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What is a gamma-ray burst?
What is a Gamma-Ray Burst? 

Brief, sudden, intense flash of gamma-ray radiation 

What is a Gamma-Ray Burst? 
Brief, sudden, intense flash of gamma-ray radiation 

Duration: from few ms to hundreds of s 
Frequency: 10 keV – 1 MeV 
Fluence: 10–7 - 10–3 erg cm–2  
Flux: 10–8 - 10–4 erg cm–2 s–1 

Brief, intense flash of gamma-ray radiation

Duration: a few ms up to hundreds of s
Fluence: ~10-7 - 10-3 erg cm-2

Flux: ~10-8 - 10-4 erg cm-2 s-1

Energy range: ~ a few keV up to MeV
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What is a gamma-ray burst?
What is a Gamma-Ray Burst? 

Brief, sudden, intense flash of gamma-ray radiation Brief, intense flash of gamma-ray radiation

Duration: a few ms up to hundreds of s
Fluence: ~10-7 - 10-3 erg cm-2

Flux: ~10-8 - 10-4 erg cm-2 s-1

Energy range: ~ a few keV up to MeV

when you 
observe a GRB 

you are 
observing ONE 

GRB!!!
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A bit of history...

✦ BATSE instrument (CGRO, 
1991): GRBs isotropically 
distributed over the sky

so they are “likely” 
extragalactic objects....

✦ discovered in the ‘60s by 
the Vela satellites (military 
program to monitor nuclear 
tests)

✦ announced in 1973
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They are distant!!
〈z〉=2.1, zmax=8.2

This implies they are the most 
powerful objects in the Universe 

(Eγ~ 1052 erg)

They show long-lasting, 
multiwavelength emission 
(X, OT, radio): afterglow

✦ BeppoSAX (1996): discovery of counterpart and 
localization

Central engine 
jets 

Shock 
acceleration 
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Two flavors: SGRBs and LGRBs

LongShort

Short
hard

Long
soft

Short GRBs (SGRBs):
✦ T90<2 s
✦ all type of galaxies (or hostless)
✦ old stellar population
✦ NO supernova associated

Long GRBs (LGRBs):
✦ T90>2 s
✦ star-forming galaxies
✦ young stellar population
✦ supernova associated
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•  Burst Alert Telescope (BAT) 

–  15-150 keV 

–  FOV: 2 steradiants  

–  Centroid accuracy: 1’ - 4’ 

•  X-Ray Telescope (XRT) 

–  0.2-10.0 keV 

–  FOV: 23.6’ x 23.6’ 

–  Centroid accuracy: 5” 

•  UV/Optical Telescope (UVOT) 

–  30 cm telescope  

–  6 filters (170 nm – 600 nm) 

–  FOV: 17’ x  17’ 

–  24th mag sensitivity (1000 sec) 

–  Centroid accuracy: 0.5” 

BAT!

XRT!

Spacecraft!

UVOT!
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Swift Mission 
(2004) 

BAT Burst Image 

T<10 s; ! < 4’ 

BAT Error Circle 

XRT Image 

T<100 s; ! < 5’’ T<300 s; ! < 0.5’’ 

UVOT Image 

Gehrels et al. 2004 
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The GRB afterglow: pre-Swift

0.3-10 keV
✦ simple power-law decay at 

all wavelengths
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The GRB afterglow: post-Swift!"#$%&$'()*+"%*#),-%./(0'1%

0.3-10 keV
✦ complex behavior in 80% cases:

➡ “canonical” light curve 
(steep-shallow-steep)

➡ “flares” superimposed up 
to ~ 1000s after the prompt 
event in ~ 1/3 GRBs

➡ not expected by standard 
model!!!!
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The GRB afterglow: post-Swift

0.3-10 keV
✦ complex behavior in 80% cases:

➡ “canonical” light curve 
(steep-shallow-steep)

➡ “flares” superimposed up 
to ~ 1000s after the prompt 
event in ~ 1/3 GRBs

➡ not expected by standard 
model!!!!

✦ but still a fraction of simple 
power-law decaying afterglows
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The GRB standard model (pre-Swift)

Central engine 
jets 

Shock 
acceleration 
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The GRB standard model (pre-Swift)

Central engine 
jets 

Shock 
acceleration 
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The GRB standard model (pre-Swift)

Central engine 
jets 

Shock 
acceleration 
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The GRB standard model (pre-Swift)

Central engine 
jets 

Shock 
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The GRB standard model (pre-Swift)

Central engine 
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The GRB standard model (post-Swift) ???

Central engine 
jets 

Shock 
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What is the central engine of GRBs?
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!Black holes vs. Magnetars

Usov 1992
Duncan & Thompson 1992

Dai & Lu 1998
Zhang & Meszaros 2001

Metzger et al. 2011

Woosley & Bloom 2006
Woosley 1993
MacFadyen & Woosley 1999
Kumar et al. 2008

✦ highly rotating (P~1 ms), huge 
magnetic field (B~1015 G) => 
energy reservoir

✦ contribution to GRB power 
from spindown (~ hours)

✦ produced in both merging 
and core-collapse SNe

✦ GRB powered by accretion
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✦ GRB powered only by the 
magnetar rotational energy 
through a wind heated by 
neutrinos driven by the 
proto-magnetar

✦ magnetised ultra-
relativistic outflow

✦ prompt: internal shocks or 
magnetic reconnection

✦ dissipation inefficient at 
late times: interaction with 
ISM + spindown power

Model for a magnetar central engine

Metzger et al., 2011

13

Figure 14. Bolometric GRB luminosity due to magnetic dissipation (dashed line) and internal shocks (dotted line) as a function of
observer time tobs, calculated for a proto-magnetar with Bdip = 2× 1015 G, P0 = 1.5 ms, and χ = π/2 (Fig. 2). For internal shocks we
assume that εmag = 0.5 and εe = 1 (see text for definitions). The isotropic power of the jet Ėiso is shown for comparison with a solid line
and is calculated assuming a beaming fraction fb = 2× 10−3. The times when the jet becomes Thomson thin to emission from internal
shocks and magnetic dissipation are marked with diamonds. Although emission is suppressed at early times due to adiabatic losses, at
times t " tthin the radiative efficiency of both magnetic dissipation and shocks approaches ∼ 1/2 (eq. [B7]).

2000), most Fourier power is concentrated on a characteristic
timescale ∼ 1 second (Beloborodov et al. 1998, 2000). GRB
variability may be related to the emission mechanism itself,
or it may reflect real variations in the power and mass load-
ing of the jet (e.g. MacFadyen & Woosley 1999; Aloy et al.
2000; Mizuta & Aloy 2009; Morsony et al. 2010).

There are several potential sources of variability in
proto-magnetar outflows. Sporadic changes to the magne-
tosphere could modulate the magnetar wind properties on
short (∼< millisecond) timescales due to reconnection near
the light cylinder (Bucciantini et al. 2006) or on longer
timescales due to neutrino heating in the closed zone
(Thompson 2003). Longer timescale variability could also
be imposed on the outflow as it propagates to the stellar
surface, due to instabilities associated with the termination
shock(s) in the proto-magnetar nebula (Bucciantini et al.
2009; Camus et al. 2009) or at larger distances as the
jet propagates through the stellar envelope (Morsony et al.
2007, 2010). The latter possibility is particularly promis-
ing because the sound crossing time across the jet near

the stellar radius is in fact ∼ 1 second (e.g. Morsony et al.
2010; Lazzati et al. 2010) and might not evolve appreciably
throughout the burst, a fact consistent with observations
(Ramirez-Ruiz & Fenimore 1999).

The time-averaged wind properties calculated in §2.1
(Ė, Ṁ , and σ0) do not account for any of the variability dis-
cussed above. In fact, given the stochastic nature of GRB
emission, it seems unlikely that any model will be capable
of predicting the detailed light curve of individual bursts. In
our calculations below, we instead focus on predicting the
time-averaged high energy emission over timescales of sec-
onds or longer, which may be usefully compared with inte-
grated GRB light curves and spectra (e.g. McBreen et al.
2002). We nevertheless emphasize that variability affects
the observed emission differently depending on the emission
model. Magnetic dissipation, for instance, occurs at rela-
tively small radii, such that variability is directly encoded
in the emitted radiation. Variability from internal shocks in-
stead manifests indirectly through the effects of subsequent
collisions at larger radii.

c© ???? RAS, MNRAS 000, 1–29
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✦ plateau phase in X-rays of both LGRBs and SGRBs

✦ extended emission in SGRBs

✦ pre- and post-cursors in LGRBs and SGRBs

Imprints of a magnetar central engine
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✦ plateau phase in X-rays of both LGRBs and SGRBs

✦ extended emission in SGRBs

✦ pre- and post-cursors in LGRBs and SGRBs

Imprints of a magnetar central engine
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The plateau phase in LGRBs and SGRBs

✦ ~50% LGRBs with 
“canonical behaviour”

✦ ~80% deviates from 
simple power law

✦ ~50% SGRBs

➡ energy injection into 
the afterglow lasting ~ 
hours

Nousek et al., 2005
Tagliaferr et al. 2005

Zhang et al. 2006
Evans et al. 2009

Rowlinson et al. 2013
Margutti et al. 2013

D’Avanzo et al. 2014
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Lyons et al. 2010
Rowlinson et al. 2013

these are millions of years old (e.g. Kouveliotou et al.,
1998; Mereghetti, 2008; Rea and Esposito, 2011).

The improvement of the observational technologies
in the last ten years thanks to the advent of the Swift mis-
sion (Gehrels et al., 2004) revealed many unexpected
features, posing severe questions to the most popular
theoretical GRB models and to the BH central engine
scenario. The discovery by the Swift/X-Ray Telescope
(XRT, Burrows et al. 2005a) of a complex behaviour
of the afterglow emission that largely deviates from the
simple power-law decay predicted by the standard af-
terglow model (Meszaros and Rees, 1993), with the ob-
servation of a flattening in the X-ray light curve (X-
ray plateau, Nousek et al. 2006), and of flares super-
imposed to the afterglow emission in the X-rays (Chin-
carini et al., 2010), strengthened the idea that the GRB
source of energy should be active on a much longer
timescale than the prompt emission itself (∼ 10 − 100
s).

The magnetar central engine has the merit of pro-
viding a straightforward interpretation for the X-ray
plateau during the GRB afterglow, since the newly-born
magnetar is expected to lose its rotational energy by
emitting a relativistic wind at timescales comparable
to those observed (∼ hours; Dai and Lu 1998; Zhang
and Mészáros 2001; Corsi and Mészáros 2009; Met-
zger et al. 2011). Direct comparison with observations
(Dall’Osso et al., 2011; Bernardini et al., 2012, 2013;
Lyons et al., 2010; Rowlinson et al., 2013) showed that
this proposal is the most credible interpretation so far,
and indicated that the plateau emission can be consid-
ered as compelling evidence supporting magnetars.

A magnetar central engine has also been advocated
in SGRBs with an extended emission (EE) after the
initial spike in the prompt phase (Norris and Bonnell,
2006). Several attempts to provide a theoretical ex-
planation for the EE are related either to the magnetar
spin-down power (Metzger et al., 2008), or to fall-back
material accelerated to super-Keplerian velocities and
ejected from the magnetar by the centrifugal forces ex-
erted by its magnetosphere (Gompertz et al., 2014).

Another feature that is challenging for the standard
scenario of accretion onto a BH is the presence of pre-
cursor activity in both LGRBs (Koshut et al., 1995;
Lazzati, 2005; Burlon et al., 2008, 2009) and SGRBs
(Troja et al., 2010). Together with X-ray flares, pre-
cursors imply that the intermittent mechanism powering
the prompt emission may be suspended over timescales
comparable to the prompt emission itself. Recently, we
proposed a new scenario in the context of the magne-
tar central engine for which precursors are explained by
assuming that the GRB prompt emission is powered by

1072 A. Rowlinson et al.
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Figure 1: Examples of external (left panel) and internal (right panel)
plateaus in short GRBs (from Rowlinson et al. 2013). Both panels
show Swift/BAT and XRT rest-frame light curves fitted with the mag-
netar model. The light grey data points have been excluded from
the fit. The dashed line shows the power-law component (steep de-
cay) and the dotted line shows the magnetar component. The X-ray
light curve in the left panel shows the so-called “canonical” behaviour,
characterised by a steep-shallow-normal decays.

the accretion of matter onto the surface of the magne-
tar (Bernardini et al., 2013). The accretion process can
be halted by the centrifugal drag exerted by the rotat-
ing magnetosphere onto the in-falling matter, allowing
for multiple emission episodes and very long quiescent
times. The same mechanism can be extended to late
times, providing also an interpretation for flaring activ-
ity.

Here we review the major observational evidences for
the possible presence of a newly-born magnetar as the
central engine for both LGRBs and SGRBs, as the pres-
ence of a plateau phase in the X-ray light curve (Sec-
tion 2), the extended emission in SGRBs (Section 3)
and the precursor and flaring activity (Section 4). We
then discuss about the possibility that all GRBs are
powered by magnetars, and we propose a unification
scheme that accommodates both magnetars and BHs,
connected to the different properties and energetics of
GRBs (Section 5). Since the central engine remains
hidden from direct electromagnetic (EM) observations,
and will remain so until gravitational wave (GW) sig-
natures are detected, we review the predictions for the
GW emission from magnetars in the context of LGRBs
and SGRBs, and the observational perspectives with ad-
vanced interferometers (Section 6).

2

The plateau phase in LGRBs and SGRBs

✦ usually decay ~ t-1.2 but 
occasionally very sharp drop

✦ ~50% LGRBs with 
“canonical behaviour”

✦ ~80% deviates from 
simple power law

✦ ~50% SGRBs

➡ energy injection into 
the afterglow lasting ~ 
hours
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Correlations between plateau properties and with the  
prompt emission:

GRB central engines and the LT correlation 1781

sample of GRBs analysed contains 159 events, covering the redshift
range 0.033 ≤ z ≤ 9.4. In our analysis, we adopt a flat cosmology
with H0 = 69.9 km s−1 Mpc−1, !M = 0.28 and !λ = 0.72 (see
Dainotti et al. 2013a, for a detailed discussion regarding different
cosmological models).

We note that this sample is larger than that used by Dainotti
et al. (2013a) to identify the intrinsic correlation (bint). We do not
recalculate the intrinsic correlation as the distributions of plateau
durations, fluxes and spectral indices remain the same as those uti-
lized in Dainotti et al. (2013b), so the GRB populations are directly
comparable for this purpose. Additionally, the limiting fluxes and
plateau durations are also unchanged for this sample of GRBs. As
the only significant difference is the sample size, we are confident
that this will not significantly change the intrinsic slope (within 1σ

uncertainties).
The combined Swift Burst Alert Telescope (BAT; Barthelmy et al.

2005) and XRT light curves of the GRBs were converted to rest-
frame light curves using the observed X-ray spectral index for each
GRB, a k-correction and the methods described in Bloom, Frail &
Sari (2001) and Evans et al. (2009). As we intend to compare the
observed distribution to the predictions from a bolometric model
(in contrast to Dainotti et al. 2010, 2013b, where an XRT band pass
k-correction was used), we use an approximate rest-frame bolomet-
ric energy band (1–10 000 keV). We fitted the light curves with a
two component model consisting of an initial steep decay phase for
the early X-ray emission and an afterglow component (utilizing the
methods described in Willingale et al. 2007; Dainotti et al. 2008,
2010, 2013a). We assume that the rise time of the afterglow com-
ponent is a free parameter (whereas in Willingale et al. 2007, the
rise time of the afterglow is assumed to be equal to the start time
of the initial decay phase) so that we can search for an independent
measure of the break time. We fitted the light curves for which the
break time and flux were reliably determined by the model. Previ-
ous analyses by Dainotti et al. (2008, 2010), Dainotti, Ostrowski
& Willingale (2011a) and Dainotti et al. (2013a) utilized the Avni
(1976) prescription to obtain the required parameters of the plateau
(the flux of the plateau, the plateau duration and the decay index
following the plateau phase). Avni (1976) developed a method to
estimate the uncertainty ranges for only the parameters of interest
within a fitted model. This method uses the ‘best-fitting’ value of
the parameters of interest and their corresponding χ2

best. The param-
eter values are varied until the χ2 of the fit increases by a particular
amount above χ2

best, referred to as the critical %χ2. %χ2 depends
upon the number of parameters that are estimated simultaneously
and not the total number of parameters in the model. The critical
%χ2 is dependent upon the required confidence level (68 per cent in
this analysis) and the number of parameters being varied simultane-
ously (typical values are given in table 1 of Avni 1976). In Dainotti
et al. (2008, 2010, 2011a, 2013a), the value %χ2 < 3.5 was used
as they required values for these fitted parameters: plateau flux,
plateau duration and the plateau temporal slope. However, in this
paper, we want to use the largest possible sample of GRBs and we
use %χ2 < 2.3. This is appropriate as we are only interested in two
of the parameters (plateau flux and duration) that are typically fitted
in the model and neglect to fit the plateau slope as it does not enter
into the computation of the luminosity. The χ2 distribution for some
GRBs in the sample is not parabolic out to a value of 3.5 so the Avni
(1976) prescription is not fulfilled and they are discarded because
the evaluation of their error parameters is not precise. However,
when the constraint is dropped to 2.3, the χ2 distributions of more
of the GRBs in the sample are parabolic and meet the Avni (1976)
prescription. Hence, this change increased the sample by 20 GRBs

Figure 1. The rest-frame plateau durations versus the luminosity (1–
10 000 keV) at the end of the plateaus for all the GRBs in the sample (black
= LGRBs, Blue = EE SGRBs and Red = SGRBs). Overplotted, using the
dashed black line, is the observed LT correlation for the full sample.

which were recovered from the previous sample from 2005 January
till 2013 March.3

From the fitted light curves, we computed the 1–10 000 keV
luminosity at the end of the plateau phase and the rest-frame break
time. The total sample is fitted with the LT correlation (equation 1)
and we find a slope of bobs = −1.40 ± 0.19 and a normalization
of aobs = 52.73 ± 0.52, as shown in Fig. 1. The data are scattered
around this correlation, with a standard deviation of 0.89. These
parameters represent the observed correlation, which is found to be
steeper than the intrinsic correlation (due to redshift dependences
as discussed in Dainotti et al. 2013a). The redshift dependences
are instead accounted for within the modelling used to simulate the
correlation (as described in Section 4). We note that the SGRBs and
EE SGRBs typically are offset from the observed correlation sug-
gesting that, although they appear to follow the same correlation,
they may have a different normalization. This may be associated
with different redshift distributions (and hence observational con-
straints) or different beaming/efficiencies as we describe in Section
4. By conducting a multidimensional Kolmogorov–Smirnov test
(KS test; Gosset 1987; Metchev & Grindlay 2002; Harrison et al.
2014), we can test if the SGRBs and EE SGRBs are being drawn
from the same distribution as the LGRBs. We applied a multidimen-
sional KS test for the distributions of the durations, luminosities and
their associated errors (log T ∗

a , δ log T ∗
a , log LX and δ log LX) for

the two samples, LGRBs versus SGRBs and EE SGRBs, and obtain
a p-value of ∼7 × 10−4. Therefore, we can confidently conclude
that the SGRBs and EE SGRBs are drawn from different distribu-
tion to the sample of LGRBs. However, as there are only a small
number of SGRBs (8) and EE SGRBs (2) in the sample, there are
currently insufficient data to be able to make significant quantitative
comparisons between the different categories of GRBs.

3 TH E M AG N E TA R M O D E L A N D LT
C O R R E L AT I O N

A newly formed magnetar, predicted to form via a range of mecha-
nisms such as accretion-induced collapse of a white dwarf, collapse

3 The fit has been performed with the package NonlinearModelFit in
MATHEMATICA 9; the data and the code are available upon request to
maria.dainotti@riken.jp.

MNRAS 443, 1779–1787 (2014)
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 Figure 3: Plateau luminosity and timescale. Left panel (from Bernardini et al. 2012): the black squares are the sample analysed by Dainotti et al.

(2010) and the colored symbols are the sample analysed in Bernardini et al. (2012). The grey dots are 100000 simulations of the luminosity at

the spin-down time and the spin-down time assuming that the magnetic field and the NS period are normally distributed around the mean values

found in Dainotti et al. (2010). The blue line marks the region that includes 99% of the simulations. Right panel (from Rowlinson et al. 2014):

sample analysed in Rowlinson et al. (2014) (black = LGRBs, Blue = EE SGRBs and Red = SGRBs). The dashed black line is the observed plateau

luminosity and timescale correlation for the full sample.

4. Switching on and off a GRB

One of the most challenging features of GRBs is the

sporadic emission prior to the main prompt event ob-

served in at least ∼ 15% of LGRBs (Koshut et al., 1995;

Lazzati, 2005; Burlon et al., 2008, 2009). These pre-
cursors have spectral and temporal properties similar to

the main prompt emission, and smaller, but compara-

ble, energetics (Burlon et al., 2008, 2009; Bernardini

et al., 2013). They are separated from the main event

by a quiescent time that may be extremely long (up to

∼ 100 s, rest frame), especially if measured in terms

of the typical variability timescale of the prompt emis-

sion (∼ 1 ms). In some cases, more than one precur-

sor has been observed in the same burst, separated by

several tens of seconds. Precursors have been observed

also in ∼ 8% − 10% of SGRBs, with at least one case

showing two distinct precursors (Troja et al., 2010). As

for LGRBs, no substantial differences have been found

between precursor and main event emission in SGRBs

(Bernardini et al., 2013; Troja et al., 2010). Different

models have been proposed to account for precursor

emission, without reproducing all the observed features.

Another intriguing and unexpected feature of GRBs

revealed by the Swift/XRT are flares superimposed on

the X-ray light curves of LGRBs (Burrows et al., 2005b;

Falcone et al., 2006; Chincarini et al., 2010). The vast

majority of flares occurs before 1000 s (Chincarini et al.,

2010), but some of them can be found up to 10
6

s after

the main event (Bernardini et al., 2011). Recent analy-

ses of the flare temporal and spectral properties (Chin-

carini et al., 2010) of a large sample of early time (i.e.

with peak time tpk � 1000 s) flares revealed close sim-

ilarities between them and the prompt emission pulses,

pointing to an internal origin of their emission. There-

fore, the central engine itself should remain active and

variable for long time. SGRBs show flaring activity

with similar properties than for LGRBs when the dif-

ferent energetics and timescales of the two classes are

taken into account, suggesting that: (i) flares and prompt

pulses in SGRBs likely have a common origin; (ii) simi-

lar dissipation and/or emission mechanisms are respon-

sible for the prompt and flare emission in LGRBs and

SGRBs (Margutti et al., 2011).

Among X-ray flares, there are particularly bright

events that show a dramatic flux increase (a factor 100

compared to the underlying X-ray emission) and com-

prise a substantial amount of energy compared to the

main prompt event (see e.g. Margutti et al. 2010). As

for the prompt emission, the energy density spectrum

of these events can be fitted by a Band function (Band

et al., 1993), though it peaks at lower energies (Epk ∼ 5

keV, Margutti et al. 2010). These giant flares can be re-

garded as post-cursors, namely emission episodes that

follow the main prompt emission and share with it the

same temporal and spectral properties.

Metzger et al. (2011) proposed a self-consistent

model that directly connects the properties of the newly-

born magnetar to the observed prompt emission, that

is powered by a wind heated by neutrinos driven from

the proto-magnetar. They assume two different pos-

sibilities to dissipate this power: magnetic dissipation

5

Luminosity-time correlation

Lp

tp

Dainotti et al. 2008, 2010, 2013
Rowlinson et al. 2014

2. The X-ray plateau

One of the major outcome of the Swift mission is the
discovery that the X-ray light curve of GRBs is more
complex than what previously though (Tagliaferri et al.,
2005; Nousek et al., 2006). About 40% of the well mon-
itored1 LGRB light curves show in their X-ray emission
the so-called “canonical” behaviour (see e.g. fig. 1 and
Nousek et al. 2006), characterised by a steep-shallow-
normal decay. Up to ∼ 80% of the LGRB X-ray emis-
sion deviates from a single power-law decay, exhibit-
ing a shallow decay phase (Evans et al., 2009; Margutti
et al., 2013; Melandri et al., 2014). The presence of
a plateau phase is a common feature also to ∼ 50% of
SGRBs (Rowlinson et al., 2013; D’Avanzo et al., 2014).

Several empirical correlations have been found in-
volving properties of this shallow decay X-ray phase
(“plateau”) and of the prompt emission (Dainotti et al.,
2011; Bernardini et al., 2012). Among these, the most
interesting one is the anti-correlation between the end
time of the plateau phase tp and the X-ray luminosity
at the same time Lp = L(tp): Lp ∝ t−αp (Dainotti et al.,
2008, 2010, 2013). A Lp− tp anti-correlation is also fol-
lowed by SGRBs, though with a different normalisation
with respect to LGRBs (Rowlinson et al., 2014).

The presence of a plateau phase has been initially at-
tributed to an injection of energy into the forward shock
(see e.g. Zhang et al., 2006, and references therein),
since the absence of significant spectral evolution dur-
ing this stage agrees with the expectations from for-
ward shock emission (Bernardini et al., 2012). How-
ever, there are several cases in both LGRBs and SGRBs
where the shallow decay is followed by a sudden drop
in the X-ray emission, that is not consistent with the for-
ward shock model (see fig. 1).

A natural source for this energy injection2 is the
power emitted by a spinning-down newly-born magne-
tar (Dai and Lu, 1998; Zhang and Mészáros, 2001; Corsi
and Mészáros, 2009; Metzger et al., 2011). A newly
formed magnetar is expected to loose its rotational en-
ergy at a very high rate for the first few hours through
magnetic-dipole spin down, something that provides a

1i.e. fast repointed by the Swift/XRT and for which observations
were not limited by any observing constraint.

2Alternative explanations for the presence of a plateau phase have
been proposed, as a late time accretion (Kumar et al., 2008) in the con-
text of the collapsar scenario, or as a reverse shock powered by energy
injection from an arbitrary central engine (Leventis et al., 2014; van
Eerten, 2014). A top heavy jet produced by a collapsar would re-
produce the steep decay and the plateau phase phenomenology in
both the X-ray and the optical energy bands (Duffell and Mac-
Fadyen, 2014).

Figure 2: Physical range for the values of magnetic field strengths and
spin periods (from Rowlinson et al. 2014). The upper and lower limits
on the magnetic field strength and the upper limit on the spin period
are determined using the sample of GRBs fitted with the magnetar
model (overplotted as black circles; Lyons et al. 2010; Dall’Osso et al.
2011; Bernardini et al. 2012, 2013; Rowlinson et al. 2013; Gompertz
et al. 2013; de Ugarte Postigo et al. 2014; Lü and Zhang 2014; Yi
et al. 2014). The dashed black vertical line (1) at 0.66 ms represents
the minimum spin period allowed before breakup of a 2.1 M⊙ NS. The
dotted black line (2) represents a limit on spin periods and magnetic
field strengths imposed by the fastest slew time of the Swift/XRT in the
rest frame of the highest redshift GRB in the sample, as plateaus with
durations shorter than the slew time are unobservable. The black dash-
dotted lines (3-6) represent the observational cut-offs for the faintest
plateau observable assuming the lowest redshift in the GRB sample.
These cut-offs change depends on the beaming and efficiency of the
magnetar emission.

long-lived central engine in a very natural way. Assum-
ing that the spin down is mainly due to EM dipolar radi-
ation and to GW radiation, when the EM dipolar emis-
sion dominates (the GW emission is discussed in Sec-
tion 6), the initial rotational energy loss depends on the
dipolar magnetic field strength B and on its rotational
period P as: Ėsd ∝ B2P−4 ∼ 1049(B/1015G)2 (P/ms)−4

erg s−1, and is expected to be fairly constant over a
timescale shorter than the spin-down timescale tsd ∝
P2B−2, and then it decays as Ėsd ∝ t−2 (Dai and Lu,
1998; Zhang and Mészáros, 2001).

If the spin-down power is injected into the forward
shock, then we expect an “external” plateau. Dall’Osso
et al. (2011) proposed an analytic treatment to account
for the contribution to the forward shock emission of
the spin-down luminosity, that is successful to describe
the X-ray emission of the canonical LGRBs (Dall’Osso
et al., 2011; Bernardini et al., 2012, 2013) as well as
of light curves with a shallow decay phase (Bernardini
et al., 2012). On the other hand, if the magnetar spin-
down power dissipates internally before hitting the for-
ward shock, it generates an “internal” plateau, whose X-

3

The plateau phase in LGRBs and SGRBs
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Dai & Lu 1998
Zhang & Meszaros 2001

10 Bernardini et al.

Lsd = 1049B2
15 P

−4
−3 erg s−1 (B3)

tsd = 3× 103B−2
15 P 2

−3 s , (B4)

fine

Spin-down power and 
timescale sufficient to 
produce the plateau!
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APPENDIX

A. LATE–TIME X–RAY EMISSION AND THE ESTIMATE
OF THE PARAMETERS OF THE MAGNETAR

The observation of a flattening in the X–ray light
curve (plateau) in a large fraction of GRBs (46% in the
BAT6 sample) can be explained as an injection of en-
ergy into the forward shock (the GRB afterglow, Zhang
et al. 2006). This fraction is even larger (80% in the
BAT6 sample) if we include also those GRBs display-
ing a shallow decay phase without the initial steep decay
(Bernardini et al. 2012; D’Avanzo et al. 2012). A natural
source for this energy is the power emitted by a spinning–
down newly born magnetar (Dai & Lu 1998; Zhang &
Mészáros 2001; Corsi & Mészáros 2009; Dall’Osso et al.
2011). This proposal has been successfully tested both
for long (Lyons et al. 2010; Dall’Osso et al. 2011; Bernar-
dini et al. 2012) and short(Rowlinson et al. 2013) GRBs.
In particular, the plateau luminosity and its temporal
duration are directly related to the spin–down luminos-
ity and timescale, and, thus, to the magnetic field (B)
and the spin period (P ) of the magnetar. The analysis

of the plateau phase in the X–ray light curves provides a
direct estimate of these parameters.
We refer to the model proposed by Dall’Osso et al.

(2011), that calculated analytically the contribution to
the forward shock of the power emitted by a millisecond
spinning, ultramagnetized neutron star at time t as:

dE(t)

dt
= Lsd(t)− k′

E(t)

t
=

Li

(1 + at)2
− k′

E(t)

t
, (A1)

where Li = IB2R6/(6Ic3P 4) ∝ B2/P 4 is the initial spin-
down luminosity (I is the moment of inertia, R the ra-
dius of the magnetar6, c the speed of light), a = 1/tb2 =
2B2R6/(6Ic3P 2) ∝ B2/P 2 is the inverse of the spin-
down timescale tb2, E the forward shock energy, and k′

is a parameter that accounts for our ignorance about the
microphysical parameters and on the density profile of
the ambient medium (in general 0 < k′ < 1). A solution
of this equation is:

E(t) =
Li

tk′

∫ t

t◦

tk
′

(1 + at)2
+ E◦

(

t◦
t

)k′

, (A2)

6 Here and in what follows we assume for the mass of the mag-
netar M = 1.4M! and for the radius R = 106 cm.

Dai & Lu 1998
Zhang & Meszaros 2001

Dall’Osso et al. 2011
Bernardini et al. 2012, 2013

Spin-down 
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afterglow
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these are millions of years old (e.g. Kouveliotou et al.,
1998; Mereghetti, 2008; Rea and Esposito, 2011).

The improvement of the observational technologies
in the last ten years thanks to the advent of the Swift mis-
sion (Gehrels et al., 2004) revealed many unexpected
features, posing severe questions to the most popular
theoretical GRB models and to the BH central engine
scenario. The discovery by the Swift/X-Ray Telescope
(XRT, Burrows et al. 2005a) of a complex behaviour
of the afterglow emission that largely deviates from the
simple power-law decay predicted by the standard af-
terglow model (Meszaros and Rees, 1993), with the ob-
servation of a flattening in the X-ray light curve (X-
ray plateau, Nousek et al. 2006), and of flares super-
imposed to the afterglow emission in the X-rays (Chin-
carini et al., 2010), strengthened the idea that the GRB
source of energy should be active on a much longer
timescale than the prompt emission itself (∼ 10 − 100
s).

The magnetar central engine has the merit of pro-
viding a straightforward interpretation for the X-ray
plateau during the GRB afterglow, since the newly-born
magnetar is expected to lose its rotational energy by
emitting a relativistic wind at timescales comparable
to those observed (∼ hours; Dai and Lu 1998; Zhang
and Mészáros 2001; Corsi and Mészáros 2009; Met-
zger et al. 2011). Direct comparison with observations
(Dall’Osso et al., 2011; Bernardini et al., 2012, 2013;
Lyons et al., 2010; Rowlinson et al., 2013) showed that
this proposal is the most credible interpretation so far,
and indicated that the plateau emission can be consid-
ered as compelling evidence supporting magnetars.

A magnetar central engine has also been advocated
in SGRBs with an extended emission (EE) after the
initial spike in the prompt phase (Norris and Bonnell,
2006). Several attempts to provide a theoretical ex-
planation for the EE are related either to the magnetar
spin-down power (Metzger et al., 2008), or to fall-back
material accelerated to super-Keplerian velocities and
ejected from the magnetar by the centrifugal forces ex-
erted by its magnetosphere (Gompertz et al., 2014).

Another feature that is challenging for the standard
scenario of accretion onto a BH is the presence of pre-
cursor activity in both LGRBs (Koshut et al., 1995;
Lazzati, 2005; Burlon et al., 2008, 2009) and SGRBs
(Troja et al., 2010). Together with X-ray flares, pre-
cursors imply that the intermittent mechanism powering
the prompt emission may be suspended over timescales
comparable to the prompt emission itself. Recently, we
proposed a new scenario in the context of the magne-
tar central engine for which precursors are explained by
assuming that the GRB prompt emission is powered by

1072 A. Rowlinson et al.
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Figure 1: Examples of external (left panel) and internal (right panel)
plateaus in short GRBs (from Rowlinson et al. 2013). Both panels
show Swift/BAT and XRT rest-frame light curves fitted with the mag-
netar model. The light grey data points have been excluded from
the fit. The dashed line shows the power-law component (steep de-
cay) and the dotted line shows the magnetar component. The X-ray
light curve in the left panel shows the so-called “canonical” behaviour,
characterised by a steep-shallow-normal decays.

the accretion of matter onto the surface of the magne-
tar (Bernardini et al., 2013). The accretion process can
be halted by the centrifugal drag exerted by the rotat-
ing magnetosphere onto the in-falling matter, allowing
for multiple emission episodes and very long quiescent
times. The same mechanism can be extended to late
times, providing also an interpretation for flaring activ-
ity.

Here we review the major observational evidences for
the possible presence of a newly-born magnetar as the
central engine for both LGRBs and SGRBs, as the pres-
ence of a plateau phase in the X-ray light curve (Sec-
tion 2), the extended emission in SGRBs (Section 3)
and the precursor and flaring activity (Section 4). We
then discuss about the possibility that all GRBs are
powered by magnetars, and we propose a unification
scheme that accommodates both magnetars and BHs,
connected to the different properties and energetics of
GRBs (Section 5). Since the central engine remains
hidden from direct electromagnetic (EM) observations,
and will remain so until gravitational wave (GW) sig-
natures are detected, we review the predictions for the
GW emission from magnetars in the context of LGRBs
and SGRBs, and the observational perspectives with ad-
vanced interferometers (Section 6).

2

Spin-down luminosity 
(negligible aft.)

Spin-down luminosity  
+ collapse to BH

Internal plateau

Lyons et al. 2010
Rowlinson et al. 2010, 2013

Imprints of a magnetar central engine
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2. The X-ray plateau

One of the major outcome of the Swift mission is the
discovery that the X-ray light curve of GRBs is more
complex than what previously though (Tagliaferri et al.,
2005; Nousek et al., 2006). About 40% of the well mon-
itored1 LGRB light curves show in their X-ray emission
the so-called “canonical” behaviour (see e.g. fig. 1 and
Nousek et al. 2006), characterised by a steep-shallow-
normal decay. Up to ∼ 80% of the LGRB X-ray emis-
sion deviates from a single power-law decay, exhibit-
ing a shallow decay phase (Evans et al., 2009; Margutti
et al., 2013; Melandri et al., 2014). The presence of
a plateau phase is a common feature also to ∼ 50% of
SGRBs (Rowlinson et al., 2013; D’Avanzo et al., 2014).

Several empirical correlations have been found in-
volving properties of this shallow decay X-ray phase
(“plateau”) and of the prompt emission (Dainotti et al.,
2011; Bernardini et al., 2012). Among these, the most
interesting one is the anti-correlation between the end
time of the plateau phase tp and the X-ray luminosity
at the same time Lp = L(tp): Lp ∝ t−αp (Dainotti et al.,
2008, 2010, 2013). A Lp− tp anti-correlation is also fol-
lowed by SGRBs, though with a different normalisation
with respect to LGRBs (Rowlinson et al., 2014).

The presence of a plateau phase has been initially at-
tributed to an injection of energy into the forward shock
(see e.g. Zhang et al., 2006, and references therein),
since the absence of significant spectral evolution dur-
ing this stage agrees with the expectations from for-
ward shock emission (Bernardini et al., 2012). How-
ever, there are several cases in both LGRBs and SGRBs
where the shallow decay is followed by a sudden drop
in the X-ray emission, that is not consistent with the for-
ward shock model (see fig. 1).

A natural source for this energy injection2 is the
power emitted by a spinning-down newly-born magne-
tar (Dai and Lu, 1998; Zhang and Mészáros, 2001; Corsi
and Mészáros, 2009; Metzger et al., 2011). A newly
formed magnetar is expected to loose its rotational en-
ergy at a very high rate for the first few hours through
magnetic-dipole spin down, something that provides a

1i.e. fast repointed by the Swift/XRT and for which observations
were not limited by any observing constraint.

2Alternative explanations for the presence of a plateau phase have
been proposed, as a late time accretion (Kumar et al., 2008) in the con-
text of the collapsar scenario, or as a reverse shock powered by energy
injection from an arbitrary central engine (Leventis et al., 2014; van
Eerten, 2014). A top heavy jet produced by a collapsar would re-
produce the steep decay and the plateau phase phenomenology in
both the X-ray and the optical energy bands (Duffell and Mac-
Fadyen, 2014).

Figure 2: Physical range for the values of magnetic field strengths and
spin periods (from Rowlinson et al. 2014). The upper and lower limits
on the magnetic field strength and the upper limit on the spin period
are determined using the sample of GRBs fitted with the magnetar
model (overplotted as black circles; Lyons et al. 2010; Dall’Osso et al.
2011; Bernardini et al. 2012, 2013; Rowlinson et al. 2013; Gompertz
et al. 2013; de Ugarte Postigo et al. 2014; Lü and Zhang 2014; Yi
et al. 2014). The dashed black vertical line (1) at 0.66 ms represents
the minimum spin period allowed before breakup of a 2.1 M⊙ NS. The
dotted black line (2) represents a limit on spin periods and magnetic
field strengths imposed by the fastest slew time of the Swift/XRT in the
rest frame of the highest redshift GRB in the sample, as plateaus with
durations shorter than the slew time are unobservable. The black dash-
dotted lines (3-6) represent the observational cut-offs for the faintest
plateau observable assuming the lowest redshift in the GRB sample.
These cut-offs change depends on the beaming and efficiency of the
magnetar emission.

long-lived central engine in a very natural way. Assum-
ing that the spin down is mainly due to EM dipolar radi-
ation and to GW radiation, when the EM dipolar emis-
sion dominates (the GW emission is discussed in Sec-
tion 6), the initial rotational energy loss depends on the
dipolar magnetic field strength B and on its rotational
period P as: Ėsd ∝ B2P−4 ∼ 1049(B/1015G)2 (P/ms)−4

erg s−1, and is expected to be fairly constant over a
timescale shorter than the spin-down timescale tsd ∝
P2B−2, and then it decays as Ėsd ∝ t−2 (Dai and Lu,
1998; Zhang and Mészáros, 2001).

If the spin-down power is injected into the forward
shock, then we expect an “external” plateau. Dall’Osso
et al. (2011) proposed an analytic treatment to account
for the contribution to the forward shock emission of
the spin-down luminosity, that is successful to describe
the X-ray emission of the canonical LGRBs (Dall’Osso
et al., 2011; Bernardini et al., 2012, 2013) as well as
of light curves with a shallow decay phase (Bernardini
et al., 2012). On the other hand, if the magnetar spin-
down power dissipates internally before hitting the for-
ward shock, it generates an “internal” plateau, whose X-

3

Luminosity-time 
correlation implied by the 

model

Bernardini et al. 2012
Rowlinson et al. 2014

ray luminosity tracks the spin-down luminosity (Lyons

et al., 2010). In this second case, if the magnetar is suf-

ficiently massive that differential rotation is not able to

support it, it collapses to a BH producing a sharp drop at

the end of the plateau (see fig. 1 and Lyons et al., 2010;

Rowlinson et al., 2013). Broadband modelling of the

spin-down luminosity has been presented by Gompertz

et al. (2015). The magnetic field strength and rotational

period required to reproduce the observed plateaus in

both LGRBs and SGRBs are of the order of B ∼ 10
15

G and P ∼ 1 ms (see fig. 2), comparable to the expec-

tations for a newly-born millisecond magnetar (Duncan

and Thompson, 1992).

The major advantage of this scenario for the plateau

phase is that all the plateau properties are directly re-

lated to the central engine (specifically on B and P)

and, consequently, to the prompt emission, giving a

straightforward interpretation for the empirical corre-

lations found in Dainotti et al. (2011) and Bernardini

et al. (2012). In particular, the anti-correlation between

the plateau luminosity and timescale is naturally ac-

counted for analytically when one associates the ini-

tial spin-down luminosity with the plateau luminosity,

and the spin-down timescale with the plateau duration:

Lp ∼ Ėsd ∼ B2P−4 ∼ P−2t−1

sd
∼ P−2t−1

p (see fig. 3). In

this scenario the scatter of the anti-correlation is directly

related to the distribution of the spin period (Bernardini

et al., 2012; Rowlinson et al., 2014). Rowlinson et al.

(2014) showed that the observed scatter implies a spin

period range ∼ 0.66 − 35 ms, that is consistent with the

distributions of the spin period from the direct analysis

of the X-ray plateaus (see fig. 2). The observed normali-

sation depends also upon the radiative efficiency and the

beaming angle of the outflow. Rowlinson et al. (2014)

used the observed data to place constraints on the likely

beaming angles and efficiencies of the magnetar emis-

sion, concluding that for LGRBs it is most likely to be

narrowly beamed (< 20
◦
) with ∼ 20% efficiency of con-

version of rotational energy to observed X-ray emission.

The apparent different normalisation for SGRBs may be

associated with different redshift distributions or differ-

ent beaming/efficiencies (Rowlinson et al., 2014).

3. The extended emission in SGRBs

A subclass of SGRBs (∼ 15%, Berger 2014) shows

a rebrightening in the prompt emission after the initial

spike, firstly discovered in the BATSE sample (Lazzati

et al., 2001; Norris and Bonnell, 2006) and then con-

firmed with Swift (e.g., Barthelmy et al., 2005b). This

extended emission (EE) is long-lasting, up to ∼ 100 s,

its onset is usually delayed from the initial spike and it

is characterised by a softer spectrum compared with the

initial spike and LGRBs of similar duration. Its peak

flux is usually lower, but it comprises a larger fluence

than the initial spike (for further details see the compre-

hensive review on SGRBs by D’Avanzo, this volume).

In the case of SGRBs, the merger of two compact

objects as a NS binary or a NS-white dwarf (WD) bi-

nary (Paczynski, 1986; Fryer et al., 1999; Rosswog and

Ramirez-Ruiz, 2003; Belczynski et al., 2006; Giaco-

mazzo and Perna, 2013), or the accretion-induced col-

lapse of a WD (Metzger et al., 2008) may lead to the

formation of a magnetar. In this context, the initial spike

is powered by accretion onto the magnetar from a disc

formed during the merging or the collapse, while the EE

by a relativistic wind that extracts the rotational energy

of the magnetar at later times, after the disc is disrupted

(Metzger et al., 2008; Bucciantini et al., 2012). The dif-

ferent origin explains qualitatively the spectral and tem-

poral differences between the initial spike and the EE.

A different possibility is that also the EE is powered

by late-time accretion from an accretion disc produced

by a WD binary merger prior to collapse, powering an

outflow similar to that produced during the prompt ac-

cretion episode (Metzger et al., 2008). A possible dis-

crimination between these two scenarios is that EE pow-

ered by accretion should not be visible off-axis, since

jets from the prompt and delayed accretion episodes are

similarly collimated, while if the EE is powered by the

spin down and, thus, is symmetric in the azimuth, then

at least as many off-axis X-ray flashes are expected as

standard SGRBs (Metzger et al., 2008). At the end of

the prompt emission (initial spike and EE) the rotational

energy reservoir is sufficient to power the late-time X-

ray emission, producing the plateau phase (see Section 2

and Metzger et al. 2008, 2011; Gompertz et al. 2013).

Gompertz et al. (2014) proposed an alternative sce-

nario in the context of magnetar central engine for EE,

where it is powered by a magnetic “propeller”. In this

scenario, the material from the accretion disc surround-

ing the newly-formed magnetar is accelerated to super-

Keplerian velocities and ejected from the system by the

centrifugal forces exerted by the magnetosphere. After

this phase, the late X-ray emission can still be powered

by the magnetar spin down, as usual. This propeller

emission can reproduce a variety of SGRB light curves

(Gompertz et al., 2014), and it has the merit of associ-

ating the three different features (initial spike, EE and

plateau phase) of SGRBs to different energy suppliers

(accretion and propeller, spin down).

4

✦ normalization and 
slope from B and P

✦ scatter from P: 
0.66-35 ms

Imprints of a magnetar central engine
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✦ extended emission in SGRBs

✦ pre- and post-cursors in LGRBs and SGRBs
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Short GRBs: Extended Emission 

Perley et al. 2009 

T90 >> 2 s Short/hard spike 
Long/soft tail 

Short GRBs: Extended Emission 

Perley et al. 2009 

T90 >> 2 s Short/hard spike 
Long/soft tail 

SGRBs with Extended Emission (EE)

✦ ~15% rebrightening (EE) in 
prompt emission (T90> 2s)

✦ delayed onset of EE

✦ hard spike, soft tail
✦ lower peak but 

duration ~ 100 s

➡EE comprises larger 
fluence

Lazzati et al. 2001
Norris & Bonnell 2006
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One possibility:
✦ initial spike <= magnetar powered by accretion 
✦ EE + late time X-rays <= rotational powered wind

Metzger et al. 20081458 B. D. Metzger, E. Quataert and T. A. Thompson
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Figure 2. Luminosity of internal shock emission from the protomagnetar

winds in Fig. 1; electron acceleration efficiency εe = 0.5 is assumed. Note

the lack of emission at early times because the outflow is non-relativistic.

The gradual onset of the emission once σLC > 10 is due to the large Thomson

optical depth, which decreases as the outflow expands. The late-time decline

in emission is the onset of curvature emission from the last shock, produced

by the shell released at tKH = 40 s. The late-time BAT light curve from

GRB060614, shown with a light solid line and scaled to the physical isotropic

luminosity, is reproduced in a time-averaged sense by the B0 = 3 × 1015 G

model.

Upon release, each shell propagates forward in radius with con-

stant velocity until it collides with another shell. From the properties

of the collision, we calculate (i) the ‘thermal’ energy released by

dissipation of the shells’ relative kinetic energy, (ii) the observed

spike of radiation (using the technique summarized in section 2 of

Genet, Daigne & Mochkovitch 2007) and (iii) the final mass and

energy of the composite shell, which then continues to propagate

forward. We assume that a fraction εe of the energy released by each

collision goes into relativistic electrons, which radiate their energy

through synchrotron emission. Efficient synchrotron cooling is jus-

tified if even a modest fraction of the magnetic flux at the light

cylinder is preserved to large radii. Thomson scattering of the non-

thermal radiation is taken into account, but photospheric emission

is not calculated.

Fig. 2 shows our calculation of the EE light curve for the wind

solutions given in Fig. 1. We find that the efficiency for convert-

ing the relative kinetic energy of the outflow to thermalized energy

is ∼10–20 per cent. Provided that εe ! 0.1, these efficiencies are

consistent with those typically inferred for short GRBs (e.g. Nakar

2007). Protomagnetar winds possess a significant reservoir of ‘free

energy’ and achieve high efficiency because #(t) increases mono-

tonically, allowing faster material ejected at later times to catch up

with the slower material ejected earlier.

To first order, our simplified model produces light curves similar

to the EE observed from SGRBEEs. The peak flux is larger for

more rapidly rotating, strongly magnetized PNSs and the time to

peak flux is smaller. In Fig. 2, we also show the late-time BAT light

curve from GRB060614 (Butler & Kocevski 2007) for comparison

with our models. We find reasonable agreement between the data

and the model with B0 = 3 × 1015 G suggesting that the progenitor of

GRB060614 possesses a surface field strength somewhat larger than

those of Galactic magnetars. If synchrotron internal shock emission

is indeed the correct model for the radiation from a protomagnetar

wind, the softening of the EE can also be qualitatively understood.

Due to the monotonic rise of #(t), the Lorentz factor of the aggregate

shell increases with time; however, the field strength in the wind

B ∼ B(RL)(r/RL)−1 declines as the internal shock radius increases.

In our model, these effects combine to decrease the synchrotron peak

energy Epeak ∝# B by a factor of ∼10 during the period of observable

emission. This predicted degree of spectral softening is stronger than

the factor of ∼2 decrease in Epeak inferred for GRB060614 by Zhang

et al. (2007); indeed, the observed constancy of Epeak is a problem

generic to most internal shock models.

4 D I S C U S S I O N

Short GRBs with extended emission challenge the paradigm that

short GRBs result exclusively from COMs. The central engine in

these systems may instead be a newly formed magnetar. The time-

line of our model is summarized as follows:

(i) AIC or WD–WD merger produces a protomagnetar and a disc

of mass ∼0.1 M% (t ∼ tdyn ∼ 100 ms).

(ii) Disc accretes on to the protomagnetar, generating the prompt

emission spike (t ∼ tvisc ∼ 0.1 − 1 s; see equation 1).

(iii) Free protomagnetar wind transitions from non-relativistic to

ultrarelativistic (t ∼ 3–10 s; see Fig. 1).

(iv) Protomagnetar spins down, generating X-ray emission on

observed longer time-scale (t ∼ 10–100 s; see Fig. 2).

A model similar to the one described here was proposed by Gao

& Fan (2006); in their model, late-time flares from short GRBs are

powered by dipole spin-down of a supermassive, transiently-stable

magnetar formed by a NS–NS merger. However, current evidence

suggests that SGRBEEs form a distinct population with only mod-

est offsets from their host galaxies (Troja et al. 2008). If transiently

stable magnetars from NS–NS mergers indeed produce most SGR-

BEEs, an equal number would be expected with large offsets.

A more promising channel of isolated magnetar birth may be the

AIC of a WD, or the merger and collapse of a WD–WD binary. The

rate of these events is difficult to constrain directly because the Ni

mass synthesized in a PNS wind is less than ∼10−3 M% (Metzger,

Thompson & Quataert 2007b, hereafter M07b), and is therefore

unlikely to produce a bright optical transient. There is, however,

indirect evidence that isolated magnetar birth occurs in nature. The

rapidly rotating, highly magnetic WD RE J0317−853 has a mass

M = 1.35 M% and was likely produced from a WD–WD merger;

if RE J0317−853’s progenitor binary had been slightly more mas-

sive, it would probably have collapsed to a rapidly rotating mag-

netar (King et al. 2001). Isolated NS birth via AIC is also one of

the only Galactic r-process sites consistent with current observa-

tions of elemental abundances in metal-poor halo stars (Qian &

Wasserburg 2007). Although unmagnetized PNS winds fail to pro-

duce successful r-process (T01), protomagnetar winds may be suf-

ficiently neutron-rich to produce ∼0.1 M% in r-process elements

(D07; M07b). For AIC or WD–WD mergers to produce the entire

Galactic r-process yield require a rate ∼10−5–10−6 yr−1, compa-

rable to the observed local short GRB rate (Nakar 2007). Finally,

Levan et al. (2006) argue that the correlation found by Tanvir et al.

(2005) between a subset of short GRBs and local large-scale struc-

ture is evidence for a channel of isolated magnetar birth, if these

bursts are produced by SGR-like flares.

A theory for SGRBEEs must explain the large burst-to-burst vari-

ation in the ratio of the flux/fluence of the prompt and EE compo-

nents (NB06). The angular momentum of AIC and WD–WD merg-

ers may vary between events, resulting in a wide distribution in

both the properties of the accretion disc formed (which influences

C© 2008 The Authors. Journal compilation C© 2008 RAS, MNRAS 385, 1455–1460
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Figure 1. Schematic diagram of the stages of the protomagnetar model for
short GRBs with EE. (A) The merger of two binary neutron stars, or the
accretion-induced collapse of a rotating white dwarf, results in the forma-
tion of a compact ∼10−3–0.1 M# torus around the central protoneutron star.
(B) Accretion of the torus powers a relativistic bipolar jet, resulting in a short
GRB lasting ∼0.1–1 s, similar to the standard NS–NS merger model. Fol-
lowing accretion, however, a rapidly spinning (millisecond) protomagnetar
remains. (C) Material ejected during the merger, by the supernova following
AIC, or via outflows from the accretion disc, results in a ∼10−3–10−1 M#
envelope around the protomagnetar moving outwards with a velocity vej ∼
0.1–0.2c. The relativistic wind from the protomagnetar collides with the
ejecta, producing a MWN. (D) Magnetic stresses in the nebula redirect the
magnetar wind into a bipolar jet. After the jet breaks through the ejecta on
a time-scale ∼1–10 s (Fig. 3), the magnetar wind escapes and accelerates to
ultrarelativistic speeds (Fig. 2). Emission from the jet at much larger radii
powers the EE lasting ∼10–100 s, similar to the protomagnetar model for
long GRBs (see Fig. 5).

dynamically due to tidal forces during the merger process (e.g.
Rosswog 2007). Mass loss also occurs in outflows from the accre-
tion disc on time-scales !seconds, due to heating from neutrinos
(Metzger, Thompson & Quataert 2008c; Dessart et al. 2009), tur-
bulent viscosity (Metzger, Piro & Quataert 2008b; Metzger et al.
2009a) and nuclear energy released by the recombination of free
nuclei into 4He (Lee & Ramirez-Ruiz 2007; Metzger et al. 2008b;
Lee et al. 2009). During the first few seconds after forming, out-
flows from the magnetar itself are heavily mass loaded and non-
relativistic, resulting in a significant quantity of ejecta "10−3 M#
(Thompson et al. 2004; Bucciantini et al. 2006; Metzger et al. 2007).
All together, ∼10−3–0.1 M# is ejected with a characteristic veloc-
ity vej ∼ 0.1–0.2c and kinetic energy ∼2 × 1050(vej/0.1c)2(Mej/
0.01 M#) erg.

A few seconds after the merger or AIC, one is left with a proto-
magnetar embedded in a confining envelope.3 This configuration is
qualitatively similar to that developed in the protomagnetar model
for LGRBs by Bucciantini et al. (2007, 2008, 2009), except that
the enshrouding envelope is much less massive. In these previous

3 In cases when the ejecta originates from the earlier (non-relativistic) stage
of the magnetar wind, the distinction between ‘wind’ and ‘ejecta’ is blurred.
In general, however, the magnetar outflow becomes ultrarelativistic rela-
tively abruptly, such that this distinction is well-defined (Metzger et al.
2011).

works it was shown that, although the power in the magnetar wind
is relatively isotropic (e.g. Bucciantini et al. 2006), its collision with
the slowly expanding ejecta produces a hot ‘protomagnetar nebula’
(Bucciantini et al. 2007). As toroidal flux accumulates in the neb-
ula, magnetic forces – and the anisotropic thermal pressure they
induce – redirect the equatorial outflow towards the poles (Begel-
man & Li 1992; Königl & Granot 2002; Bucciantini et al. 2007,
2008, 2009; Komissarov & Barkov 2007; Uzdensky & MacFadyen
2007). Stellar confinement thus produces a mildly relativistic jet,
which drills a bipolar cavity through the ejecta. Once the jet ‘breaks
out’, an ultrarelativistic jet (fed by the magnetar wind at small radii)
freely escapes. The EE is then powered as the jet dissipates its en-
ergy at much larger radii. One virtue of applying this picture to
SGRBEEs is that it naturally explains why the EE resembles long
GRBs in several properties, such as its duration and the existence
of a late-time ‘steep decay’ phase (cf. Tagliaferri et al. 2005; Perley
et al. 2009).

Although SGRBEEs resemble long GRBs in many properties,
important differences also exist. The EE is generally softer (X-rays
rather than gamma-rays), somewhat dimmer, and its variability is
generally smoother (appearing to display e.g. a higher ‘duty cycle’)
than long GRBs. Assessing the viability of the protomagetar model
for SGRBEEs therefore requires determining whether these differ-
ences may in part result from differences in the geometry of the
relativistic outflow. These in turn may result because the confin-
ing ejecta is significantly less massive and dense than in the core
collapse case.

In this paper we investigate the interaction of the relativistic
protomagnetar wind with the expanding ejecta using axisymmetric
(2D) relativistic MHD simulations. We focus in particular on the
confining role of the ejecta and its dependence on the wind power,
and on the ejecta mass and density profile. We show that collimation
(jet formation) is achieved only within a bounded range of param-
eters. If the wind is too energetic, or the mass of the shell is too
low, the ejecta is disrupted and little collimation occurs. In contrast,
if the ejecta is sufficient massive and/or the wind is sufficient weak,
the result is instead a ‘choked jet’ that may not emerge at all. We
describe the numerical set-up in Section 2 and present our results
in Section 3. We apply our results to SGRBEEs in Section 4 and
conclude in Section 5.

2 N U M E R I C A L S E T-U P

All calculations were performed using the shock-capturing central
scheme for relativistic ideal MHD ECHO (Del Zanna, Bucciantini &
Londrillo 2003; Del Zanna et al. 2007), using an ideal gas equation
of state with an adiabatic coefficient ! = 4/3, as appropriate for
relativistically hot gas. We refer the reader to these papers for a
detailed description of the equations and numerical algorithms.

We investigate the interaction of the magnetar wind with the sur-
rounding ejecta envelope using 2D axisymmetric simulations on a
spherical grid. The angular domain is θ = [0, π ] with reflecting
boundary at the polar axis to enforce axisymmetry, while the ra-
dial domain extends over the range r = (107, 1012) cm. The grid
in the radial direction is spaced logarithmically with 100 cells per
decade, while spacing is uniform in the angular direction with 200
cells [we repeated selected simulations with twice the resolution
to verify convergence; see also Camus et al. 2009 for estimates of
convergence with grid resolution, in similar simulations as applied
to pulsar wind nebulae (PWNe)]. We assume zeroth-order extrapo-
lation at the outer boundary. The code is second-order in both space
and time, with a monotonized central limiter, chosen in order to

C© 2011 The Authors, MNRAS 419, 1537–1545
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Imprints of a magnetar central engine

One possibility:
✦ initial spike <= magnetar powered by accretion 
✦ EE + late time X-rays <= rotational powered wind

or:
✦ initial spike <= magnetar powered by 

accretion 
✦ EE <= propeller 
✦ late X-rays <= rotational powered 

wind

➡ different mechanisms for different 
features Gompertz et al. 2014

Metzger et al. 2008
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✦ plateau phase in X-rays of both LGRBs and SGRBs

✦ extended emission in SGRBs

✦ pre- and post-cursors in LGRBs and SGRBs
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Multiepisodic emission: literature & our sample 3.2 Our sample

Figure 3.11: Light curves, extracted in the 15–350 keV range of Swift-BAT at 1 s, of the
GRBs studied in this work. Rate is units per seconds per illuminated detector. Vertical dashed
lines correspond to the precursors and main event T90 limits This interval is where the time
integrated spectrum was accumulated. Time is observed time.
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Emission episodes AFTER the main prompt emission in 
~33% of LGRBs:
✦ tpk usually ≤ 1000 s, but also at late times
✦ multiple flares

Chincarini et al., 2007, 2010
Margutti et al., 2010,  2011, 2012

Bernardini et al., 2011
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X-RAY FLARES

Emission episodes AFTER the main prompt emission in 
~33% of LGRBs:
✦ tpk usually ≤ 1000 s, but also at late times
✦ multiple flares
✦ negligible or comparable energies (“giant” flares)

Chincarini et al., 2007, 2010
Margutti et al., 2010,  2011, 2012

Bernardini et al., 2011
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X-RAY FLARES

Emission episodes AFTER the main prompt emission in 
~33% of LGRBs:
✦ tpk usually ≤ 1000 s, but also at late times
✦ multiple flares
✦ negligible or comparable energies (“giant” flares)
✦ also in SGRBs

Chincarini et al., 2007, 2010
Margutti et al., 2010,  2011, 2012

Bernardini et al., 20112160 R. Margutti et al.

Figure B4. Same as Fig. B1 for GRB 090607.
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POST-CURSORS: “GIANT” X-RAY FLARES

Among X-ray flares, “Giant” flares:
✦ ∆C/C ≈ 50-1000
✦ Eflare ~10% Eprompt or more
✦ Epk ~ 5 keV
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POST-CURSORS: “GIANT” X-RAY FLARES

3.3 Extension to “postcursors” Multiepisodic emission: literature & our sample
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3.2 Our sample Multiepisodic emission: literature & our sample
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Among X-ray flares, “Giant” flares:
✦ ∆C/C ≈ 50-1000
✦ Eflare ~10% Eprompt or more
✦ Epk ~ 5 keV

... precursors in the 
mirror!!!!



How to switch on and off a GRB?
With a millisecond Magnetar

powered by Accretion

Usov 1992
Duncan & Thompson 1992

Dai & Lu 1998
Zhang & Meszaros 2001

Metzger et al. 2011
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where t◦ is any time chosen as initial condition and E◦

the initial energy. The solution of the above integral can
be expressed in terms of the real valued hypergeomet-
ric function 2F1(a, b, c; (1 + at)−1). The total bolometric
luminosity is, then:

L(t) = E(t)/t . (A3)

We selected those GRBs in the BAT6 sample with
redshift and with a well–sampled plateau in the X–ray
light curve (16 GRBs), having or not a precursor in the
prompt emission, and we assumed their 0.3 − 30 keV
common rest frame luminosity (Margutti et al. 2013)
as a proxy of the total bolometric luminosity. In order
to account for the possible collimation of the outflow θj
and of the radiative efficiency εr, we considered the cor-
rected luminosity LX,j = (fb/εr)LX,iso, with εr = 0.1 and
fb = (1−cos θj) = 0.01, that corresponds to θj " 8◦. We
fitted these data with Eq. A3, using as free parameters
B, P and E◦. We fixed t◦ as the (rest–frame) starting
time of the plateau phase, and k′ from the decay index of
the post–plateau light curve (the solution in Eq. A3 has
an asymptotic behavior∝ t−k′

−1, for detail see Dall’Osso
et al. 2011). Tables 2 and 3 summarize the best–fit pa-
rameters for the GRBs, grouped as GRBs with precur-
sors and without precursors, respectively, while Figure 3
shows the results of the fit for the sample of GRBs with
precursors only.

A.1. The properties of the magnetar in GRBs with and
without precursors.

Since the condition for the onset of the propeller phase
depends on B and P , we searched for a pattern that al-
lows us to discriminate between GRBs with (superscript
“p”) and without (superscript “no-p”) precursors. For
this reason we compared the distributions of B and P for
GRBs with and without precursors in the BAT6 sample
(see Tables 2 and 3, respectively). We find that both the
magnetic field and the spin period distributions are cen-
tered around lower values for GRBs with precursors than
for GRBs without precursors (〈log[Bp/1015G]〉 = 0.60
while 〈log[Bno−p/1015G]〉 = 1.00; 〈log[P p/ms]〉 = 0.48
while 〈log[P no−p/ms]〉 = 0.75, see Figure 4). The spin
period distribution is also less scattered around its cen-
tral value than in the other case (σp

P = 0.26 while
σno−p
P = 0.38). A KS test gives a probability P = 0.12

that the spin period of GRBs with and without precur-
sors are drawn from the same population, while P = 0.30
for the magnetic field distributions.
The luminosity of the shallow decay phase is related to

the spin–down luminosity, being Li ∝ B2/P 4. A lower
value of the spin period and of the magnetic field for the
GRBs with precursors would result in a higher luminos-
ity during the shallow decay phase since the luminosity
depends strongly on P . Similarly, the narrower distri-
bution of P would imply a narrower distribution of Li,
that is indeed what we found in Sect. 2.2 (see also Pisani
et al. 2013). The magnetospheric radius depends on the
magnetic field and on the mass accretion rate (given the
mass and radius of the magnetar), rm ∝ Ṁ−2/7B4/7,
while the corotation radius depends only on the spin pe-
riod, being rc ∝ P 2/3. Thus, among the GRBs powered
by a magnetar, GRBs with precursors are characterised
by specific values of the magnetic field and spin period

Fig. 3.— 0.3 − 30 keV luminosity of the GRBs in the BAT6
sample with precursors (“p”) and displaying a plateau phase in
the X–ray light curve, fitted with the model in Eq. A3 (red line)
for the best-fit values reported in Table 2.

Fig. 4.— Left panel: spin period P distribution for the GRBs
in the BAT6 sample displaying a plateau phase in the X–ray light
curve and with precursors (blue; “p”, see Table 2) or without pre-
cursors (gray; “no–p”, see Table 3). Right panel: magnetic field B
distribution for the GRBs in the BAT6 sample displaying a plateau
phase in the X–ray light curve and with precursors (red; “p”, see
Table 2) or without precursors (gray; “no–p”, see Table 3).

that favor the trigger of the propeller regime, responsible
for the observed quiescent times.

B. THE ESTIMATE OF THE CHARACTERISTIC
LUMINOSITIES OF THE PROPELLER REGIME.

We used the best–fit values of B and P in the case
of GRBs with precursor (see Table 2) to estimate in
the case of spherical accretion the bolometric accretion
power corresponding to the onset of the propeller phase:

Lmin = 4× 1050B2
15 P

−7/3
−3 erg s−1 , (B1)

and the bolometric power during the quiescent time:

L(rm) = 2× 1050B2
15 P

−3
−3 erg s−1 , (B2)

where B = 1015B15 G and P = 10−3P−3 s (for details see
Campana et al. 1998, their Eq. 4 and 6; see also Bozzo
et al. 2008 and Piro & Ott 2011). Equation B2 sets
an upper limit to the quiescent time luminosity, since
only a fraction of it will actually escape from the jet
base. The values are displayed in Table 2. In the case of
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where t◦ is any time chosen as initial condition and E◦

the initial energy. The solution of the above integral can
be expressed in terms of the real valued hypergeomet-
ric function 2F1(a, b, c; (1 + at)−1). The total bolometric
luminosity is, then:

L(t) = E(t)/t . (A3)

We selected those GRBs in the BAT6 sample with
redshift and with a well–sampled plateau in the X–ray
light curve (16 GRBs), having or not a precursor in the
prompt emission, and we assumed their 0.3 − 30 keV
common rest frame luminosity (Margutti et al. 2013)
as a proxy of the total bolometric luminosity. In order
to account for the possible collimation of the outflow θj
and of the radiative efficiency εr, we considered the cor-
rected luminosity LX,j = (fb/εr)LX,iso, with εr = 0.1 and
fb = (1−cos θj) = 0.01, that corresponds to θj " 8◦. We
fitted these data with Eq. A3, using as free parameters
B, P and E◦. We fixed t◦ as the (rest–frame) starting
time of the plateau phase, and k′ from the decay index of
the post–plateau light curve (the solution in Eq. A3 has
an asymptotic behavior∝ t−k′

−1, for detail see Dall’Osso
et al. 2011). Tables 2 and 3 summarize the best–fit pa-
rameters for the GRBs, grouped as GRBs with precur-
sors and without precursors, respectively, while Figure 3
shows the results of the fit for the sample of GRBs with
precursors only.

A.1. The properties of the magnetar in GRBs with and
without precursors.

Since the condition for the onset of the propeller phase
depends on B and P , we searched for a pattern that al-
lows us to discriminate between GRBs with (superscript
“p”) and without (superscript “no-p”) precursors. For
this reason we compared the distributions of B and P for
GRBs with and without precursors in the BAT6 sample
(see Tables 2 and 3, respectively). We find that both the
magnetic field and the spin period distributions are cen-
tered around lower values for GRBs with precursors than
for GRBs without precursors (〈log[Bp/1015G]〉 = 0.60
while 〈log[Bno−p/1015G]〉 = 1.00; 〈log[P p/ms]〉 = 0.48
while 〈log[P no−p/ms]〉 = 0.75, see Figure 4). The spin
period distribution is also less scattered around its cen-
tral value than in the other case (σp

P = 0.26 while
σno−p
P = 0.38). A KS test gives a probability P = 0.12

that the spin period of GRBs with and without precur-
sors are drawn from the same population, while P = 0.30
for the magnetic field distributions.
The luminosity of the shallow decay phase is related to

the spin–down luminosity, being Li ∝ B2/P 4. A lower
value of the spin period and of the magnetic field for the
GRBs with precursors would result in a higher luminos-
ity during the shallow decay phase since the luminosity
depends strongly on P . Similarly, the narrower distri-
bution of P would imply a narrower distribution of Li,
that is indeed what we found in Sect. 2.2 (see also Pisani
et al. 2013). The magnetospheric radius depends on the
magnetic field and on the mass accretion rate (given the
mass and radius of the magnetar), rm ∝ Ṁ−2/7B4/7,
while the corotation radius depends only on the spin pe-
riod, being rc ∝ P 2/3. Thus, among the GRBs powered
by a magnetar, GRBs with precursors are characterised
by specific values of the magnetic field and spin period

Fig. 3.— 0.3 − 30 keV luminosity of the GRBs in the BAT6
sample with precursors (“p”) and displaying a plateau phase in
the X–ray light curve, fitted with the model in Eq. A3 (red line)
for the best-fit values reported in Table 2.

Fig. 4.— Left panel: spin period P distribution for the GRBs
in the BAT6 sample displaying a plateau phase in the X–ray light
curve and with precursors (blue; “p”, see Table 2) or without pre-
cursors (gray; “no–p”, see Table 3). Right panel: magnetic field B
distribution for the GRBs in the BAT6 sample displaying a plateau
phase in the X–ray light curve and with precursors (red; “p”, see
Table 2) or without precursors (gray; “no–p”, see Table 3).

that favor the trigger of the propeller regime, responsible
for the observed quiescent times.

B. THE ESTIMATE OF THE CHARACTERISTIC
LUMINOSITIES OF THE PROPELLER REGIME.

We used the best–fit values of B and P in the case
of GRBs with precursor (see Table 2) to estimate in
the case of spherical accretion the bolometric accretion
power corresponding to the onset of the propeller phase:

Lmin = 4× 1050B2
15 P

−7/3
−3 erg s−1 , (B1)

and the bolometric power during the quiescent time:

L(rm) = 2× 1050B2
15 P

−3
−3 erg s−1 , (B2)

where B = 1015B15 G and P = 10−3P−3 s (for details see
Campana et al. 1998, their Eq. 4 and 6; see also Bozzo
et al. 2008 and Piro & Ott 2011). Equation B2 sets
an upper limit to the quiescent time luminosity, since
only a fraction of it will actually escape from the jet
base. The values are displayed in Table 2. In the case of
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The magnetar can still 
influence the GRB 

emission with its spin-
down power that is 
directly related to B 

and P

Dai & Lu 1998
Zhang & Meszaros 2001
Corsi & Meszaros 2009
Lyons et al. 2010
Dall’Osso et al. 2011
Metzger et al. 2011
Rowlinson et al. 2013, 2014
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〈B〉= 4x1015 G

〈P〉= 3.06 ms
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TABLE 2
Best–fitting values of the plateau phase for the GRBs with precursors (superscript “p”) in the BAT6

sample.

Name z Bp P p k′p tp◦ Ep
◦ Lp

min Lp(rm) Mp
acc

(1015 G) (ms) (s) (1050 erg) (1050 erg s−1) (1050 erg s−1) (M$)

050318a 1.44 4.00 3.06 − − − 4.7 1.1 0.004
050401 2.90 5.67± 0.27 2.61± 0.04 0.8 31.6 5.57± 0.18 13.7 3.6 0.101
060210 3.91 2.34± 0.07 1.83± 0.02 0.9 15.8 1.00b 5.4 1.8 0.088
061007a 1.26 4.00 3.06 − − − 4.7 1.1 0.252
061121 1.31 6.03± 0.12 4.40± 0.03 0.9 63.1 0.70± 0.04 4.6 0.9 0.068
061222A 2.09 2.79± 0.04 2.25± 0.01 0.9 31.7 5.06± 0.37 4.7 1.4 0.056
070306 1.50 2.33± 0.10 3.60± 0.05 0.9 15.8 0.32b 1.1 0.2 > 0.022
091208B 1.06 18.6± 1.1 9.70± 0.21 0.5 19.9 0.36± 0.07 6.9 0.8 0.005

Note. — Name and redshift (z); magnetic field (B) and spin period (P ) of the magnetar, parameter that accounts
for our ignorance about the microphysical parameters and on the density profile of the ambient medium (k′), shallow
decay onset rest-frame time (t◦), initial energy of the forward shock (E◦); minimum bolometric accretion luminosity
necessary to penetrate the centrifugal barrier (Lmin) and bolometric accretion luminosity just after the onset of the
centrifugal barrier (L(rm)), calculated with the best-fitting parameters B and P , mass accreted during the prompt
emission (Macc).
a These GRBs do not allow to perform the fit of the late-time X–ray emission with the model in Eq. A3. We therefore
assumed as B and P the median values of their distributions, and calculated the luminosities accordingly.
b Not a free parameter.

TABLE 3
Best–fitting values of the plateau phase for the GRBs without

precursors (superscript “no-p”) in the BAT6 sample.

Name z Bno−p P no−p k′no−p tno−p
◦ Eno−p

◦

(1015 G) (ms) (s) (1050 erg)

060306 1.55 9.40± 0.90 7.30 ± 0.20 0.9 31.6 0.63± 0.09
060814 1.92 2.87± 0.10 3.79 ± 0.04 0.9 316.2 2.22± 0.27
061021 0.35 16.97 ± 0.48 32.21± 2.90 0.5 316.2 0.02± 0.01
080430 0.77 5.06± 0.21 13.42± 0.21 0.9 3.2 0.04± 0.01
080607 3.04 10.59 ± 0.57 3.61 ± 0.10 0.9 100.0 5.71± 0.22
081007 0.53 12.72 ± 0.77 23.58± 0.50 0.9 100.0 0.06± 0.01
081203A 2.10 19.16 ± 0.69 5.21 ± 0.10 0.9 31.6 5.75± 0.30
081221 2.26 7.68± 0.25 2.20 ± 0.01 0.9 19.9 30.13 ± 1.73
091020 1.71 12.54 ± 0.36 6.64 ± 0.07 0.7 31.7 2.18± 0.05
100621A 0.54 2.95± 0.11 6.92 ± 0.01 0.7 100.0 0.74± 0.03

Note. — Name and redshift (z); magnetic field (B) and spin period (P ) of
the magnetar, parameter that accounts for our ignorance about the microphysical
parameters and on the density profile of the ambient medium (k′), shallow decay
onset rest-frame time (t◦), initial energy of the forward shock (E◦).

GRB 050318 and GRB 061007, since it was not possible
to estimate B and P from the late X–ray emission (GRB
050318 has an incomplete light curve, while GRB 061007
has a simple power-law decay), we assumed for B and P
the median values obtained for GRBs with precursors
B = 4.00× 1015 G and P = 3.09 ms.
For a direct comparison with the prompt emission as

observed by BAT (see Sect. 2), we computed the corre-
sponding observed flux from Lmin: fmin = KLmin

(fb/εr)4πD2
L
(z)

,

where DL(z) is the luminosity distance at redshift z and
K is a K–correction to account for the limited energy
band observed by BAT7. The results are displayed in
Table 1: the main event peak flux is always well above
fmin, as well as most of the precursor(s) peak flux(es).
In the worst cases, the precursor peak flux is compara-

7 for those GRBs with measured Epk we calculated the fraction
of energy emitted in the observed 15 − 150 keV with respect to
the bolometric rest-frame 1−104 keV, while for the other cases we
assumed this fraction to be 0.5.

ble to fmin. Indeed, the smallest Lmin is found for GRB
070306, that has two well separated precursors. In this
case, weaker centrifugal forces allow for multiple onsets
of accretion episodes.
We estimated also the total amount of mass accreted

during the prompt emission (precursor(s) plus main
emission) from the total bolometric prompt emission en-
ergy, corrected for the same collimation factor: Eγ,j =
(GMNS/RNS)Macc (see Table 2; for Eγ,iso we refer to Ta-
ble 1 in Nava et al. 2012). The largest amount of mass
accreted corresponds to GRB 061007, that indeed has
one among the largest Eγ,iso in the BAT6 sample (Nava
et al. 2012).
The values we derived depend on our assup-

tion for the ratio (fb/εr). However, a simple scaling
exists that allows to derive all the parameters for differ-
ent collimation angles and efficiencies, up to the isotropic
case. In fact, the isotropic spindown luminosity is Li,j =
(fb/εr)Li,iso, which implies B2

j /P
4
j = (fb/εr)B2

iso/P
4
iso.

At the same time, the spindown timescale is not in-

➪
a ~ B2/P2

Li ~ B2/P4

B AND P FROM THE LATE X-RAY EMISSION

Dall’Osso et al. 2011
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Wang, X.-Y. & Mészáros, P. 2007, Astrophys. J., 670, 1247
Zhang, B., Fan, Y. Z., Dyks, J., et al. 2006, Astrophys. J., 642,

354
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APPENDIX

A. LATE–TIME X–RAY EMISSION AND THE ESTIMATE
OF THE PARAMETERS OF THE MAGNETAR

The observation of a flattening in the X–ray light
curve (plateau) in a large fraction of GRBs (46% in the
BAT6 sample) can be explained as an injection of en-
ergy into the forward shock (the GRB afterglow, Zhang
et al. 2006). This fraction is even larger (80% in the
BAT6 sample) if we include also those GRBs display-
ing a shallow decay phase without the initial steep decay
(Bernardini et al. 2012; D’Avanzo et al. 2012). A natural
source for this energy is the power emitted by a spinning–
down newly born magnetar (Dai & Lu 1998; Zhang &
Mészáros 2001; Corsi & Mészáros 2009; Dall’Osso et al.
2011). This proposal has been successfully tested both
for long (Lyons et al. 2010; Dall’Osso et al. 2011; Bernar-
dini et al. 2012) and short(Rowlinson et al. 2013) GRBs.
In particular, the plateau luminosity and its temporal
duration are directly related to the spin–down luminos-
ity and timescale, and, thus, to the magnetic field (B)
and the spin period (P ) of the magnetar. The analysis

of the plateau phase in the X–ray light curves provides a
direct estimate of these parameters.
We refer to the model proposed by Dall’Osso et al.

(2011), that calculated analytically the contribution to
the forward shock of the power emitted by a millisecond
spinning, ultramagnetized neutron star at time t as:

dE(t)

dt
= Lsd(t)− k′

E(t)

t
=

Li

(1 + at)2
− k′

E(t)

t
, (A1)

where Li = IB2R6/(6Ic3P 4) ∝ B2/P 4 is the initial spin-
down luminosity (I is the moment of inertia, R the ra-
dius of the magnetar6, c the speed of light), a = 1/tb2 =
2B2R6/(6Ic3P 2) ∝ B2/P 2 is the inverse of the spin-
down timescale tb2, E the forward shock energy, and k′

is a parameter that accounts for our ignorance about the
microphysical parameters and on the density profile of
the ambient medium (in general 0 < k′ < 1). A solution
of this equation is:

E(t) =
Li

tk′

∫ t

t◦

tk
′

(1 + at)2
+ E◦

(

t◦
t

)k′

, (A2)

6 Here and in what follows we assume for the mass of the mag-
netar M = 1.4M! and for the radius R = 106 cm.
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PREDICTIONS ABOUT THE LUMINOSITY FOR THE PROMPT 

EMISSION...

peak luminosities of both precursor and main 
event are above Lmin
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peak luminosity of the post-cursor is above Lmin

... AND THE POST-CURSORS!!

Accretion
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GRB 130427A: the “ordinary monster”
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A magnetar powering the ordinary monster GRB 130427A? 3

Figure 1. X–ray and optical light curves of GRB 130427A (panel A). Luminosity lines k–corrected in the 0.3− 10 keV observed energy
band are compared to the prompt emission (black points), that is above the estimate for Lmin. The gray areas mark the 1σ region
around L(rm) and Lmin. The red solid line marks the best fit to the afterglow in the 0.3 − 10 keV energy band (green points), while
the pink dashed line is the model luminosity k-corrected in the optical band (r’ filter) compared to observations (blue points). The host
galaxy contribution has been subtracted. The three different components in the X–ray afterglow emission (panel B): the initial steep
decay (green dash–dotted line), the forward shock emission (FS, blue dashed line) and the contribution from the wind of the magnetar
(Magnetar, red solid line). The end of the accretion process corresponds to the moment when the accretion power (the green dash–dotted
line) falls below the luminosity at the light cylinder Llc. From this time on, the magnetar start to contribute to the afterglow emission
with its spin–down power (red solid line). After tb,RF = 27.6 ks the slope of the FS changes due to the jet break. Mask–weighted BAT
count rate light curve of the first peak of GRB 130427A as it would appear at z = 2 (panel C).

tic luminosity corresponding to the onset of the propeller
phase Lmin. The accretion process ends when the mass in-
flow rate decreases enough for the magnetospheric radius to
reach the light cylinder (i.e. the radius at which the field
lines co–rotate with the neutron star at the speed of light).
Beyond this radius, i.e. when the accretion power falls be-
low the luminosity at the light cylinder radius Llc, the field
becomes radiative and expels much of the in–falling matter.
For larger distances, the GRB afterglow can also be influ-
enced by the magnetar, being re–energized by its spin–down
power (Dall’Osso et al. 2011).

If during the accretion phase the magnetar accretes
enough matter (as we proposed has occurred in GRB
061007, see Bernardini et al. 2013 for a discussion), then
the compact object collapses to a black hole (Piro & Ott
2011). The large isotropic energy of GRB 130427A should
be rescaled by the beaming factor fb = (1 − cos θj), that
can be inferred from the optical and X-rays observations.
The jet break at tb ∼ 37 ks (tb,RF = 27.6 ks rest frame)
corresponds to a collimation angle θj ∼ 3.4◦ (Maselli et al.
2013). Thus, the total bolometric kinetic energy is Ej =
(fb/η)Eγ,iso ∼ 2× 1052 erg (assuming a radiative efficiency

η = 0.11). This energy corresponds to an accreted mass
Macc,j ∼ Ej/c

2
∼ 0.02 M". The small amount of accreted

mass suggests that the magnetar likely did not collapse to a
black hole at the end of the prompt emission.

Consistently with the analysis of the X–ray and opti-
cal data reported in Maselli et al. (2013), we considered the
X–ray emission as the afterglow emission produced by the
forward shock with a jet break at tb,RF = 27.6 ks. The X-ray
emission is not a simple power-law but shows a curvature
that cannot be fully captured by a simple forward shock
emission (see Maselli et al. 2013 their fig. S7 and Perley
et al. 2013 their fig. 11 where the extrapolation backwards
of their forward shock model underestimates and overesti-
mates, respectively, the X-ray emission). We therefore pro-
pose that the magnetar contributes to the afterglow emis-
sion with its spin–down power. According to the scenario
outlined in Dall’Osso et al. (2011), the afterglow emission is
the sum of the forward shock emission (a power law) plus the
contribution of the wind of the magnetar, and this should

1 We adopt standard values of the cosmological parameters:
H◦ = 70 km s−1 Mpc−1, ΩM = 0.27, and ΩΛ = 0.73.

c© 2013 RAS, MNRAS 000, 1–5

Bernardini et al. 2014

B= 1016 G
P= 24.2 ms

Recipe for X-ray emission:
✦ forward shock emission + jet break
✦ steep decay (prompt emission)
✦ wind of the magnetar
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✦ Late X-ray emission (~ 80% LGRBs and ~ 50% SGRBs) 
powered by the spin-down of the Magnetar

✦ EE (~ 15% SGRBs) from Magnetar, either spin-down 
or propeller

✦ Precursor properties (~15% of LGRBs) explained if 
central engine is an accretion-powered Magnetar:

➡ emission <-> accretion power

➡ quiescence <-> propeller phase
✦ Post-cursor emission (aka giant flares) produced by the 

same mechanism (but softer spectrum!!)
✦ Potentially larger fraction of GRBs originates from 

Magnetars

CONCLUSIONS - I
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Can magnetars power all GRBs?
Total isotropic bolometric energy

Long
Short

Eiso

✦ Eiso proxy of Ekin

➡ SGRBs ok
➡ LGRBs often above limit

Margutti et al., 2013
Mazzali et al., 2014
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✦ Eiso proxy of Ekin

➡ SGRBs ok
➡ LGRBs often above limit
✦ true Eγ < Eiso due to
collimation
✦ accretion: further energy 

supplier

Can magnetars power all GRBs?
Total isotropic bolometric energy

Long
Short

Eiso

Margutti et al., 2013
Mazzali et al., 2014
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Can magnetars power all GRBs?
Total isotropic bolometric energy

Long
Short

Eiso

✦ sufficient to energise the 
accompanying SN

✦ Eiso proxy of Ekin

➡ SGRBs ok
➡ LGRBs often above limit
✦ true Eγ < Eiso due to
collimation
✦ accretion: further energy 

supplier

4 P.A. Mazzali et al.

Figure 1. Mutual dependences of the γ-ray energies emitted in the prompt GRB and XRF events, the isotropic kinetic energies of
the associated SNe, Ek, and the energies inferred from radio observations Eradio. Note that in (a) we have arbitrarily lowered the Ekof
SN 2012bz from 4× 1052 to 3.5× 1052 erg, to avoid overlap with SN 2003dh. In (a) and (c) when an estimate of the opening angle of the
GRB jet exists, isotropic-equivalent energies Eisoare shown as open circles, and connected with dashed lines to the corresponding values
of the collimation-corrected energies Eγ , shown as filled circles. Black symbols are GRBs and blue symbols are XRFs.

mation of pulsar wind nebulae such as the Crab nebula) can
burrow its way out of the star. A very small fraction of the
total energy is seen to emerge in the relativistic jet. If a large
fraction of the magnetar energy can be transferred to the
progenitor star, mostly near the jet axis (Bucciantini et al.
2009), it can be added to the SN energy. The energy de-
posited also contributes to increasing the isotropic compo-
nent of the SN Ek (Mazzali et al. 2006b). The SN can take
on an increasingly aspherical shape the higher the energy
contribution from the magnetar (GRB/SNe are more as-
pherical than XRF/SNe, Mazzali et al. 2007).

In this scenario, 56Ni may be produced as the expanding
magnetar wind shocks the inner star. If this happens quasi-
spherically, before the star expands too much, sufficient ma-
terial can be shocked to produce the several 0.1M! of 56Ni in
an almost spherical distribution required by GRB/SN light
curves (Maeda et al. 2003). The collimated magnetic wind
may produce some more 56Ni at high velocities, as also re-
quired by the rapid rise of GRB/SN light curves. The late-
time deposition of magnetar energy may also contribute to
the SN light curve, along with 56Ni. Late-time spectra of
more GRB/SNe would be necessary to clarify how much
56Ni is actually produced through the observation of emis-
sion lines of Fe. Presently this information is only available
for the nearest event, SN1998bw (Mazzali et al. 2001).

The range of GRB prompt emission energy could be
produced by interaction of the jet as it propagates through
the stellar envelope. A range of several orders of magnitude
in Eγ may be possible, since the jet may be slowed down
to variable degrees by the development of instabilities or
by interaction with extended outer layers of the star. Small
amounts of baryons mixed into the jet can “pollute” it and
reduce its γ-ray luminosity. An extended envelope may even
block the jet altogether (Mazzali et al. 2008).

Magnetars have been proposed to energise X-ray

Flashes (XRF) and their associated SNe Ic (Mazzali et al.
2006b). XRF/SNe have less extreme properties than
GRB/SNe, in particular they have smaller Ek (a few
1051 erg), luminosities [M(56Ni)∼ 0.2M!, only marginally
larger than in ordinary core-collapse SNe], and progenitor
masses (∼ 20M!, Mazzali et al. 2006b). They are less as-
pherical than GRB/SNe (Mazzali et al. 2007). They may
be the result of lower-spin magnetars.

The progenitors of GRB/SNe are thought to be stars of
MZAMS ∼ 30−50M!. If GRB/SNe are also powered by mag-
netars then at least some of these stars also collapse to NS.1

Since GRBs and XRFs exhibit a continuum of properties,
this picture reconciles their appearance with their origin as
a single mechanism. Indeed, Burrows et al. (2007) find that
jets are always produced when a proto-NS is formed, if the
magnetic field is very high.

Direct collapse to a BH may not necessarily lead to
a luminous SN. The 56Ni produced by the disk wind
(MacFadyen & Woosley 1999) could be highly variable and
may accrete into the BH, in the spirit of the initial proposal
of a “failed SN” (Woosley 1993). This may be the case of
the 2 low-redshift GRBs, 060614 and 060505, which showed
no SN down to M(56Ni) ∼ 0.01M! (Della Valle et al. 2006;
Fynbo et al. 2006; Gal-Yam et al. 2006; Ofek et al. 2007).
Fallback of 56Ni onto the BH is one possibility (Moriya et al.
2010). On the other hand, both of these GRBs have Eγ well
below the magnetar limit.

Magnetars have also been proposed as the energy source
for GRBs (Thompson et al. 2004), for GRB/SNe and lu-

1 Since estimates of the mass of GRB/SN progenitors (e.g.
Mazzali et al. 2013) are based on removing a BH remnant of typ-
ically 3M!, if the remnant is a NS instead masses may have to
be revised downwards slightly.

c© 2014 RAS, MNRAS 000, 1–6
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Figure 1. Mutual dependences of the γ-ray energies emitted in the prompt GRB and XRF events, the isotropic kinetic energies of
the associated SNe, Ek, and the energies inferred from radio observations Eradio. Note that in (a) we have arbitrarily lowered the Ekof
SN 2012bz from 4× 1052 to 3.5× 1052 erg, to avoid overlap with SN 2003dh. In (a) and (c) when an estimate of the opening angle of the
GRB jet exists, isotropic-equivalent energies Eisoare shown as open circles, and connected with dashed lines to the corresponding values
of the collimation-corrected energies Eγ , shown as filled circles. Black symbols are GRBs and blue symbols are XRFs.

mation of pulsar wind nebulae such as the Crab nebula) can
burrow its way out of the star. A very small fraction of the
total energy is seen to emerge in the relativistic jet. If a large
fraction of the magnetar energy can be transferred to the
progenitor star, mostly near the jet axis (Bucciantini et al.
2009), it can be added to the SN energy. The energy de-
posited also contributes to increasing the isotropic compo-
nent of the SN Ek (Mazzali et al. 2006b). The SN can take
on an increasingly aspherical shape the higher the energy
contribution from the magnetar (GRB/SNe are more as-
pherical than XRF/SNe, Mazzali et al. 2007).

In this scenario, 56Ni may be produced as the expanding
magnetar wind shocks the inner star. If this happens quasi-
spherically, before the star expands too much, sufficient ma-
terial can be shocked to produce the several 0.1M! of 56Ni in
an almost spherical distribution required by GRB/SN light
curves (Maeda et al. 2003). The collimated magnetic wind
may produce some more 56Ni at high velocities, as also re-
quired by the rapid rise of GRB/SN light curves. The late-
time deposition of magnetar energy may also contribute to
the SN light curve, along with 56Ni. Late-time spectra of
more GRB/SNe would be necessary to clarify how much
56Ni is actually produced through the observation of emis-
sion lines of Fe. Presently this information is only available
for the nearest event, SN1998bw (Mazzali et al. 2001).

The range of GRB prompt emission energy could be
produced by interaction of the jet as it propagates through
the stellar envelope. A range of several orders of magnitude
in Eγ may be possible, since the jet may be slowed down
to variable degrees by the development of instabilities or
by interaction with extended outer layers of the star. Small
amounts of baryons mixed into the jet can “pollute” it and
reduce its γ-ray luminosity. An extended envelope may even
block the jet altogether (Mazzali et al. 2008).

Magnetars have been proposed to energise X-ray

Flashes (XRF) and their associated SNe Ic (Mazzali et al.
2006b). XRF/SNe have less extreme properties than
GRB/SNe, in particular they have smaller Ek (a few
1051 erg), luminosities [M(56Ni)∼ 0.2M!, only marginally
larger than in ordinary core-collapse SNe], and progenitor
masses (∼ 20M!, Mazzali et al. 2006b). They are less as-
pherical than GRB/SNe (Mazzali et al. 2007). They may
be the result of lower-spin magnetars.

The progenitors of GRB/SNe are thought to be stars of
MZAMS ∼ 30−50M!. If GRB/SNe are also powered by mag-
netars then at least some of these stars also collapse to NS.1

Since GRBs and XRFs exhibit a continuum of properties,
this picture reconciles their appearance with their origin as
a single mechanism. Indeed, Burrows et al. (2007) find that
jets are always produced when a proto-NS is formed, if the
magnetic field is very high.

Direct collapse to a BH may not necessarily lead to
a luminous SN. The 56Ni produced by the disk wind
(MacFadyen & Woosley 1999) could be highly variable and
may accrete into the BH, in the spirit of the initial proposal
of a “failed SN” (Woosley 1993). This may be the case of
the 2 low-redshift GRBs, 060614 and 060505, which showed
no SN down to M(56Ni) ∼ 0.01M! (Della Valle et al. 2006;
Fynbo et al. 2006; Gal-Yam et al. 2006; Ofek et al. 2007).
Fallback of 56Ni onto the BH is one possibility (Moriya et al.
2010). On the other hand, both of these GRBs have Eγ well
below the magnetar limit.

Magnetars have also been proposed as the energy source
for GRBs (Thompson et al. 2004), for GRB/SNe and lu-

1 Since estimates of the mass of GRB/SN progenitors (e.g.
Mazzali et al. 2013) are based on removing a BH remnant of typ-
ically 3M!, if the remnant is a NS instead masses may have to
be revised downwards slightly.
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Possible solution: magnetars + BHs
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CONCLUSIONS - II
✦ Observations point towards magnetars as plausible 

candidates as GRB central engines
✦ Are all GRBs powered by magnetars? likely No! but still 

the majority are consistent with being powered by 
magnetars

✦ A lot of effort (observational, theoretical) still need to be 
done

✦ Maybe GW will tell... at least for SGRBs! 
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GW emission from proto-magnetars

GRB afterglow plateaus and Gravitational Waves 7

Fig. 2.— NS evolution along a Riemann-S sequence with param-
eters (C̄, n, M, R0, Bp,0) = (−0.41, 1, 1.4 M!, 20 km, 1014 G). Up-
per panel: Rate of energy loss in units of 1045 ergs/s, when both
magnetic dipole losses (red-dashed line) and GW losses (black-
solid line) are taken into account in the magnetar’s spin-down
law. For reference, we also plot the rate of energy loss in the
case only GW emission is considered (black-dash-dotted line), as
in Lai & Shapiro (1995). Lower panel: absolute value of the sur-
face fluid particles angular frequency divided by a factor of π (i.e.
|Ωeff |/π), when both magnetic dipole and GW losses are consid-
ered (black-solid line). For reference, we also plot the same quan-
tity when only GW losses are taken into account in the magne-
tar’s spin-down law (black-dash-dotted line), as in Lai & Shapiro
(1995). Note that the vertical axis in the lower panel is a linear
scale: between 102 s and ∼ 103 s, Ωeff/π changes from ∼ 800 Hz
to ∼ 750 Hz, i.e. less than ∼ 10% of its initial value. Thus, be-
tween 102 s and 103 s the power-law approximation to dipole losses
is Ldip ∝ T−0.11, so that q ∼ 0 can be assumed for T ! 103 s.
(See the electronic version for colours).

The waveform of the GW signal emitted in as-
sociation with the afterglow plateau is computed as
(Lai & Shapiro 1995):

h+ = −
h(t)

2
cosΦ(1 + cos2 θ) h× = −h(t) sinΦ cos θ

(13)

where θ is the angle between the line of sight and the
rotation axis of the star, Φ = 2

∫ t
t0

Ωt is twice the orbital
phase, and

h(t) =

√(
2c3d2Ω2

5G

)−1

|LGW | =
4GΩ2

c4d
Iε (14)

where d is the distance to the source, LGW and Ω are
shown in Fig. 2 (upper panel, black-solid line) and Fig. 3
(lower panel, black solid line), respectively. The resulting
GW signal is quasi-periodic, with frequency f = Ω/π.

To estimate the GW signal detectability, we proceed
as follows. For broad-band interferometers such as LIGO
and VIRGO, the best signal-to-noise ratio is obtained by
applying a matched filtering technique to the data, when
a waveform template is available. In such a case,

ρ2 = 4

∫ +∞

0

(F 2
+|h̃+(f, θ)|2 + F 2

×|h̃×(f, θ)|2)
Sh(f)

df (15)

Fig. 3.— Upper panel: characteristic GW amplitude hc at
d = 100 Mpc, with dipole plus GW (black-solid line) and only GW
(black-dash-dotted line, see also Lai & Shapiro 1995) losses being
considered. A typical fit to the sensitivity expected for advanced
detectors (purple-dashed line, see e.g. Cutler & Flanagan 1994;
Owen et al. 1998), Virgo nominal sensitivity (blue-dotted line),
and the advanced Virgo sensitivity optimized for binary searches
(blue-dash-dot-dot-dotted line, Acernese et al. 2008), are also
shown. Lower panel: evolution of the GW signal frequency, with
dipole plus GW (black-solid line) and only GW (black-dash-dotted
line) losses being considered in the NS spin down. (See the elec-
tronic version for colours).

where h̃ is a Fourier transform; Sh(f) is the power
spectral density of the detector noise; F+, F× are
the beam pattern functions (0 < F 2

+, F 2
× < 1 de-

pending on the source position in the sky, see e.g.
Thorne 1987; Flanagan & Hughes 1998). For the sig-
nal in Eq. (13), in the stationary phase approximation
(Thorne 1987; Cutler & Flanagan 1994; Owen et al.
1998; Owen & Lindblom 2002),

ρ2 =

∫ +∞

0

h2(t)(dt/df)(F 2
+(1 + cos2 θ)2/4 + F 2

× cos2 θ)

Sh(f)
df.

(16)
Since we expect to be observing the GRB on-axis, θ "

0. In case of optimal orientation,

ρ2
max =

∫ +∞

0

f2h2(t)(dt/df)

fSh(f)
d(ln f) =

=

∫ +∞

0

(
hc

hrms

)2

d(ln f), (17)

being hc = fh(t)
√

dt/df the characteristic ampli-

tude, and hrms =
√

fSh(f). In the upper panel of
Fig. 3, we compare hc computed for a GRB at d =
100 Mpc, with the hrms expected for the advanced de-
tectors (Acernese et al. 2008; Cutler & Flanagan 1994;
Owen et al. 1998), for which ρmax ! 5 at d "
100 Mpc, or d " 150 Mpc if we make the assump-
tion that knowledge of the GRB trigger time reduces
the detection threshold, of a factor which as a rule-of-
thumb we take equal to 1.5 (Kochanek & Piran 1993;
Cutler & Thorne 2002). Higher confidence in an even-

✦ Magnetars source of GW if they spin fast enough to excite 
dynamical (ß=0.27) or secular instabilities (ß>0.14)

✦ onset of dynamical instabilities at magnetar birth, more 
likely thanks to spin-up induced by accretion

✦ signal from secular instabilities detectable over long 
timescales (~ hours)

✦ signal from the accompanying SN (10-11<EGW<10-8 Msunc2)

Corsi & Meszaros, 2009
Piro & Ott, 2011
Ott et al., 2013
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explore the physics of neutrino-cooled accretion columns onto
magnetars.

2. FALLBACK VERSUS OUTFLOW

Before we investigate the effects of fallback accretion, it is
pertinent to discuss when fallback is expected. Although these
arguments are strictly applicable for only one dimension, and we
expect a multi-dimensional flow to provide more opportunities
for fallback, this gives some intuition about how fallback
depends on the accretion rate, spin, and magnetic field strength.

As the rapidly rotating, newly born magnetar spins down, it
goes through stages in which it emits energy in dipole spin-down
radiation and a neutrino-driven, magnetically dominated wind
(Thompson et al. 2004), both of which may hinder accretion.
For a magnetar with a dipole magnetic moment µ and spin Ω,
the spin-down luminosity is

Ldip = µ2Ω4

6c3
= 9.6 × 1048µ2

33P
−4
1 erg s−1, (1)

where µ33 = µ/1033 G cm3, as is appropriate for a neutron
star with a 1015 G magnetic field, and P = 2π/Ω = 1P1 ms.
Assuming this luminosity is carried by a relativistic wind, the
associated pressure at a radius r is pdip = Ldip/4πcr2. Fallback
accretion exerts an inward ram pressure, and for the case of
spherically symmetric accretion at a rate Ṁ onto a mass M, this
is given by

pram = Ṁ

8π

(
2GM
r5

)1/2

. (2)

Since pdip ∝ r−2 and pram ∝ r−5/2, the spin-down luminosity
always wins at sufficiently large radii. If the fallback accretion
is already proceeding and then the spin-down luminosity is
to disrupt this accretion flow, we can ask what is the critical
accretion rate above which the fallback ram pressure dominates
at the magnetar radius R. This gives

Ṁdip,crit = µ2Ω4

3c4

(
R

2GM

)1/2

= 1.8 × 10−5µ2
33P

−4
1 M

−1/2
1.4 R

1/2
12 M$ s−1, (3)

where M1.4 = M/1.4 M$ and R12 = R/12 km. This accretion
rate is well exceeded in all cases we consider.

During the Kelvin–Helmholtz cooling epoch for the newly
born magnetar, deleptonization and thermal neutrino losses
create a neutrino-driven wind that is magnetically flung by the
magnetar’s dipole field. For a mass-loss rate Ṁν , the luminosity
that goes into this process is (Thompson et al. 2004)

Lν =
(

µ2Ω4

Ṁν

)2/5

Ṁν

= 4.5 × 1050µ4/5P
−8/5
1 Ṁ

3/5
ν,−3 erg s−1, (4)

where Ṁν,−3 = Ṁν/10−3 M$ s−1. Repeating the above analysis
of assuming this is a relativistic wind and comparing to the ram
pressure at the magnetar surface, we derive a critical accretion
rate

Ṁν,crit = 2Ṁν

c

(
R

2GM

)1/2 (
µ2Ω4

Ṁν

)2/5

= 8.6 × 10−4µ
4/5
33 P

−8/5
1 Ṁ

3/5
ν,−3M

−1/2
1.4 R

1/2
12 M$ s−1.

(5)

Figure 1. Critical accretion rate, above which fallback dominates, as a function
of the spin period. We consider two physical processes for inhibiting the fallback:
dipole spin-down radiation (denoted by Mdip,crit and given by Equation (3)) and
a neutrino-driven wind (denoted by Mν,crit and given by Equation (5)). In each
case, we vary the radius by a factor of 100 (as shown by the shaded regions) to
represent uncertainty in the radius at which the accretion flow first comes into
contact with this outgoing energy.

This limit is a little more stringent than the one derived for dipole
spin down (Equation (3)). Indeed, some of the lower fallback
rates we consider are exceeded by this. When Thompson et al.
(2004) follow the spin-down from a neutrino-driven wind, they
find modest amounts of spin-down (an increase in the spin period
of ∼5 ms) even for the most extreme conditions. If there is a
phase of spin-down from this, it just amounts to different initial
conditions from the perspective of our study. Thus, we neglect
these effects in our time-dependent spin calculations.

In Figure 1, we summarize the parameter space in which
we expect fallback to be important. This shows that the
fallback ram pressure dominates for accretion rates above
∼10−5 to 10−2 M$ s−1, depending on the process that is inhibit-
ing the fallback. Comparing with the fallback found in numerical
studies by MacFadyen et al. (2001) or Zhang et al. (2008), this
implies a massive progenitor (in the range of ∼20–40 M$ for
solar metallicity and the progenitor models of Woosley et al.
2002) and a low explosion energy (higher explosion energies
lead to weaker fallback; Dessart et al. 2010). Although it is not
well known how progenitor mass and explosion energy corre-
late with magnetar creation, even with these limitations, there is
a wide parameter space where fallback onto a magnetar seems
inevitable.

Even in cases where these scalings appear to argue that
fallback is inhibited, it is still worthwhile to investigate fallback
on account that (1) the neutrino-driven wind only lasts ∼10 s
while the fallback occurs on a !1000 s timescale (reflecting the
dynamical time of the progenitor) and (2) the neutrino-driven
wind is highly asymmetric. Therefore, even if the wind excavates
some region of the progenitor, there is ample opportunity
for fallback at other angles. We thus expect that in higher
dimensions the strength of fallback is typically greater than
what we assume for our one-dimensional arguments.

2

Critical accretion rate for fallback

Piro & Ott 2011
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c

(
R

2GM

)1/2 (
µ2Ω4

Ṁν
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Figure 1. Critical accretion rate, above which fallback dominates, as a function
of the spin period. We consider two physical processes for inhibiting the fallback:
dipole spin-down radiation (denoted by Mdip,crit and given by Equation (3)) and
a neutrino-driven wind (denoted by Mν,crit and given by Equation (5)). In each
case, we vary the radius by a factor of 100 (as shown by the shaded regions) to
represent uncertainty in the radius at which the accretion flow first comes into
contact with this outgoing energy.

This limit is a little more stringent than the one derived for dipole
spin down (Equation (3)). Indeed, some of the lower fallback
rates we consider are exceeded by this. When Thompson et al.
(2004) follow the spin-down from a neutrino-driven wind, they
find modest amounts of spin-down (an increase in the spin period
of ∼5 ms) even for the most extreme conditions. If there is a
phase of spin-down from this, it just amounts to different initial
conditions from the perspective of our study. Thus, we neglect
these effects in our time-dependent spin calculations.

In Figure 1, we summarize the parameter space in which
we expect fallback to be important. This shows that the
fallback ram pressure dominates for accretion rates above
∼10−5 to 10−2 M$ s−1, depending on the process that is inhibit-
ing the fallback. Comparing with the fallback found in numerical
studies by MacFadyen et al. (2001) or Zhang et al. (2008), this
implies a massive progenitor (in the range of ∼20–40 M$ for
solar metallicity and the progenitor models of Woosley et al.
2002) and a low explosion energy (higher explosion energies
lead to weaker fallback; Dessart et al. 2010). Although it is not
well known how progenitor mass and explosion energy corre-
late with magnetar creation, even with these limitations, there is
a wide parameter space where fallback onto a magnetar seems
inevitable.

Even in cases where these scalings appear to argue that
fallback is inhibited, it is still worthwhile to investigate fallback
on account that (1) the neutrino-driven wind only lasts ∼10 s
while the fallback occurs on a !1000 s timescale (reflecting the
dynamical time of the progenitor) and (2) the neutrino-driven
wind is highly asymmetric. Therefore, even if the wind excavates
some region of the progenitor, there is ample opportunity
for fallback at other angles. We thus expect that in higher
dimensions the strength of fallback is typically greater than
what we assume for our one-dimensional arguments.
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explore the physics of neutrino-cooled accretion columns onto
magnetars.

2. FALLBACK VERSUS OUTFLOW

Before we investigate the effects of fallback accretion, it is
pertinent to discuss when fallback is expected. Although these
arguments are strictly applicable for only one dimension, and we
expect a multi-dimensional flow to provide more opportunities
for fallback, this gives some intuition about how fallback
depends on the accretion rate, spin, and magnetic field strength.

As the rapidly rotating, newly born magnetar spins down, it
goes through stages in which it emits energy in dipole spin-down
radiation and a neutrino-driven, magnetically dominated wind
(Thompson et al. 2004), both of which may hinder accretion.
For a magnetar with a dipole magnetic moment µ and spin Ω,
the spin-down luminosity is
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Assuming this luminosity is carried by a relativistic wind, the
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is given by
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is already proceeding and then the spin-down luminosity is
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where M1.4 = M/1.4 M$ and R12 = R/12 km. This accretion
rate is well exceeded in all cases we consider.

During the Kelvin–Helmholtz cooling epoch for the newly
born magnetar, deleptonization and thermal neutrino losses
create a neutrino-driven wind that is magnetically flung by the
magnetar’s dipole field. For a mass-loss rate Ṁν , the luminosity
that goes into this process is (Thompson et al. 2004)
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3/5
ν,−3M

−1/2
1.4 R

1/2
12 M$ s−1.

(5)

Figure 1. Critical accretion rate, above which fallback dominates, as a function
of the spin period. We consider two physical processes for inhibiting the fallback:
dipole spin-down radiation (denoted by Mdip,crit and given by Equation (3)) and
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represent uncertainty in the radius at which the accretion flow first comes into
contact with this outgoing energy.
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find modest amounts of spin-down (an increase in the spin period
of ∼5 ms) even for the most extreme conditions. If there is a
phase of spin-down from this, it just amounts to different initial
conditions from the perspective of our study. Thus, we neglect
these effects in our time-dependent spin calculations.
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This limit is a little more stringent than the one derived for dipole
spin down (Equation (3)). Indeed, some of the lower fallback
rates we consider are exceeded by this. When Thompson et al.
(2004) follow the spin-down from a neutrino-driven wind, they
find modest amounts of spin-down (an increase in the spin period
of ∼5 ms) even for the most extreme conditions. If there is a
phase of spin-down from this, it just amounts to different initial
conditions from the perspective of our study. Thus, we neglect
these effects in our time-dependent spin calculations.

In Figure 1, we summarize the parameter space in which
we expect fallback to be important. This shows that the
fallback ram pressure dominates for accretion rates above
∼10−5 to 10−2 M$ s−1, depending on the process that is inhibit-
ing the fallback. Comparing with the fallback found in numerical
studies by MacFadyen et al. (2001) or Zhang et al. (2008), this
implies a massive progenitor (in the range of ∼20–40 M$ for
solar metallicity and the progenitor models of Woosley et al.
2002) and a low explosion energy (higher explosion energies
lead to weaker fallback; Dessart et al. 2010). Although it is not
well known how progenitor mass and explosion energy corre-
late with magnetar creation, even with these limitations, there is
a wide parameter space where fallback onto a magnetar seems
inevitable.

Even in cases where these scalings appear to argue that
fallback is inhibited, it is still worthwhile to investigate fallback
on account that (1) the neutrino-driven wind only lasts ∼10 s
while the fallback occurs on a !1000 s timescale (reflecting the
dynamical time of the progenitor) and (2) the neutrino-driven
wind is highly asymmetric. Therefore, even if the wind excavates
some region of the progenitor, there is ample opportunity
for fallback at other angles. We thus expect that in higher
dimensions the strength of fallback is typically greater than
what we assume for our one-dimensional arguments.
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3. SPIN EVOLUTION DUE TO FALLBACK ACCRETION

3.1. Accretion versus Expulsion

The initial spin period of newly born neutron stars depends
on both the spin profile of the progenitor star and subsequent
processes that add, subtract, and redistribute angular momen-
tum. Fryer & Heger (2000) performed smoothed particle hydro-
dynamics simulations using a rotating progenitor model from
Heger et al. (2000) and estimated an initial protoneutron star
(PNS) spin period on the order of 100 ms. It is, however, not
clear how they defined the extent of the PNS (see discussion
in Ott et al. 2006). The subsequent cooling and contraction to
a radius of ∼12 km resulted in P0 ∼ 2 ms. Fryer & Warren
(2004) subsequently estimated neutron star spin periods by as-
suming that the angular momentum of the inner 1 M" is con-
served as the PNS cools and contracts to a neutron star, find-
ing periods of ∼1–17 ms depending on the progenitor model.
Thompson et al. (2005) studied the action of viscous processes
in dissipating the strong rotational shear profile produced by
core collapse in a range of progenitors and for different ini-
tial iron core periods. They showed that for rapidly rotating
cores with postbounce periods of !4 ms, viscosity (presumably
due to magnetic torques via the magnetorotational instability or
magnetoconvection) spins down the rapidly rotating PNSs by a
factor of ∼2–3 in the early postbounce epoch. Ott et al. (2006)
systematically studied the connection between progenitors and
final neutron star spin, generally finding P0 ∼ 0.5–10 ms and
solid body rotation in the PNS core for progenitors with pre-
collapse periods !50 s. We therefore consider initial magnetar
spin periods in this range for our present study.

Subsequent to the initial spin period being set as described
above, the neutron star may be subject to fallback accretion.
Accretion comes under the strong influence of the star’s dipole
field at the nominal Alfvén radius rm = µ4/7(GM)−1/7Ṁ−2/7,
where µ is the dipole magnetic moment of the magnetar. For
typical magnetar parameters,

rm = 14µ
4/7
33 M

−1/7
1.4 Ṁ

−2/7
−2 km, (6)

where Ṁ−2 = Ṁ/10−2 M" s−1, and the prefactor to rm can vary
depending on the details of the interaction between the flow
and magnetic field (Ghosh & Lamb 1979; Arons 1986, 1993).
The other critical radius, set by the magnetar’s spin Ω, is the
corotation radius rc = (GM/Ω2)1/3,

rc = 17M
1/3
1.4 P

2/3
1 km. (7)

Roughly speaking, one expects that for rm < rc, material is
funneled by the magnetar’s dipole field before accreting onto
the magnetar’s surface, while when rm > rc, material must
spin at a super-Keplerian rate to come into corotation with the
magnetar and is thus expelled (the “propeller regime”; Illarionov
& Sunyaev 1975). Setting rm > rc gives a critical accretion rate

Ṁ < 6.0 × 10−3µ2
33M

−5/3
1.4 P

−7/3
1 M" s−1. (8)

Comparing to the 25 M" collapsar models of MacFadyen
et al. (2001), they find early-time accretion rates of
10−4 to 10−2 M" s−1 by just varying the injected explosion en-
ergy by (0.255–1.2) × 1051 erg. Whether a magnetar is in the
propeller regime or not is therefore very sensitive to how ener-
getic the supernova is.

This simplistic picture is not the complete story, as has been
detailed by a great many theoretical studies of accretion onto

magnetic stars (see, for example, Pringle & Rees 1972; Lynden-
Bell & Pringle 1974; Ghosh & Lamb 1979; Aly 1980; Wang
1987; Shu et al. 1994; Lovelace et al. 1995, 1999; Ikhsanov
2002; Rappaport et al. 2004; Ekşi et al. 2005; Kluzniak &
Rappaport 2007; D’Angelo & Spruit 2010). More recently,
numerical simulations have also been used to investigate this
problem (Hayashi et al. 1996; Goodson et al. 1997; Miller &
Stone 1997; Fendt & Elstner 2000; Matt et al. 2002; Romanova
et al. 2003, 2004, 2009). For our present work, we implement a
simple model largely based on that used by Ekşi et al. (2005), as
described below. Their prescription has the advantage of being
applicable and continuous over a wide range of parameters,
while capturing the main expected features of the propeller
regime.

In cases where rc > rm > R, the inflowing material is chan-
neled onto the magnetar poles where it shocks and neutrino
cools. We save a more detailed treatment of the physics of this
process for the Appendix, since it does not have a direct bearing
on our results for the time-dependent spin, which we consider
next.

3.2. Time-dependent Spin from Fallback Accretion

Given this picture of accretion and expulsion described above,
we solve for spin evolution under the influence of fallback
accretion by integrating the differential equation

I
dΩ
dt

= Ndip + Nacc, (9)

where I = 0.35MR2 is the moment of inertia (Lattimer &
Prakash 2001), and Ndip and Nacc are the torques from dipole
emission and accretion, respectively. As discussed in Section 2,
we ignore spin-down from neutrino-driven winds in
Equation (9). The dipole spin-down torque is given by

Ndip = −µ2Ω3

6c3
= −1.5 × 1045µ2

33P
−3
1 erg. (10)

We assume that the magnetar is rotating as a solid body, as is
likely the case within ∼1 s of collapse since the magnetorota-
tional instability (MRI; Thompson et al. 2005; Ott et al. 2006) or
low-T/|W | instabilities (Watts et al. 2005; Ott et al. 2005) will
limit differential rotation. When rm > R, material leaves the disk
with the specific angular momentum at a radius rm. Depending
on the relative positions of the Alfvén and corotation radii, this
can either spin up or spin down the magnetar, so we write the
torque as

Nacc = n(ω)(GMrm)1/2Ṁ if rm > R, (11)

where n(ω) is the dimensionless torque which depends on the
fastness parameter ω = Ω/(GM/r3

m)1/2 = (rm/rc)3/2. Ekşi et al.
(2005) discuss different ways in which n(ω) can be set, but for
simplicity we take n = 1 − ω. This has the advantage that the
torque goes to zero at the corotation radius, is continuous for all
ω, and goes negative when rm > rc, corresponding to the spin-
down which occurs during the propeller regime. As ω gets larger,
this prescription gives increasingly strong spin-down, consistent
with the more detailed simulations of Romanova et al. (2004).
When rm < R, we set the torque to

Nacc = (1 − Ω/ΩK) (GMR)1/2Ṁ if rm < R, (12)

where ΩK = (GM/R3)1/2. The prefactor is included to ensure
that torque is continuous for all values of rm. The disadvantage
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collapse periods !50 s. We therefore consider initial magnetar
spin periods in this range for our present study.

Subsequent to the initial spin period being set as described
above, the neutron star may be subject to fallback accretion.
Accretion comes under the strong influence of the star’s dipole
field at the nominal Alfvén radius rm = µ4/7(GM)−1/7Ṁ−2/7,
where µ is the dipole magnetic moment of the magnetar. For
typical magnetar parameters,

rm = 14µ
4/7
33 M

−1/7
1.4 Ṁ

−2/7
−2 km, (6)

where Ṁ−2 = Ṁ/10−2 M" s−1, and the prefactor to rm can vary
depending on the details of the interaction between the flow
and magnetic field (Ghosh & Lamb 1979; Arons 1986, 1993).
The other critical radius, set by the magnetar’s spin Ω, is the
corotation radius rc = (GM/Ω2)1/3,

rc = 17M
1/3
1.4 P

2/3
1 km. (7)

Roughly speaking, one expects that for rm < rc, material is
funneled by the magnetar’s dipole field before accreting onto
the magnetar’s surface, while when rm > rc, material must
spin at a super-Keplerian rate to come into corotation with the
magnetar and is thus expelled (the “propeller regime”; Illarionov
& Sunyaev 1975). Setting rm > rc gives a critical accretion rate

Ṁ < 6.0 × 10−3µ2
33M

−5/3
1.4 P

−7/3
1 M" s−1. (8)

Comparing to the 25 M" collapsar models of MacFadyen
et al. (2001), they find early-time accretion rates of
10−4 to 10−2 M" s−1 by just varying the injected explosion en-
ergy by (0.255–1.2) × 1051 erg. Whether a magnetar is in the
propeller regime or not is therefore very sensitive to how ener-
getic the supernova is.

This simplistic picture is not the complete story, as has been
detailed by a great many theoretical studies of accretion onto

magnetic stars (see, for example, Pringle & Rees 1972; Lynden-
Bell & Pringle 1974; Ghosh & Lamb 1979; Aly 1980; Wang
1987; Shu et al. 1994; Lovelace et al. 1995, 1999; Ikhsanov
2002; Rappaport et al. 2004; Ekşi et al. 2005; Kluzniak &
Rappaport 2007; D’Angelo & Spruit 2010). More recently,
numerical simulations have also been used to investigate this
problem (Hayashi et al. 1996; Goodson et al. 1997; Miller &
Stone 1997; Fendt & Elstner 2000; Matt et al. 2002; Romanova
et al. 2003, 2004, 2009). For our present work, we implement a
simple model largely based on that used by Ekşi et al. (2005), as
described below. Their prescription has the advantage of being
applicable and continuous over a wide range of parameters,
while capturing the main expected features of the propeller
regime.

In cases where rc > rm > R, the inflowing material is chan-
neled onto the magnetar poles where it shocks and neutrino
cools. We save a more detailed treatment of the physics of this
process for the Appendix, since it does not have a direct bearing
on our results for the time-dependent spin, which we consider
next.

3.2. Time-dependent Spin from Fallback Accretion

Given this picture of accretion and expulsion described above,
we solve for spin evolution under the influence of fallback
accretion by integrating the differential equation

I
dΩ
dt

= Ndip + Nacc, (9)

where I = 0.35MR2 is the moment of inertia (Lattimer &
Prakash 2001), and Ndip and Nacc are the torques from dipole
emission and accretion, respectively. As discussed in Section 2,
we ignore spin-down from neutrino-driven winds in
Equation (9). The dipole spin-down torque is given by

Ndip = −µ2Ω3

6c3
= −1.5 × 1045µ2

33P
−3
1 erg. (10)

We assume that the magnetar is rotating as a solid body, as is
likely the case within ∼1 s of collapse since the magnetorota-
tional instability (MRI; Thompson et al. 2005; Ott et al. 2006) or
low-T/|W | instabilities (Watts et al. 2005; Ott et al. 2005) will
limit differential rotation. When rm > R, material leaves the disk
with the specific angular momentum at a radius rm. Depending
on the relative positions of the Alfvén and corotation radii, this
can either spin up or spin down the magnetar, so we write the
torque as

Nacc = n(ω)(GMrm)1/2Ṁ if rm > R, (11)

where n(ω) is the dimensionless torque which depends on the
fastness parameter ω = Ω/(GM/r3

m)1/2 = (rm/rc)3/2. Ekşi et al.
(2005) discuss different ways in which n(ω) can be set, but for
simplicity we take n = 1 − ω. This has the advantage that the
torque goes to zero at the corotation radius, is continuous for all
ω, and goes negative when rm > rc, corresponding to the spin-
down which occurs during the propeller regime. As ω gets larger,
this prescription gives increasingly strong spin-down, consistent
with the more detailed simulations of Romanova et al. (2004).
When rm < R, we set the torque to

Nacc = (1 − Ω/ΩK) (GMR)1/2Ṁ if rm < R, (12)

where ΩK = (GM/R3)1/2. The prefactor is included to ensure
that torque is continuous for all values of rm. The disadvantage
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is that since the prefactor is !1, it will underpredict the amount
of torque, but this does not change our main conclusions, as we
discuss in Section 4.2.

As we integrate the spin in time, we keep track of the
magnetar’s rotation parameter, β ≡ T/|W |, where T = IΩ2/2.
We use the prescription given in Lattimer & Prakash (2001)
for |W |,

|W | ≈ 0.6Mc2 GM/Rc2

1 − 0.5(GM/Rc2)
. (13)

We keep R fixed even as M changes, which is roughly consistent
with most equations of state, except when M gets near its
maximum value (Lattimer & Prakash 2001). When β =
0.5, the neutron star is at breakup and cannot accept further
angular momentum. Even prior to this, dynamical bar-mode
instabilities occur for β > 0.27 (Chandrasekhar 1969), and
secular instabilities for β " 0.14, driven by gravitational
radiation reaction or viscosity (Lai & Shapiro 1995). Since the
dynamical bar-mode instability is guaranteed to radiate and/or
hydrodynamically readjust angular momentum, we set Nacc = 0
when β > 0.27. We ignore changes in spin due to the secular
instabilities since growth timescales are uncertain and may be
suppressed by competition between viscosity and gravitational
radiation reaction (Lai & Shapiro 1995).

We parameterize the fallback accretion rate to mimic the
results of MacFadyen et al. (2001) and Zhang et al. (2008). This
can roughly be broken into two parts. At early times it scales as

Ṁearly = η10−3t1/2 M$ s−1, (14)

where η ≈ 0.1–10 is a factor that accounts for different explosion
energies (a smaller η corresponds to a larger explosion energy),
and t is measured in seconds. The late-time accretion is roughly
independent of the explosion energy and is set to be

Ṁlate = 50t−5/3 M$ s−1. (15)

The accretion rate at any given time is found from combining
these two expressions,

Ṁ =
(
Ṁ−1

early + Ṁ−1
late

)−1
. (16)

The mass of the neutron star increases at a rate Ṁ when rm < rc

and is set fixed when rm > rc. For comparison, we also integrate
Ṁ for all values of rm to follow how much matter the magnetar
would have accreted if not for the propeller mechanism.

Equation (16) reflects fallback of the envelope, but most likely
this material must pass through a disk before finally accreting
onto the magnetar. To test this hypothesis and explore whether
this leads to a quantitative change of the accretion rate, we
built one-zone, α-disk models (similar to Metzger et al. 2008)
using the angular momentum profiles of the massive, rotating
progenitors of Woosley & Heger (2006) simulated with GR1D
(O’Connor & Ott 2010). Our general finding was that (1) there
is sufficient angular momentum to form a disk and (2) the disk is
nearly steady state, where the accretion rate onto the star differs
from the infall rate by no more than a factor of ∼5 (and this scales
with the α-viscosity, with a larger α resulting in higher accretion
rates), and (3) the radius of the disk is typically well outside of
the Alfvén radius. We therefore consider the mediation of the
disk to be degenerate with η and use the direct infall rates as
described above.

Figure 2. Spin evolution of a magnetar with B = 1015 G and an initial spin
period of P0 = 1 ms. We compare values of η = 0.1, 1, and 10, demonstrating
the strong effect early-time accretion can have. The top panel shows the time-
dependent accretion rate, the center panel shows the spin period, and the bottom
panel shows the fastness parameter ω, where ω > 1 corresponds to the propeller
regime and ω ! 1 corresponds to accretion.

In Figure 2, we compare integrations of Equation (9) for
values of η = 0.1, 1, and 10. The top panel shows the accretion
rate given by Equation (16). The middle panel plots the time-
dependent spin period. The bottom panel plots the fastness
parameter, which reflects whether or not the magnetar is in
the propeller regime. For η = 0.1, only 0.25 M$ is accreted out
of a potential amount of accretion of 1.55 M$, and for η = 1,
only 1.03 M$ is accreted out of a potential amount of 3.15 M$.
Therefore, both these cases are able to avoid becoming a black
hole via the propeller mechanism (assuming a maximum neutron
star mass of 2.5 M$). In contrast, the η = 10 case (which
corresponds to a lower-energy explosion) accretes 3.45 M$
out of 6.41 M$, which means it likely becomes a black hole.
Since the accretion rate is highest at early times, black hole
formation happens rather quickly during the runs, at ≈34 s and
≈46 s for maximum neutron star masses of 2.5 M$ and 3 M$,
respectively.

In each of these cases, the spin eventually reaches an
equilibrium value that simply tracks Ṁ with ω ≈ 1. Setting
rm = rc, we calculate an equilibrium spin period,

Peq = 2πµ6/7(GM)−5/7Ṁ−3/7

= 5.8µ
6/7
33 M

−5/7
1.4 Ṁ

−3/7
−4 ms, (17)

where Ṁ−4 = Ṁ/10−4 M$ s−1.

4. MAGNETAR VERSUS BLACK HOLE FORMATION

4.1. The Amount of Mass Accreted

The example models in the previous section demonstrate that
the amount of mass accreted by the magnetar depends strongly
on whether the propeller regime is reached. Therefore, whether
or not a magnetar eventually becomes a black hole depends on
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GRBs are cosmological and occur in galaxies 

 Fluence: 10–5 erg cm–2 
 Distance: <z>=2.1 ~ 1028 cm 

Energy:  ~ 1053 erg 
Like the energy emitted by 

our Galaxy in 10 years 


