Study of β-stable matter in proto-neutron star: impact of the nuclear symmetry energy at finite temperature

N. H. Tan, D.T. Loan, D. T. Khoa, J. Margueron INST/VINATOM, VIETNAM IPNLyon/CNRS, FRANCE

Annual NewCompStar Conference 2015, Budapest, Hungary

Core-collapse supernova and proto-neutron star

PNS: residual state after gravitational collapse of massive star.

For massive stars (M=8-30 M_{\odot}): PNS , S=2 \rightarrow Neutron Star For very massive stars (M>30 M_{\odot}) PNS, S=4 \rightarrow Black-Hole

Evolution of 40 Mo star (numerical simulation)

Simulation of core-collapse supernova, Hempel et al., APJ 748 (2012)

In the following, we study the s=1, 2 &4 EOS at v-trapped and v-free in beta stable with different nuclear interaction.

Nonrelativistic HF mean field with M3Y interaction for ANM

Model	n_0	E_0	K	J	L	K_{sym}	Ref.
	${ m fm^{-3}}$	MeV	MeV	MeV	MeV	${ m MeV}$	
CDM3Y3	0.17	-15.9	217	29.0	62.5	45	Khoa PRC 1997
CDM3Y6	0.17	-15.9	252	29.8	64.3	46	
CDM3Y6s	0.17	-15.9	252	32.0	49.14	-154	
CDM3Y3s	0.17	-15.9	217	32.0	49.14	-140	
M3Y-P5	0.16	-16.1	235	30.9	27.9	-229	Nakada, PRC 2003
M3Y-P7	0.16	-16.0	254	33.0	54.3	-138	Nakada PRC 2013
SLy4	0.16	-16.0	230	32.1	46.0	-120	Chabanat NPA 1998
D1N	0.16	-16.0	221	30.1	32.4	-182	E.Chappert, PLB 2008

Constrains on J: 30 < J < 34 MeV; constrains on K: 240 ± 30 MeV

$$\text{CDM3Y}n: \quad v_{(\sigma\tau)}^{\text{D(EX)}}(\rho,r) = F_{(\sigma\tau)}(\rho) \sum_{\nu=1}^{3} Y_{(\sigma\tau)}^{\text{D(EX)}}(\nu) \, \frac{\exp(-R_{\nu}r)}{R_{\nu}r} \label{eq:cdm3Yn}$$

$$\text{M3Y-P} n: \quad v_{(\sigma\tau)}^{\mathrm{D(EX)}}(\rho,r) = \sum_{\nu=1}^{3} Y_{(\sigma\tau)}^{\mathrm{D(EX)}}(\nu) \, \frac{\exp(-R_{\nu}r)}{R_{\nu}r} \, + \, t^d(r) \rho(r)^{\alpha} \, \delta(\boldsymbol{r})$$

Nonrelativistic HF mean field with M3Y interaction for ANM

BHF: G.F. Burgio, A&A 518 (2010)

Nonrelativistic HF mean field with M3Y interaction for ANM

Hot β-equilibrium matter of PNS

In the core: Homogeneus npeµv matter

β – equilibrium process

$$p + e \leftrightarrows n + \nu_e$$

$$p + \mu \leftrightarrows n + \nu_\mu$$

$$\mu_e > m_\mu c^2 \sim 105.6 \text{ MeV}$$

$$\rho_p = \rho_e + \rho_{\mu}$$

$$\mu_n - \mu_p = \mu_e - \mu_{\nu_e} = \mu_{\mu} - \mu_{\nu_{\mu}}$$

$$\mu_{\nu_e} = -\mu_{\overline{\nu}_e}$$

$$\mu_{\nu_{\mu}} = -\mu_{\overline{\nu}_{\mu}}$$

$$Y_{Le} = x_e - x_{\overline{e}} + x_{\nu_e} - x_{\overline{\nu}_e} = 0.4$$

 $Y_{L\mu} = x_{\mu} - x_{\overline{\mu}} + x_{\nu_{\mu}} - x_{\overline{\nu}_{\mu}} = 0$

$$\rho_p = \rho_e + \rho_{\mu}$$

$$\mu_n - \mu_p = \mu_e - \mu_{\nu_e} = \mu_{\mu} - \mu_{\nu_{\mu}}$$

v free: more *n*-rich

∨ trapped: x_e is larger

Isentropic particle fraction of PNS matter

- \rightarrow v-trapped is more symmetric and has larger x_e than v-free matter.
- \rightarrow As entropy increases, x_e and x_μ get more and more close as well as x_n and x_p

Isentropic particle fraction of PNS matter

 \rightarrow ASY-STIFF produce more symmetric NM, higher x_e , decreasing x_v \rightarrow ASY-STIFF models are closer to BHF than ASY-SOFT;

Isentropic particle fraction of PNS matter

- → The difference between ASY-STIFF and ASY-SOFT is more pronounced in v free matter
- → effect of temperature softening the effect of symmetry energy
- →cooling of NS in Direct Urca process may not be described by ASY-SOFT interactions

EOS of proto-neutron star matter – Entropy

→ ASY-STIFF predict larger entropy than ASY-SOFT interactions

 $\boldsymbol{\rightarrow} \, S_{\nu\text{-trapped matter}}$ is larger than $S_{\nu\text{-free matter}}$

EOS of proto-neutron star matter – Entropy & Temperature

- → ASY-SOFT interactions predict higher temperature profile.
- \rightarrow At fix entropy, $T_{v\text{-trapped matter}}$ is less than $T_{v\text{-free matter}}$. In an isentropic cooling of PNS, matter becomes hotter in the core of PNS

EOS of proto-neutron star matter – Pressure

- \rightarrow P_{S=2} > P_{S=0}, different with BHF.
- \rightarrow P_{trap} > P_{free} , different with BHF

Apply to core-collapse supernovae

EOS of proto-neutron star matter
$$P(\rho, r, S)$$

TOV equation
$$\frac{dP}{dr} = -\rho \frac{Gm}{r^2} \left(1 + \frac{4\pi r^3 P}{m} \right) \left(1 + \frac{P}{\rho} \right) \left(1 - \frac{2Gm}{r} \right)^{-1}$$

$$P = P(\rho) \qquad \text{Pressure (input of TOV eq.)}$$

$$\rho = \rho(r) \qquad \text{Density at position } r$$

$$m = m(r) = \int_0^r 4\pi s^2 \rho(s) ds \qquad \text{Enclosed mass}$$

$$M = m(R), \quad R = R(\rho \approx 0) \qquad \text{total mass and radius.}$$

Apply to core-collapse supernovae

Phenomenon is more pronounced in v-free case:

- → The hotter PNS, the larger Maximum mass.
- → As v escapes>> less mass gain gravitational >>form BH

Properties of isentropic PNS matter

Summary, conclusion and outlook

- Both the EOS of neutrino-free and neutrino-trapped baryonic matters in β -equilibrium and static properties of PNS have been investigated at different temperatures and entropy per baryon s= 1, 2 and 4.
- Question about correlation between stiff-soft and maximum mass
- t_{BH} may related to the symmetry energy but others parameters should be considered
- v mean free path.

