

Osservatorio Astronomico di **Brera**

Gamma-ray bursts and magnetars: observational signatures and predictions

MARIA GRAZIA BERNARDINI

INAF - Osservatorio Astronomico di Brera (Italy) Swift Italian Team

Annual NewCompStar Conference, 15-19 June 2015, Budapest

What is a gamma-ray burst?

GRB 130427A

Leo

Duration: a few ms up to hundreds of s Fluence: ~10⁻⁷ - 10⁻³ erg cm⁻² Flux: ~10⁻⁸ - 10⁻⁴ erg cm⁻² s⁻¹ Energy range: ~ a few keV up to MeV

What is a gamma-ray burst? Brief, intense flash of gamma-ray radiation

Duration: a few ms up to hundreds of s Fluence: ~10⁻⁷ - 10⁻³ erg cm⁻² Flux: ~10⁻⁸ - 10⁻⁴ erg cm⁻² s⁻¹ Energy range: ~ a few keV up to MeV when you observe a GRB you are observing ONE GRB!!!

A bit of history...

- discovered in the '60s by the Vela satellites (military program to monitor nuclear tests)
- + announced in 1973

THE ASTROPHYSICAL JOURNAL, 182:L85-L88, 1973 June 1 © 1973. The American Astronomical Society. All rights reserved. Printed in U.S.A.

OBSERVATIONS OF GAMMA-RAY BURSTS OF COSMIC ORIGIN

RAY W. KLEBESADEL, IAN B. STRONG, AND ROY A. OLSON

University of California, Los Alamos Scientific Laboratory, Los Alamos, New Mexico Received 1973 March 16; revised 1973 April 2

ABSTRACT

Sixteen short bursts of photons in the energy range 0.2–1.5 MeV have been observed between 1969 July and 1972 July using widely separated spacecraft. Burst durations ranged from less than 0.1 s to ~ 30 s, and time-integrated flux densities from $\sim 10^{-5}$ ergs cm⁻² to $\sim 2 \times 10^{-4}$ ergs cm⁻² in the energy range given. Significant time structure within bursts was observed. Directional information eliminates the Earth and Sun as sources.

Subject headings: gamma rays - X-rays - variable stars

 BATSE instrument (CGRO, 1991): GRBs isotropically distributed over the sky

so they are "likely" extragalactic objects....

BeppoSAX (1996): discovery of counterpart and

erNum=553132, 2013-04-08 21:51:38 UT, 15-350keV (Note Variable Time Sampling)

They are distant!! $\langle z \rangle = 2.1, z_{max} = 8.2$

This implies they are the most powerful objects in the Universe $(E_{\gamma} \sim 10^{52} \text{ erg})$

Two flavors: SGRBs and LGRBs

Long GRBs (LGRBs):

- + T₉₀>2 s
- star-forming galaxies
- young stellar population
- supernova associated

Short GRBs (SGRBs):
T₉₀<2 s
all type of galaxies (or hostless)
old stellar population
NO supernova associated

- Burst Alert Telescope (BAT)
 - 15-150 keV
 - FOV: 2 steradiants
 - Centroid accuracy: 1' 4'
- X-Ray Telescope (XRT)
 - 0.2-10.0 keV
 - FOV: 23.6' x 23.6'
 - Centroid accuracy: 5"
- UV/Optical Telescope (UVOT)
 - 30 cm telescope
 - 6 filters (170 nm 600 nm)
 - FOV: 17' x 17'
 - 24th mag sensitivity (1000 sec)
 - Centroid accuracy: 0.5"

BAT Burst Image

T<10 s; θ < 4'

BAT

T<100 s; θ < 5"

Swift Mission (2004) Gehrels et al. 2004

UVOT

Spacecraft

UVOT Image

T<300 s; θ < 0.5'

LIVOT

XRT

The GRB afterglow: pre-Swift

 simple power-law decay at all wavelengths

The GRB afterglow: post-Swift

complex behavior in 80% cases:
"canonical" light curve (steep-shallow-steep)
"flares" superimposed up to ~ 1000s after the prompt event in ~ 1/3 GRBs
not expected by standard model!!!!

The GRB afterglow: post-Swift

complex behavior in 80% cases: → "canonical" light curve (steep-shallow-steep) ➡ "flares" superimposed up to ~ 1000s after the prompt event in ~ 1/3 GRBs not expected by standard model!!!! but still a fraction of simple

power-law decaying afterglows

The standard model

Short

The GRB standard model (post-Swift) ???

What is the central engine of GRBs?

Black holes vs. Magnetars

GRB powered by accretion

Woosley & Bloom 2006 Woosley 1993 MacFadyen & Woosley 1999 Kumar et al. 2008

- highly rotating (P~1 ms), huge magnetic field (B~10¹⁵ G) => energy reservoir
- contribution to GRB power from spindown (~ hours)
- produced in both merging and core-collapse SNe

Usov 1992 Duncan & Thompson 1992 Dai & Lu 1998 Zhang & Meszaros 2001 Metzger et al. 2011

What is the central engine of GRBs?

Black holes vs. Magnetars

GRB powered by accretion

Woosley & Bloom 2006 Woosley 1993 MacFadyen & Woosley 1999 Kumar et al. 2008

- highly rotating (P~1 ms), huge magnetic field (B~10¹⁵ G) => energy reservoir
- contribution to GRB power from spindown (~ hours)
- produced in both merging and core-collapse SNe

Duncan & Thompson 1992 Dai & Lu 1998 Zhang & Meszaros 2001 Metzger et al. 2011

Model for a magnetar central engine

- GRB powered only by the magnetar rotational energy through a wind heated by neutrinos driven by the proto-magnetar
- magnetised ultrarelativistic outflow
- prompt: internal shocks or magnetic reconnection
- dissipation inefficient at late times: interaction with ISM + spindown power

Metzger et al., 2011

- plateau phase in X-rays of both LGRBs and SGRBs
- extended emission in SGRBs
- pre- and post-cursors in LGRBs and SGRBs

- plateau phase in X-rays of both LGRBs and SGRBs
- extended emission in SGRBs
- pre- and post-cursors in LGRBs and SGRBs

The plateau phase in LGRBs and SGRBs

+ ~50% LGRBs with "canonical behaviour" ~80% deviates from simple power law ~50% SGRBs energy injection into the afterglow lasting ~ hours

> Nousek et al., 2005 Tagliaferr et al. 2005 Zhang et al. 2006 Evans et al. 2009 Rowlinson et al. 2013 Margutti et al. 2013 D'Avanzo et al. 2014

The plateau phase in LGRBs and SGRBs

Lyons et al. 2010 Rowlinson et al. 2013 ~50% LGRBs with "canonical behaviour"
~80% deviates from simple power law
~50% SGRBs
energy injection into the afterglow lasting ~

hours

 usually decay ~ t^{-1.2} but occasionally very sharp drop

The plateau phase in LGRBs and SGRBs

Correlations between plateau properties and with the prompt emission:

Luminosity-time correlation

$$L_{\rm sd} = 10^{49} B_{15}^2 P_{-3}^{-4} \,\mathrm{erg}\,\mathrm{s}^{-1}$$
$$t_{\rm sd} = 3 \times 10^3 B_{15}^{-2} P_{-3}^2 \,\mathrm{s}\,,$$

Spin-down power and timescale sufficient to produce the plateau!

> Dai & Lu 1998 Zhang & Meszaros 2001

External plateau

$$E(t) = \frac{L_i}{t^{k'}} \int_{t_0}^t \frac{t^{k'}}{(1+at)^2} + E_o\left(\frac{t_o}{t}\right)^{k'}$$

Dall'Osso et al. 2011

Spin-down luminosity + afterglow

> Dai & Lu 1998 Zhang & Meszaros 2001 Dall'Osso et al. 2011 Bernardini et al. 2012, 2013

Internal plateau

Spin-down luminosity Spin-down luminosity (negligible aft.) + collapse to BH

Lyons et al. 2010 Rowlinson et al. 2010, 2013

Luminosity-time correlation implied by the model

$$L_p \sim \dot{E}_{\rm sd} \sim B^2 P^{-4} \sim P^{-2} t_{\rm sd}^{-1} \sim P^{-2} t_p^{-1}$$

normalization and slope from B and P
scatter from P: 0.66-35 ms

> Bernardini et al. 2012 Rowlinson et al. 2014

- plateau phase in X-rays of both LGRBs and SGRBs
- extended emission in SGRBs
- pre- and post-cursors in LGRBs and SGRBs

SGRBs with Extended Emission (EE)

Lazzati et al. 2001 Norris & Bonnell 2006

One possibility:

- initial spike <= magnetar powered by accretion
- EE + late time X-rays <= rotational powered wind

Metzger et al. 2008

One possibility:

Or:

- initial spike <= magnetar powered by accretion
- EE + late time X-rays <= rotational powered wind

Metzger et al. 2008

- initial spike <= magnetar powered accretion
- EE <= propeller
- Iate X-rays <= rotational powered wind
- different mechanisms for different features

Gompertz et al. 2014

- plateau phase in X-rays of both LGRBs and SGRBs
- extended emission in SGRBs
- pre- and post-cursors in LGRBs and SGRBs

Emission episodes PRIOR TO the main prompt emission in ~15% of LGRBs:

quiescent time ~ T₉₀

Emission episodes PRIOR TO the main prompt emission in ~15% of LGRBs:

- quiescent time ~ T₉₀
- multiple precursors

Emission episodes PRIOR TO the main prompt emission in ~15% of LGRBs:

- quiescent time ~ T₉₀
- multiple precursors
- negligible or comparable energies

Emission episodes PRIOR TO the main prompt emission in ~15% of LGRBs:

- quiescent time ~ T₉₀
- multiple precursors
- negligible or comparable energies
- + also in SGRBs

Emission episodes AFTER the main prompt emission in ~33% of LGRBs:

+ t_{pk} usually ≤ 1000 s, but also at late times

Emission episodes AFTER the main prompt emission in ~33% of LGRBs:

- + t_{pk} usually ≤ 1000 s, but also at late times
- multiple flares

Emission episodes AFTER the main prompt emission in ~33% of LGRBs:

- + t_{pk} usually ≤ 1000 s, but also at late times
- multiple flares
- negligible or comparable energies ("giant" flares)

Emission episodes AFTER the main prompt emission in ~33% of LGRBs:

- + t_{pk} usually ≤ 1000 s, but also at late times
- multiple flares
- negligible or comparable energies ("giant" flares)
- also in SGRBs

POST-CURSORS: "GIANT" X-RAY FLARES

Among X-ray flares, "Giant" flares: + $\Delta C/C \approx 50-1000$ + $E_{flare} \sim 10\% E_{prompt}$ or more + $E_{pk} \sim 5 \text{ keV}$

POST-CURSORS: "GIANT" X-RAY FLARES

Among X-ray flares, "Giant" flares:
ΔC/C ≈ 50-1000
E_{flare} ~10% E_{prompt} or more
E_{pk} ~ 5 keV
... precursors in the mirror!!!!

PRE-AND POST-CURSORS IN GRBS

How to switch on and off a GRB? With a **millisecond Magnetar** powered by **Accretion**

Usov 1992 Duncan & Thompson 1992 Dai & Lu 1998 Zhang & Meszaros 2001 Metzger et al. 2011

How?? Accretion-powered Magnetar

How?? Accretion-powered Magnetar

r_m

r_c

Accretion phase \Rightarrow Propeller phase $r_m > r_c$

Illarionov & Sunyaev 1975 Campana et al. 1998

r_m

r_c

QUIESCENT TIMES?? A PROPELLER PHASE

QUIESCENT TIMES?? A PROPELLER PHASE

THE PROMPT EMISSION LUMINOSITY

THE END OF THE PROMPT EMISSION

The magnetar can still influence the GRB emission with its **spindown power** that is directly related to B and P

Dai & Lu 1998 Zhang & Meszaros 2001 Corsi & Meszaros 2009 Lyons et al. 2010 Dall'Osso et al. 2011 Metzger et al. 2011 Rowlinson et al. 2013, 2014

BAND P FROM THE LATE X-RAY EMISSION

$$E(t) = \frac{L_i}{t^{k'}} \int_{t_0}^t \frac{t^{k'}}{(1+at)^2} + E_o \left(\frac{t_o}{t}\right)^{k'}$$

Dall'Osso et al. 2011

2ס

D4

10 ⁵⁰	050401	060210 _
ν 10 ⁴⁸		
× 10 ⁴⁶		
1044		
10 ⁵⁰	061121	061222A
ົ ^ທ 10 ⁴⁸ - ຕ		
1044		- AND
10 ⁵⁰	070306	0912088 _
د س 10 ⁴⁸		
ue) → 10 ⁴⁶		
1044		
10	10^{2} 10^{3} 10^{4} 10^{5} 10^{6}	10^2 10^3 10^4 10^5 10^6
1	Nest nume time since bar trigger (S)	Rest nume time since DAT trigger (S)

		\checkmark		
Name	z	$B^{\rm p}$ (10 ¹⁵ G)	P^{p} (ms)	
$\begin{array}{c} 050318^{\rm a} \\ 050401 \\ 060210 \\ 061007^{\rm a} \\ 061121 \\ 061222A \\ 070306 \\ 091208B \end{array}$	$1.44 \\ 2.90 \\ 3.91 \\ 1.26 \\ 1.31 \\ 2.09 \\ 1.50 \\ 1.06 \\$	$\begin{array}{c} 4.00 \\ 5.67 \pm 0.27 \\ 2.34 \pm 0.07 \\ 4.00 \\ 6.03 \pm 0.12 \\ 2.79 \pm 0.04 \\ 2.33 \pm 0.10 \\ 18.6 \pm 1.1 \end{array}$	$\begin{array}{c} 3.06\\ 2.61\pm 0.04\\ 1.83\pm 0.02\\ 3.06\\ 4.40\pm 0.03\\ 2.25\pm 0.01\\ 3.60\pm 0.05\\ 9.70\pm 0.21\end{array}$	
Ŷ				
$\langle B \rangle = 4 \times 10^{15} G$				
$\langle P \rangle = 3.06 \text{ms}$				

PREDICTIONS ABOUT THE LUMINOSITY FOR THE PROMPT Emission...

peak luminosities of both precursor and main event are **above L**min

... AND THE POST-CURSORS!!

peak luminosity of the post-cursor is above Lmin

GRB 130427A: the "ordinary monster"

Recipe for X-ray emission:
forward shock emission + jet break
steep decay (prompt emission)
wind of the magnetar

CONCLUSIONS - |

- Late X-ray emission (~ 80% LGRBs and ~ 50% SGRBs) powered by the spin-down of the Magnetar
- EE (~ 15% SGRBs) from Magnetar, either spin-down or propeller
- Precursor properties (~15% of LGRBs) explained if central engine is an accretion-powered Magnetar:
 - emission <-> accretion power
 - ➡ quiescence <-> propeller phase
- Post-cursor emission (aka giant flares) produced by the same mechanism (but softer spectrum!!)
- Potentially larger fraction of GRBs originates from Magnetars

★ Eiso proxy of Ekin ➡ SGRBs ok ➡ LGRBs often above limit

Total isotropic bolometric energy

Margutti et al., 2013 Mazzali et al., 2014

- Eiso proxy of Ekin
- ➡ SGRBs ok
- ➡ LGRBs often above limit
- + true $E_{\gamma} < E_{iso}$ due to collimation
- accretion: further energy supplier

Total isotropic bolometric energy

- Eiso proxy of Ekin
- ➡ SGRBs ok
- ➡ LGRBs often above limit
- + true $E_{\gamma} < E_{iso}$ due to collimation
- accretion: further energy 54 13cq 🏺 53 $\vdash \Phi$ 52 (erg) 51 ح [] log 10bh 50 06a 1031w 03dh 49 13dx**⊩●●** ⊣12bz 48 98bw 51.5 52 52.5 53 51 log E_k (erg)

Total isotropic bolometric energy

 sufficient to energise the accompanying SN

> Margutti et al., 2013 Mazzali et al., 2014

- Eiso proxy of Ekin
- ➡ SGRBs ok
- ➡ LGRBs often above limit
- + true $E_{\gamma} < E_{iso}$ due to collimation

Total isotropic bolometric energy

sufficient to energise the accompanying SN
 several LGRBs intrinsically > 10⁵⁴ erg

Margutti et al., 2013 Mazzali et al., 2014

Possible solution: magnetars + BHs

<u>Shallow decaying</u> <u>afterglow:</u> magnetar powering the GRB

Possible solution: magnetars + BHs

Prompt powered by accretion or spindown if fallback not enough to start accretion

<u>Shallow decaying</u> <u>afterglow:</u> magnetar powering the GRB

Possible solution: magnetars + BHs

Prompt powered by accretion or spindown if fallback not enough to start accretion

<u>Shallow decaying</u> <u>afterglow:</u> magnetar powering the GRB

Power-law afterglow: magnetar collapses to black hole during the prompt emission

CONCLUSIONS - II

- Observations point towards magnetars as plausible candidates as GRB central engines
- Are all GRBs powered by magnetars? likely No! but still the majority are consistent with being powered by magnetars
- A lot of effort (observational, theoretical) still need to be done
- Maybe GW will tell... at least for SGRBs!

GW emission from proto-magnetars

- Magnetars source of GW if they spin fast enough to excite dynamical (B=0.27) or secular instabilities (B>0.14)
- onset of dynamical instabilities at magnetar birth, more likely thanks to spin-up induced by accretion
- signal from secular instabilities detectable over long timescales (~ hours)
- signal from the accompanying SN (10⁻¹¹<E_{GW}<10⁻⁸ M_{sun}c²)

Corsi & Meszaros, 2009 Piro & Ott, 2011 Ott et al., 2013

Critical accretion rate for fallback

Piro & Ott 2011

Spin evolution of the magnetar

$$I \frac{d\Omega}{dt} = N_{dip} + N_{acc}$$

$$N_{dip} = -\frac{\mu^2 \Omega^3}{6c^3}$$

$$N_{acc} = n(\omega) (GMr_m)^{1/2} \dot{M}$$

Piro & Ott 2011

68