nucleosynthesis and transients from BNS merger remnants - CompStar annual conference, Budapest 15 June 2015 – p. 2/24

Final stage of a binary NS (BNS) system evolution:

- double BNS systems do exist
- merger rate: $\sim 10^{-6} \, \mathrm{events} \, \mathrm{Myr}^{-1} \mathrm{galaxy}^{-1}$
- inspiral phase, driven by GW emission
- coalescence phase
- NS merger aftermath

- (Hyper) Massive NS (\rightarrow BH) $\sim 2.6 M_{\odot}, \rho \gtrsim 10^{12} {\rm g \, cm^{-3}}$
- thick accreting disk $\sim 0.15 M_{\odot}, Y_e \lesssim 0.05$
- intense ν emission $L_{\nu, \rm tot} \sim 10^{53} {\rm erg \, s^{-1}}$

← figure: matter density

Nuclear & Astro relevance

dynamical encounter of neutron-rich, stellar compact object

- Intense emitter of GWs and ν 's e.g. Read+13, Ferrari's talk
- ejecta and nucleosynthesis Lattimer&Schramm74, Arcones' talk
- dependence on nuclear EoS e.g. Bauswein+14, Burgio's & Andersson's talks

www.ligo.caltech.edu

- possible short GRB progenitors e.g. Paczynski86, Bernardini's & Debreczeni's talks
- electromagnetic counterpart from radioactive decay Li&Paczynski98
- ejecta properties depends on ν -matter interaction
 e.g. Wanajo+14

Alov+05

Nuclear & Astro relevance

dynamical encounter of neutron-rich, stellar compact object

- Intense emitter of GWs and ν 's e.g. Read+13, Ferrari's talk
- ejecta and nucleosynthesis Lattimer&Schramm74, Arcones' talk
- dependence on nuclear EoS e.g. Bauswein+14, Burgio's & Andersson's talks

Rosswog 12

- possible short GRB progenitors e.g. Paczynski86, Bernardini's & Debreczeni's talks
- electromagnetic counterpart from radioactive decay Li&Paczynski98
- ejecta properties depends on ν-matter
 interaction
 e.g. Wanajo+14

Tanvir+13, Berger+13

v-driven wind nucleosynthesis and transients from BNS merger remnants - CompStar annual conference, Budapest 15 June 2015 – p. 3/24

Nuclear & Astro relevance

dynamical encounter of neutron-rich, stellar compact object

- Intense emitter of GWs and ν 's e.g. Read+13, Ferrari's talk
- ejecta and nucleosynthesis Lattimer&Schramm74, Arcones' talk
- dependence on nuclear EoS e.g. Bauswein+14, Burgio's & Andersson's talks

Rosswog 12

- possible short GRB progenitors e.g. Paczynski86, Bernardini's & Debreczeni's talks
- electromagnetic counterpart from radioactive decay Li&Paczynski98
- ejecta properties depends on ν -matter interaction
 e.g. Wanajo+14

Tanvir+13, Berger+13

v-driven wind nucleosynthesis and transients from BNS merger remnants - CompStar annual conference, Budapest 15 June 2015 – p. 3/24

Neutrino-driven wind

Physical origin of the ν -driven wind:

- thick accreting disk $\sim 0.17 M_{\odot}, Y_e \lesssim 0.05$

- intense neutrino (ν) emission $L_{\nu, \text{tot}} \sim 10^{53} \text{erg s}^{-1}$
- \mathbf{P} ν -disk interaction: wind formation

e.g. Ruffert&Janka 96, Rosswog+03⁻

v-driven wind nucleosynthesis and transients from BNS merger remnants - CompStar annual conference, Budapest 15 June 2015 - p. 4/24

Goals of this study

Perego et al, MNRAS 2014; Martin et al, in preparation

- to characterize the neutrino emission
- to study the wind development
- to analyze the ejecta and to perform nucleosynthesis calculations
- to compute electromagnetic counterparts

see also Dessart+09,Metzger&Fernandez14,Just+14,Sekiguchi+15

what's new/different:

- first wind study in 3D
- disc and wind evolution over $\sim 200 \text{ ms}$
- In the wind ($\Delta x = 1 \text{ km}$, $\Delta x/L \sim 5 \times 10^{-4}$)

Model ingredients

- initial conditions: final stages of high resolution SPH simulation of binary NS merger
- Hydrodynamics:
 FISH 3D Grid Cartesian code
- ν treatment: Advanced Spectral Leakage (ASL) scheme

dominant ν cooling & heating processes

 Nuclear equation of state: HS EoS, with TM1 parametrization

Hempel+12

Käppeli+11

• Tracers:

Lagrangian particles advected in the fluid (100k)

Disc and wind dynamics

 ν -driven wind nucleosynthesis and transients from BNS merger remnants - CompStar annual conference, Budapest 15 June 2015 – p. 7/24

Disc and wind dynamics

Disc and wind dynamics

Wind ejecta

- $\begin{array}{l} \bullet \quad m_{\rm ej}(t\approx 100\,{\rm ms})\approx 1.7\times 10^{-3}M_\odot \\ m_{\rm ej}(t\approx 200\,{\rm ms})\approx 9.6\times 10^{-3}M_\odot \end{array}$
 - geometrical properties:
 - non-equatorial emission: $\theta < 60^{\circ}$
 - larger Y_e in the polar regions
- thermodynamical properties:
 - $0.2 \lesssim Y_e \lesssim 0.4$, increasing with time
 - \checkmark s: 15-20 $k_{\rm B}$ /baryon
 - **9** v_r : 0.06-0.09 c

ejected mass: cumulative histogram

Martin, AP+, in preparation

Nucleosynthesis from the wind

Postprocessing of ejected tracers ($\sim 17k$)

- Winnet nuclear network
- weak r-process: 80<A<130</p>
- complementary to robust r-process nucleosynthesis from dynamic ejecta
- possible differences between high and low latitude ejecta

our wind ejecta + dynamical ejecta

 $(m_{\rm dyn} pprox 10^{-2} M_{\odot})$ from Korobkin+12

Martin, AP+, in preparation

Nucleosynthesis from the wind

Postprocessing of ejected tracers ($\sim 17k$)

- Winnet nuclear network
- weak r-process: 80<A<130</p>
- complementary to robust r-process nucleosynthesis from dynamic ejecta
- possible differences between high and low latitude ejecta

Martin, AP+, in preparation

 γ emission powered by radioactive material in the ejecta

bolometric luminosity (dynamic + wind), computed by O. Korobkin

Martin, AP+, in preparation

model application for photon propagation and emission

e.g. Kulkarni05,Grossman+13

- potentially different from emission coming from dynamical/viscous ejecta
 - earlier and bluer
 - less contaminated by lanthanides and actinides

cf Metzger&Fernandez14

cf Fernandez+15

 possible dependence from viewing angle and obscuration effects

 γ emission powered by radioactive material in the ejecta

Lanthanides and Actinides mass fraction, Martin, AP+, in preparation model application for photon propagation and emission

e.g. Kulkarni05,Grossman+13

- potentially different from emission coming from dynamical/viscous ejecta
 - earlier and bluer
 - less contaminated by lanthanides and actinides

cf Metzger&Fernandez14

cf Fernandez+15

 possible dependence from viewing angle and obscuration effects

 γ emission powered by radioactive material in the ejecta

broadband curves computed by O. Korobkin Martin, AP+, in preparation model application for photon propagation and emission
 e.g. Kulkarni05,Grossman+13

- potentially different from emission coming from dynamical/viscous ejecta
 - earlier and bluer
 - less contaminated by lanthanides and actinides

cf Metzger&Fernandez14

cf Fernandez+15

 possible dependence from viewing angle and obscuration effects

Outlooks

combination of wind ejecta with viscous ejecta?

Just+15, Metzger&Fernandez14 (mainly for NS-BH mergers)

role of neutrinos for dynamical ejecta?

Wanajo+14,Goriely+15

- GR and EOS effects on dynamics and on neutrinos e.g. Rezzolla+10,Kiuchi+12,Deaton+13,Surman+13,Sekiguchi+15,Foucart+15...
- ν 's and the central engine of GRBs?

e.g. Rosswog+03, Aloy+05, Paschalidis+14, Murguia-Berthier+14

• ν oscillations in BNS mergers?

e.g. Duan+12, Malkus+14

role of B field?

Giacomazzo+11

Conclusions

- genuine ν -driven wind from ν heating in the disk $t_{\rm wind} \sim {\rm tens} \, {\rm ms}$
- wind contributes substantially to BNS merger ejecta: $\sim 2 \times 10^{-3} M_{\odot}$ @ 100 ms $\sim 9 \times 10^{-3} M_{\odot}$ @ 200 ms

- $\begin{array}{l} \mbox{mildly neutron-rich ejecta}\\ (0.2 \lesssim Y_{\rm e,ejecta} \lesssim 0.4);\\ \mbox{weak r-process nucleosynthesis}\\ (A \sim 80 130) \end{array}$
- wind electromagnetic transient potentially different from dynamical ejecta transient

ν-driven wind nucleosynthesis and transients from BNS merger remnants - CompStar annual conference, Budapest 15 June 2015 – p. 13/24

BNS mergers as GW sources

BNS mergers (together with BH-NS mergers) are ...

- primary target of ground based GW detectors
 - aLIGO (next year!), VIRGO
 - calculation of GW signal from inspiral/merger/post-merger phases
 e.g. Duez+10, Read+13
 - constraint on nuclear EoS

e.g. Bauswein+14

e.g. Acernese+08, Abbott+09

www.ligo.caltech.edu

BNS mergers & GRBs

promising progenitors of short/hard GRBs e.g. Paczynski86

- compatibility with observation constraints e.g. Berger 14
- mass accretion on BH/NS: large energy reservoir
- ν 's and *B* field: intense energy deposition rates

(c) A04: t = 0.01 s

0.450

r x 10⁻⁸ [cm]

max: 0.843; min: 0.000

Log₁₀ Γ

Alov+05

BNS mergers & Nucleosynthesis

site for heavy-elements (r-process) production

Lattimer&Schramm 74, Eichler+ 89, ... Surman+08, Just+14 ...

- n-rich matter + $L_{\bar{\nu}_{e}} > L_{\nu_{e}}$ + fast expansions
- different ejection channels:

dynamical ejecta viscous ejecta e.g., Korobkin+12, Bauswein+13, Hotokezaka+13 e.g., Fernandez&Metzger 13, Just+14

 ν -driven wind

e.g. Dessart+09, Metzger&Fernandez 14, Perego+14

 Rosswog2012
 Korobkin+12

 ν-driven wind nucleosynthesis and transients from BNS merger remnants - CompStar annual conference, Budapest 15 June 2015 – p. 16/24

BNS mergers & kilonova

Iate optical transient associated with short GRBs

- radioactively-powered transient
 e.g. Li&Paczynski98
- first kilo/macro-nova observation, associated with GRB130603B

Metzger&Berger 12

Tanvir+13, Berger+13

disk lifetime:

$$t_{\rm disk} \sim \alpha^{-1} \left(\frac{H}{R}\right)^{-2} \Omega_K^{-1} \sim 0.31 \, {\rm s} \left(\frac{\alpha}{0.05}\right)^{-1} \left(\frac{H/R}{1/3}\right)^{-2} \left(\frac{R_{\rm disk}}{100 \, {\rm km}}\right)^{3/2} \left(\frac{M_{\rm ns}}{2.5 \, M_{\odot}}\right)^{-1/2} \, {\rm s} \left(\frac{M_{\rm rs}}{100 \, {\rm km}}\right)^{-1/2} \, {\rm s} \left(\frac{M_{\rm rs}}{1$$

 α : viscosity coefficient R_{disk} : disk typical radius H/R: disk aspect ratio Ω_K : Keplerian angular velocity M_{ns} : HMNS mass

• disk lifetime: $t_{\text{disk}} \sim 0.31 \,\text{s} \, \left(\frac{\alpha}{0.05}\right)^{-1} \left(\frac{H/R}{1/3}\right)^{-2} \left(\frac{R_{\text{disk}}}{100 \,\text{km}}\right)^{3/2} \left(\frac{M_{\text{ns}}}{2.5 \, M_{\odot}}\right)^{-1/2}$ • disk L:

$$L_{\nu,\text{disk}} \sim \frac{\Delta E_{\text{grav}}}{2 t_{\text{disk}}} \approx 8.35 \times 10^{52} \,\text{erg}\,\text{s}^{-1} \left(\frac{M_{\text{ns}}}{2.5 \,M_{\odot}}\right)^{3/2} \left(\frac{M_{\text{disk}}}{0.2 \,M_{\odot}}\right) \left(\frac{R_{\text{disk}}}{100 \,\text{km}}\right)^{-3/2} \\ \times \left(\frac{\alpha}{0.05}\right) \left(\frac{R_{\text{ns}}}{25 \,\text{km}}\right)^{-1} \left(\frac{H/R}{1/3}\right)^{2}$$

 $\Delta E_{\rm grav}$: gravitational energy released during accretion

- HMNS L:

$$L_{\nu,\rm ns} \sim \frac{\Delta E_{\rm ns}}{t_{\rm cool,ns}} \approx 1.86 \times 10^{52} \,\rm erg \, s^{-1} \left(\frac{\Delta E_{\rm ns}}{3.5 \times 10^{52} \,\rm erg}\right) \left(\frac{R_{\rm ns}}{25 \,\rm km}\right)^{-2} \\ \left(\frac{\rho_{\rm ns}}{10^{14} \,\rm g cm^{-3}}\right)^{-1} \left(\frac{k_{\rm B} T_{\rm ns}}{15 \,\rm MeV}\right)^{-2}$$

 $\Delta E_{\rm ns}$: thermal energy $t_{\rm ns,cool} \sim 3\tau_{\nu,\rm ns}/(R_{\rm ns}c)$: diffusion time scale $\tau_{\nu,\rm ns}$: ν optical depth in HMNS

- disk lifetime: $t_{\text{disk}} \sim 0.31 \,\mathrm{s} \, \left(\frac{\alpha}{0.05}\right)^{-1} \left(\frac{H/R}{1/3}\right)^{-2} \left(\frac{R_{\text{disk}}}{100 \,\mathrm{km}}\right)^{3/2} \left(\frac{M_{\text{ns}}}{2.5 \,M_{\odot}}\right)^{-1/2}$ • disk L: $L_{\nu,\text{disk}} \sim 8.35 \times 10^{52} \,\mathrm{erg \, s^{-1}} \left(\frac{M_{\text{ns}}}{2.5 \,M_{\odot}}\right)^{3/2} \left(\frac{M_{\text{disk}}}{0.2 \,M_{\odot}}\right) \dots$
- HMNS L: $L_{\nu,\rm ns} \sim 1.86 \times 10^{52} \,{\rm erg \, s^{-1}} \left(\frac{\Delta E_{\rm ns}}{3.5 \times 10^{52} \,{\rm erg}} \right) \left(\frac{R_{\rm ns}}{25 \,{\rm km}} \right)^{-2} \dots$
- wind time:

$$t_{\rm wind} \sim \frac{e_{\rm grav}}{\dot{e}_{\rm heat}} \approx 0.072 \,\mathrm{s} \, \left(\frac{M_{\rm ns}}{2.5 \, M_{\odot}}\right) \left(\frac{R_{\rm disk}}{100 \,\mathrm{km}}\right) \left(\frac{E_{\nu}}{15 \,\mathrm{MeV}}\right)^{-2} \\ \left(\frac{\xi L_{\nu_e}}{4.5 \times 10^{52} \,\mathrm{erg \, s^{-1}}}\right)^{-1}$$

- e_{grav} : specific gravitational energy
- \dot{e}_{heat} : specific heating rate

 ξL_{ν_e} : isotropized ν_e luminosity at $\theta \approx \pi/4$, $\xi \sim 1.5$ and $L_{\nu_e} \sim (L_{\rm ns} + L_{\rm disk})/3$

- disk lifetime: $t_{\text{disk}} \sim 0.31 \,\mathrm{s} \, \left(\frac{\alpha}{0.05}\right)^{-1} \left(\frac{H/R}{1/3}\right)^{-2} \left(\frac{R_{\text{disk}}}{100 \,\mathrm{km}}\right)^{3/2} \left(\frac{M_{\text{ns}}}{2.5 \,M_{\odot}}\right)^{-1/2}$ • disk L: $L_{\nu,\text{disk}} \sim 8.35 \times 10^{52} \,\mathrm{erg \, s^{-1}} \left(\frac{M_{\text{ns}}}{2.5 \,M_{\odot}}\right)^{3/2} \left(\frac{M_{\text{disk}}}{0.2 \,M_{\odot}}\right) \dots$
- HMNS L: $L_{\nu,\rm ns} \sim 1.86 \times 10^{52} \,{\rm erg \, s^{-1}} \left(\frac{\Delta E_{\rm ns}}{3.5 \times 10^{52} \,{\rm erg}}\right) \left(\frac{R_{\rm ns}}{25 \,{\rm km}}\right)^{-2} \dots$

• wind:
$$t_{\text{wind}} \sim 0.072 \,\mathrm{s} \left(\frac{M_{\text{ns}}}{2.5M_{\odot}}\right) \left(\frac{R_{\text{disk}}}{100 \,\mathrm{km}}\right) \left(\frac{E_{\nu}}{15 \,\mathrm{MeV}}\right)^{-2} \left(\frac{\xi L_{\nu e}}{4.5 \times 10^{52} \,\mathrm{erg \, s^{-1}}}\right)^{-1}$$

 $t_{\rm wind} < t_{\rm disk}$

disk lifetime:
$$t_{\text{disk}} \sim 0.31 \, \text{s} \left(\frac{\alpha}{0.05}\right)^{-1} \left(\frac{H/R}{1/3}\right)^{-2} \left(\frac{R_{\text{disk}}}{100 \, \text{km}}\right)^{3/2} \left(\frac{M_{\text{ns}}}{2.5 \, M_{\odot}}\right)^{-1/2}$$
disk L: $L_{\nu,\text{disk}} \sim 8.35 \times 10^{52} \, \text{erg s}^{-1} \left(\frac{M_{\text{ns}}}{2.5 \, M_{\odot}}\right)^{3/2} \left(\frac{M_{\text{disk}}}{0.2 \, M_{\odot}}\right) \dots$
HMNS L: $L_{\nu,\text{ns}} \sim 1.86 \times 10^{52} \, \text{erg s}^{-1} \left(\frac{\Delta E_{\text{ns}}}{3.5 \times 10^{52} \, \text{erg}}\right) \left(\frac{R_{\text{ns}}}{25 \, \text{km}}\right)^{-2} \dots$

• wind:
$$t_{\text{wind}} \sim 0.072 \,\mathrm{s} \left(\frac{M_{\text{ns}}}{2.5 M_{\odot}}\right) \left(\frac{R_{\text{disk}}}{100 \,\mathrm{km}}\right) \left(\frac{E_{\nu}}{15 \,\mathrm{MeV}}\right)^{-2} \left(\frac{\xi L_{\nu_e}}{4.5 \times 10^{52} \,\mathrm{erg \, s^{-1}}}\right)^{-1}$$

 $t_{\rm wind} < t_{\rm disk}$

• HMNS \rightarrow BH: EoS, $M_{\rm ns}$, $B_{\rm ns}$, ang. mom. transport, etc.

 $t_{\rm bh} \sim 0.01 - 10\,{\rm s}$

our assumption: $t_{\rm bh} \gtrsim 0.1 - 0.2 \, {\rm s}$

e.g. Rezzolla & Kumar 14

Neutrino Surfaces

v-driven wind nucleosynthesis and transients from BNS merger remnants - CompStar annual conference, Budapest 15 June 2015 – p. 19/24

dependence on time

dependence on time

dependence on time

Neutrino net rates

v-driven wind nucleosynthesis and transients from BNS merger remnants - CompStar annual conference, Budapest 15 June 2015 – p. 21/24

Disc & wind composition

mass fractions in the disk & wind (as predicted by NSE EOS)

black line: NSE freeze-out (T=5GK)

- Relevant changes in nuclear composition:
 - **•** $\mathbf{n},\mathbf{p}
 ightarrow \mathbf{n},lpha$ (still within NSE)
 - $n, \alpha \rightarrow n, (A, Z)$ (at NSE-freezout)

Wind properties

2D mass-histograms of (ρ, Y_e) and (ρ, s) $t \approx 0 \text{ ms}$ $\rho - Y_{\rho}$, t = 0ms ρ - s , t = 0ms 0.5 30 0.45 -1 25 0.4 ပံ န လ် Aass [Solar Mass] တ္ န င်္လ လူ Log₁₀ Mass [Solar Mass] 0.35 20 Entropy [k_B/baryon] Electron fraction [-] 0.3 0.25 0.2 10 0.15 0.1 -6 -6 0.05 0 0 $Log_{10}^{8} density [g/cm^{3}]^{12}$ $^{8}_{\text{Log}_{10}} \overset{10}{\text{density}} [g/\text{cm}^{3}]^{12}$ 14 6 14 4 6 4

Wind properties

- large variation for Y_e : $0.1 \leq Y_e \leq 0.40$
- small variation in entropy: $10 \lesssim s \; [k_B/bar] \lesssim 22$

