Hyperonic Three-Body Forces \& Consequences for Neutron Stars

Isaac Vidaña

CFisUC, University of Coimbra

Annual NewCompStar Conference 2015
June $15^{\text {th }}-19^{\text {th }}$ 2015, Hotel Mercure Buda Budapest (Hungary)

In this talk I will ...

* Present NN Λ and NN Σ forces based on a two-meson exchange model
* Analyze the role of these forces in the solution of the hyperon puzzle

This study was part of the Ph.D. Thesis of Domenico Logoteta (University of Coimbra, September 2013)

Hyperons in Neutron Stars

Hyperons in NS considered by many authors since the pioneering work of Ambartsumyan \& Saakyan (1960)

Phenomenological approaches

\diamond Relativistic Mean Field Models: Glendenning 1985; Knorren et al. 1995; Shaffner-Bielich \& Mishustin 1996, Bonano \& Sedrakian 2012, ...
« Non-realtivistic potential model: Balberg \& Gal 1997
\diamond Quark-meson coupling model: Pal et al. 1999, ...
\diamond Chiral Effective Lagrangians: Hanauske et al., 2000
\triangleleft Density dependent hadron field models: Hofmann, Keil \& Lenske 2001

Microscopic approaches

\diamond Brueckner-Hartree-Fock theory: Baldo et al. 2000; I. V. et al. 2000, Schulze et al. 2006, I.V. et al. 2011, Burgio et al. 2011, Schulze \& Rijken 2011
¿ DBHF: Sammarruca (2009), Katayama \& Saito (2014)
$\triangleleft \mathrm{V}_{\text {low k }}$: Djapo, Schaefer \& Wambach, 2010

Hyperons are expected to appear in the core of neutron stars at $\rho \sim$ $(2-3) \rho_{0}$ when μ_{N} is large enough to make the conversion of N into Y energetically favorable.

$$
\begin{aligned}
& n+n \rightarrow n+\Lambda \\
& p+e^{-} \rightarrow \Lambda+v_{e^{-}} \\
& n+n \rightarrow p+\Sigma^{-} \\
& n+e^{-} \rightarrow \Sigma^{-}+v_{e^{-}}
\end{aligned}
$$

$$
\begin{gathered}
\mu_{\Sigma^{-}}=\mu_{n}+\mu_{e^{-}}-\mu_{v_{e^{-}}} \\
\mu_{\Lambda}=\mu_{n}
\end{gathered}
$$

Effect of Hyperons in the EoS and Mass of Neutron Stars

Relieve of Fermi pressure due to the appearance of hyperons \rightarrow
EoS softer \rightarrow reduction of the mass

Measured Neutron Star Masses (up to ~ 2006-2008)

(Lattimer \& Prakash 2007)

up to $\sim 2006-2008$ any valid EoS should predict

$$
M_{\max }[E o S]>1.4-1.5 M_{\odot}
$$

Hyperons in NS

(up to $\sim 2006-2008$)

(Lattimer \& Prakash 2007)

Phenomenological:

$\mathrm{M}_{\max }$ compatible with 1.4-1.5 M_{\odot}

Microscopic : $\mathrm{M}_{\max }<1.4-1.5 \mathrm{M}_{\odot}$

(Schulze, Polls, Ramos \& IV 2006)

Recent measurements of high masses \longrightarrow life of hyperons more difficult

- PSR J164-2230 (Demorest et al. 2010)

Shapiro delay:
\checkmark binary sytem ($\mathrm{P}=8.68 \mathrm{~d}$)
\checkmark eccentricity $\left(\mathrm{e}=1.3 \times 10^{-6}\right)$
\checkmark companion mass: $\sim 0.5 M_{\odot}$
\checkmark pulsar mass: $\quad M=1.97 \pm 0.04 M_{\odot}$

- PSR J0348+0432 (Antoniadis et al. 2013)
\checkmark binary system $(\mathrm{P}=2.46 \mathrm{~h})$
\checkmark very low eccentricity
\checkmark companion mass: $0.172 \pm 0.003 M_{\odot}$
\checkmark pulsar mass: $\quad M=2.01 \pm 0.04 M_{\odot}$

Measured Neutron Star Masses (2015)

Observation of $\sim 2 \mathrm{M}_{\text {sun }}$ neutron stars

Dense matter EoS stiff enough is required such that

$$
M_{\max }[E O S]>2 M_{\odot}
$$

Can hyperons still be present in the interior of neutron stars in view of this constraint?

The Hyperon Puzzle

"Hyperons \rightarrow "soft (or too soft) EoS" not compatible (mainly in microscopic approaches) with measured (high) masses. However, the presence of hyperons in the NS interior seems to be unavoidable."
\checkmark can YN \& YY interactions still solve it ?
\checkmark or perhaps hyperonic three-body forces?
\checkmark what about quark matter?

Can Hyperonic TBF solve this puzzle?

Natural solution based on: Importance of NNN force in Nuclear Physics (Considered by several authors: Chalk, Gal, Usmani, Bodmer, Takatsuka, Loiseau, Nogami, Bahaduri, IV)

NNY, NYY \& YYY Forces

Can hyperonic TBF provide enough repulsion at high densities to reach $2 \mathrm{M}_{\odot}$?

Two-meson exchange Hyperonic TBF

Vertices: consistent with YN and YY

Repulsion at high densities due to Z-diagram as in NNN

Baryon-excitation contribution

 (π-, K-exchange)$$
\begin{aligned}
V_{N N Y}^{M_{1} M_{2}, B}=C_{N N Y}^{M, M_{2}, B} & \left(\hat{O}_{I}\left\{X_{12}\left(\vec{r}_{12}\right), X_{23}\left(\vec{r}_{23}\right)\right\}\right. \\
& \left.+\hat{O}_{I I}\left[X_{12}\left(\vec{r}_{12}\right), X_{23}\left(\vec{r}_{23}\right)\right]\right)
\end{aligned}
$$

$$
\hat{O}_{I}, \hat{O}_{I I} \rightarrow \text { isospin structure }
$$

$$
\begin{aligned}
& X_{i j}(\vec{x})=\vec{\sigma}_{i} \cdot \vec{\sigma}_{j} Y_{i j}(x)+\hat{S}_{i j}(\hat{x}) T_{i j}(x) \\
& Y_{i j}(x)=\frac{\partial^{2} Z_{i j}}{\partial x^{2}}+\frac{2}{x} \frac{\partial Z_{i j}}{\partial x}, T_{i j}(x)=\frac{\partial^{2} Z_{i j}}{\partial x^{2}}-\frac{1}{x} \frac{\partial Z_{i j}}{\partial x} \\
& Z_{12}(x)=\frac{4 \pi}{m_{M_{1}}} \int \frac{d \vec{k}}{(2 \pi)^{3}} e^{-i \vec{k} \cdot \vec{x}} k^{2} F_{M_{1}, B_{1} M_{1}}\left(k^{2}\right) F_{B_{2} B M_{1}}\left(k^{2}\right) \\
& Z_{23}(x)=\frac{4 \pi}{m_{M_{2}}} \int \frac{d \vec{q}}{(2 \pi)^{3}} \frac{e^{-i \vec{k} \cdot x}}{q^{2}+m_{M_{2}}^{2}} F_{B_{3}, B_{3} M_{2}}\left(q^{2}\right) F_{B_{2} B M_{2}}\left(q^{2}\right)
\end{aligned}
$$

Isospin structure: operators $\hat{O}_{\mathrm{I}} \& \hat{O}_{\text {II }}$

$$
V_{N N Y}^{M_{1} M_{2}, B}=C_{N N Y}^{M_{1} M_{2}, B}\left(\hat{O}_{I}\left\{X_{12}\left(\vec{r}_{12}\right), X_{23}\left(\vec{r}_{23}\right)\right\}+\hat{O}_{I I}\left[X_{12}\left(\vec{r}_{12}\right), X_{23}\left(\vec{r}_{23}\right)\right]\right)
$$

$V_{N N Y}^{M_{1} M_{2}, B}$	\hat{O}_{I}	\hat{O}_{I}
$V_{N N \Lambda}^{\pi \pi, \Sigma^{*}}, V_{N N \Lambda}^{\pi \pi, \Sigma}, V_{N N \Sigma}^{\pi \pi, \Sigma^{*}}, V_{N N \Sigma}^{\pi \pi, \Lambda}, V_{N N \Sigma}^{K K, \Lambda}, V_{N N \Sigma \leftrightarrow N N \Lambda}^{\pi \pi, \Sigma^{*}}$	$\overrightarrow{\boldsymbol{\tau}}_{1} \cdot \overrightarrow{\boldsymbol{\tau}}_{3}$	
$V_{N N \Sigma}^{\pi \pi, \Delta}$	$\left\{\overrightarrow{\boldsymbol{\tau}}_{1} \cdot \overrightarrow{\boldsymbol{\tau}}_{2}, \overrightarrow{\boldsymbol{\tau}}_{2} \cdot \vec{I}_{3}\right\}$	$\frac{1}{4}\left[\overrightarrow{\boldsymbol{\tau}}_{1} \cdot \overrightarrow{\boldsymbol{\tau}}_{2}, \overrightarrow{\boldsymbol{\tau}}_{2} \cdot \vec{I}_{3}\right]$
$V_{N N \Sigma \leftrightarrow N N \Lambda}^{\pi \pi, \Delta}$	$\left\{\overrightarrow{\boldsymbol{\tau}}_{1} \cdot \overrightarrow{\boldsymbol{\tau}}_{2}, \overrightarrow{\boldsymbol{\tau}}_{2} \cdot \vec{\rho}_{3}\right\}$	$\frac{1}{4}\left[\overrightarrow{\boldsymbol{\tau}}_{1} \cdot \overrightarrow{\boldsymbol{\tau}}_{2}, \overrightarrow{\boldsymbol{\tau}}_{2} \cdot \vec{\rho}_{3}\right]$
$V_{N N \Lambda}^{K K, \Sigma^{*}}$	$\left\{\overrightarrow{1}_{1} \cdot \overrightarrow{\boldsymbol{\tau}}_{2}, \overrightarrow{\boldsymbol{\tau}}_{2} \cdot \overrightarrow{1}_{3}\right\}$	$-\frac{1}{2}\left[\overrightarrow{1}_{1} \cdot \overrightarrow{\boldsymbol{\tau}}_{2}, \overrightarrow{\boldsymbol{\tau}}_{2} \cdot \overrightarrow{1}_{3}\right]$
$V_{N N \Lambda}^{K K, \Sigma}$	$\left\{\overrightarrow{1}_{1} \cdot \overrightarrow{\boldsymbol{\tau}}_{2}, \overrightarrow{\boldsymbol{\tau}}_{2} \cdot \overrightarrow{1}_{3}\right\}$	$\left[\overrightarrow{1}_{1} \cdot \overrightarrow{\boldsymbol{\tau}}_{2}, \overrightarrow{\boldsymbol{\tau}}_{2} \cdot \overrightarrow{1}_{3}\right]$
$V_{N N \Lambda}^{K K, \Lambda}$		

Isospin structure: operators $\hat{O}_{\mathrm{I}} \& \hat{O}_{I I}$ (cont')

$$
V_{N N Y}^{M_{1} M_{2}, B}=C_{N N Y}^{M_{1} M_{2}, B}\left(\hat{O}_{I}\left\{X_{12}\left(\vec{r}_{12}\right), X_{23}\left(\vec{r}_{23}\right)\right\}+\hat{O}_{I I}\left[X_{12}\left(\vec{r}_{12}\right), X_{23}\left(\vec{r}_{23}\right)\right]\right)
$$

$V_{N N Y}^{M_{1} M_{2}, B}$	\hat{O}_{I}	$\hat{O}_{I I}$
$V_{N N \Sigma}^{K K, \Sigma^{*}}$	$\left\{\overrightarrow{\boldsymbol{\tau}}_{1} \cdot \overrightarrow{\boldsymbol{\tau}}_{2}, \overrightarrow{\boldsymbol{\tau}}_{2} \cdot \overrightarrow{\boldsymbol{\tau}}_{3}\right\}$	$-\frac{1}{2}\left[\overrightarrow{\boldsymbol{\tau}}_{1} \cdot \overrightarrow{\boldsymbol{\tau}}_{2}, \overrightarrow{\boldsymbol{\tau}}_{2} \cdot \overrightarrow{\boldsymbol{\tau}}_{3}\right]$
$V_{N N \Sigma}^{K K, \Sigma}$	$\left\{\overrightarrow{\boldsymbol{\tau}}_{1} \cdot \overrightarrow{\boldsymbol{\tau}}_{2}, \overrightarrow{\boldsymbol{\tau}}_{2} \cdot \overrightarrow{\boldsymbol{\tau}}_{3}\right\}$	$\left[\overrightarrow{\boldsymbol{\tau}}_{1} \cdot \overrightarrow{\boldsymbol{\tau}}_{2}, \overrightarrow{\boldsymbol{\tau}}_{2} \cdot \overrightarrow{\boldsymbol{\tau}}_{3}\right]$
$V_{N N \Sigma \leftrightarrow N N \Lambda}^{K K, \Sigma^{*}}$	$\left\{\vec{\rho}_{1} \cdot \overrightarrow{\boldsymbol{\tau}}_{2}, \overrightarrow{\boldsymbol{\tau}}_{2} \cdot \overrightarrow{\boldsymbol{\tau}}_{3}\right\}$	$-\frac{1}{2}\left[\vec{\rho}_{1} \cdot \overrightarrow{\boldsymbol{\tau}}_{2}, \overrightarrow{\boldsymbol{\tau}}_{2} \cdot \overrightarrow{\boldsymbol{\tau}}_{3}\right]$
$V_{N N \Sigma \leftrightarrow N N \Lambda}^{K K, \Sigma}$	$\left\{\vec{\rho}_{1} \cdot \overrightarrow{\boldsymbol{\tau}}_{2}, \overrightarrow{\boldsymbol{\tau}}_{2} \cdot \overrightarrow{\boldsymbol{\tau}}_{3}\right\}$	$\left[\vec{\rho}_{1} \cdot \overrightarrow{\boldsymbol{\tau}}_{2}, \overrightarrow{\boldsymbol{\tau}}_{2} \cdot \overrightarrow{\boldsymbol{\tau}}_{3}\right]$
$V_{N N \Sigma \leftrightarrow N N \Lambda}^{K K, \Lambda}$	$\vec{\rho}_{1} \cdot \overrightarrow{\boldsymbol{\tau}}_{2}$	

Z-diagram contribution
 (σ, ω-exchange)

- $\sigma \sigma$-exchange contribution

$$
\begin{aligned}
V_{N N Y}^{\sigma \sigma, \bar{B}}= & C_{N N Y}^{\sigma \sigma \cdot \bar{B}}\left(-4 Z_{12}\left(r_{12}\right) Z_{23}\left(r_{23}\right) \nabla_{r_{2}^{\prime}}^{2}-4 Z_{12}^{\prime}\left(r_{12}\right) Z_{23}\left(r_{23}\right) \hat{r}_{12} \cdot \nabla_{r_{2}^{\prime}}\right. \\
& -4 Z_{12}\left(r_{12}\right) Z_{23}^{\prime}\left(r_{23}\right) \hat{r}_{23} \cdot \nabla_{r_{2}^{\prime}}-\left(Y_{12}\left(r_{12}\right) Z_{23}\left(r_{23}\right)+Z_{12}\left(r_{12}\right) Y_{23}\left(r_{23}\right)\right) \\
& -\hat{r}_{12} \cdot \hat{r}_{23} Z_{12}^{\prime}\left(r_{12}\right) Z_{23}^{\prime}\left(r_{23}\right)-2 i\left(Z_{12}^{\prime}\left(r_{12}\right) Z_{23}\left(r_{23}\right) \vec{\sigma}_{2} \cdot \hat{r}_{12} \times \nabla_{r_{2}^{\prime}}\right. \\
& \left.\left.+Z_{12}\left(r_{12}\right) Z_{23}^{\prime}\left(r_{23}\right) \vec{\sigma}_{2} \cdot \hat{r}_{23} \times \nabla_{r_{2}^{\prime}}\right)\right) \delta\left(\vec{r}_{1}-\vec{r}_{1}^{\prime}\right) \delta\left(\vec{r}_{2}-\vec{r}_{2}^{\prime}\right) \delta\left(\vec{r}_{3}-\vec{r}_{3}^{\prime}\right)
\end{aligned}
$$

- $\omega \omega$-exchange contribution

$$
\begin{aligned}
V_{N N Y}^{\omega \omega, \bar{B}} & =C_{N N Y}^{\omega \omega(\bar{B}}\left(\left(\left(1+\vec{\sigma}_{1} \cdot \vec{\sigma}_{2}+\vec{\sigma}_{1} \cdot \vec{\sigma}_{2}+\vec{\sigma}_{2} \cdot \vec{\sigma}_{3}\right) \hat{r}_{12} \cdot \hat{r}_{23}-\vec{\sigma}_{1} \cdot \hat{r}_{23} \vec{\sigma}_{2} \cdot \hat{r}_{12}-\vec{\sigma}_{2} \cdot \hat{r}_{23} \vec{\sigma}_{3} \cdot \hat{r}_{12}\right.\right. \\
& \left.-\vec{\sigma}_{1} \cdot \hat{r}_{23} \vec{\sigma}_{3} \cdot \hat{r}_{12}\right) Z_{12}^{\prime}\left(r_{12}\right) Z_{23}^{\prime}\left(r_{23}\right)-2 i Z_{12}^{\prime}\left(r_{12}\right) Z_{23}\left(r_{23}\right)\left(\vec{\sigma}_{2}+\vec{\sigma}_{3}\right) \cdot \hat{r}_{12} \times \nabla_{r_{3}} \\
& \left.-2 i Z_{12}\left(r_{12}\right) Z_{23}^{\prime}\left(r_{23}\right)\left(\vec{\sigma}_{2}+\vec{\sigma}_{3}\right) \cdot \hat{r}_{23} \times \nabla_{r_{2}^{\prime}}-4 Z_{12}\left(r_{12}\right) Z_{23}\left(r_{23}\right) \nabla_{r_{1}} \cdot \nabla_{r_{3}}\right) \\
& \delta\left(\vec{r}_{1}-\vec{r}_{1}^{\prime}\right) \delta\left(\vec{r}_{2}-\vec{r}_{2}^{\prime}\right) \delta\left(\vec{r}_{3}-\vec{r}_{3}^{\prime}\right)
\end{aligned}
$$

- $\sigma \omega-$ exchange contribution

$$
\begin{aligned}
V_{N N Y}^{\sigma \omega \bar{B}}= & C_{N N Y}^{\sigma \omega, \bar{B}}\left(\left(\left(1+\vec{\sigma}_{2} \cdot \vec{\sigma}_{3}\right) Z_{12}\left(r_{12}\right) Y_{23}\left(r_{23}\right)-2 i Z_{12}\left(r_{12}\right) Z_{23}^{\prime}\left(r_{23}\right)\left(\vec{\sigma}_{2}+\vec{\sigma}_{3}\right) \cdot \hat{r}_{23} \times \nabla_{r_{2}^{\prime}}\right.\right. \\
& +2 i Z_{12}^{\prime}\left(r_{12}\right) Z_{23}^{\prime}\left(r_{23}\right)\left(\vec{\sigma}_{2}+\vec{\sigma}_{3}\right) \cdot \hat{r}_{12} \times \hat{r}_{23}+2 i Z_{12}\left(r_{12}\right) Z_{23}^{\prime}\left(r_{23}\right) \vec{\sigma}_{2} \cdot \hat{r}_{23} \times \nabla_{r_{3}} \\
& +2 Z_{12}^{\prime}\left(r_{12}\right) Z_{23}\left(r_{23}\right) \hat{r}_{12} \cdot \nabla_{r_{3}^{\prime}}+2 Z_{12}\left(r_{12}\right) Z_{23}^{\prime}\left(r_{23}\right) \hat{r}_{23} \cdot \nabla_{r_{3}}+4 Z_{12}\left(r_{12}\right) Z_{23}\left(r_{23}\right) \nabla_{r_{2}^{\prime}} \cdot \nabla_{r_{3}^{\prime}} \\
& \left.-\frac{1}{3}\left(\vec{\sigma}_{2} \cdot \vec{\sigma}_{3} Y_{12}\left(r_{12}\right)+\hat{S}_{23}\left(\hat{r}_{23}\right) T_{23}\left(r_{23}\right)\right) Z_{12}\left(r_{12}\right)\right) \\
& +D_{N N Y}^{\sigma \omega, \bar{B}}\left(-Y_{12}\left(r_{12}\right)+Y_{23}\left(r_{23}\right)-4 Z_{12}^{\prime}\left(r_{12}\right) Z_{23}^{\prime}\left(r_{23}\right)-3 Z_{12}^{\prime}\left(r_{12}\right) \nabla_{r_{2}^{\prime}} \cdot \hat{r}_{12}\right) \\
& +i \vec{\sigma}_{2} \cdot\left(2 \nabla_{r_{23}} \times \nabla_{r_{12}}-5 \nabla_{r_{2}} \times \hat{r}_{23}\right) Z_{12}\left(r_{12}\right) Z_{23}\left(r_{23}\right) \\
& \left.+\left(\vec{r}_{12} \leftrightarrow \vec{r}_{23}, \vec{r}_{1} \leftrightarrow \vec{r}_{1}^{\prime}, \vec{r}_{2} \leftrightarrow \vec{r}_{2}^{\prime}, \vec{\sigma}_{1} \leftrightarrow \vec{\sigma}_{3}\right)\right) \delta\left(\vec{r}_{1}-\vec{r}_{1}^{\prime}\right) \delta\left(\vec{r}_{2}-\vec{r}_{2}^{\prime}\right) \delta\left(\vec{r}_{3}-\vec{r}_{3}^{\prime}\right)
\end{aligned}
$$

But that's only the beginning of the full story there are

MANY, MANY, MANY more forces \& contributions

Domenico in 2010

Domenico in 2013

BHF approximation of Hyperonic Matter

\diamond Energy per particle

- $\frac{E}{A}(\rho, \beta)=\frac{1}{A} \sum_{B} \sum_{k \leq k_{F_{B}}}\left(\frac{\hbar^{2} k^{2}}{2 m_{B}}+\frac{1}{2} \operatorname{Re}\left[U_{B}(\vec{k})\right]\right)$
\diamond Bethe-Goldstone Equation
- $G(\omega)=V+V \frac{Q}{\omega-E-E^{\prime}+i \eta} G(\omega)$
- $E_{B}(k)=\frac{\hbar^{2} k^{2}}{2 m_{B}}+\operatorname{Re}\left[U_{N}(k)\right]+m_{B}$
- $U_{B}(k)=\sum_{B^{\prime}} \sum_{k^{\prime} \leq k_{f_{B}}}\left\langle\vec{k} \vec{k}^{\prime}\right| G\left(\omega=E_{B}(k)+E_{B^{\prime}}\left(k^{\prime}\right)\right)\left|\vec{k} \vec{k}^{\prime}\right\rangle$

Infinite sumation of two-hole line diagrams

Partial sumation of pp ladder diagrams
pur $=\rangle\langle+)_{Y}^{+}+\cdots+\cdots=$

\checkmark Pauli blocking
\checkmark Baryon dressing

Three-Body Forces within the BHF approach

TBF can be introduced in our BHF approach by adding effective density-dependent two body forces to the baryon-baryon interactions V when solving the Bethe-Goldstone equation

$\mathrm{W}_{3}\left(\overrightarrow{\mathrm{r}}_{\mathrm{i}}, \vec{r}_{\mathrm{j}}, \vec{r}_{\mathrm{k}}\right)$

$V_{B_{i} B_{j}}^{\text {eff }}\left(\vec{r}_{i j}\right)$

$$
V_{B_{j} B_{j}}\left(\vec{r}_{i j}\right)=\frac{1}{\left(2 S_{B_{k}}+1\right)\left(2 I_{B_{k}}+1\right)} \operatorname{Tr} \int d^{3} \vec{r}_{k} \sum_{c y c} W_{3}\left(\vec{r}_{i}, \vec{r}_{j}, \vec{r}_{k}\right) n\left(\vec{r}_{i}, \vec{r}_{j}, \vec{r}_{k}\right)
$$

$$
W_{3}\left(\vec{r}_{i}, \vec{r}_{j}, \vec{r}_{k}\right): \text { genuine TBF } \quad n\left(\vec{r}_{i}, \vec{r}_{j}, \vec{r}_{k}\right): \text { three-body correlation function }
$$

we take: $\quad n\left(\vec{r}_{i}, \vec{r}_{j}, \vec{r}_{k}\right)=\rho_{B_{k}} g_{B_{i} B_{k}}^{2} g_{B_{j} B_{k}}^{2} \quad$ with $\quad g_{B_{m} B_{n}}$: two-body correlation function

From the genuine NNN,NNY, NYY and YYY TBF ...

$$
\mathrm{NNN} \rightarrow \mathrm{NN}
$$

NYY \rightarrow NY, YY

$\mathrm{NNY} \rightarrow \mathrm{NN}, \mathrm{NY}$

$$
\mathrm{YYY} \rightarrow \mathrm{YY}
$$

Effective NN density-dependent 2BF from NNY

- $V_{N N}^{\pi \tau Y, B}(\vec{r})=C_{N N Y}^{\pi \pi, B} \rho_{Y}\left[V_{S}^{\pi \pi}(\vec{r}) \vec{\sigma}_{1} \cdot \vec{\sigma}_{2}+V_{T}^{\pi \pi}(\vec{r}) S_{12}(\hat{r})\right] \vec{\tau}_{1} \cdot \vec{\tau}_{2}$
- $V_{N N}^{\sigma \sigma Y, \bar{B}}(\vec{r})=C_{N N Y}^{\sigma \sigma, \bar{B}}\left[\rho_{N} V_{C_{1}}^{\sigma \sigma}(\vec{r})+\rho_{N}^{5 / 3} V_{C_{2}}^{\sigma \sigma}(\vec{r})\right]$
- $V_{N N}^{\omega \omega Y}, \bar{B}(\vec{r})=C_{N N Y}^{\omega \omega, \bar{B}} \rho_{Y}\left[V_{C}^{\omega \omega}(\vec{r})+V_{S}^{\omega \omega}(\vec{r}) \vec{\sigma}_{1} \cdot \vec{\sigma}_{2}+V_{T}^{\omega \omega}(\vec{r}) S_{12}(\hat{r})\right]$
- $V_{N N}^{\sigma \omega Y, B}(\vec{r})=C_{N N Y}^{\sigma \omega, \vec{B}} \rho_{N} V_{C}^{\sigma \omega}(\vec{r})$

Effective $\mathrm{N} \Lambda$ density-dependent 2BF from $\mathrm{NN} \Lambda$

- $V_{N \Lambda}^{K K N, \Lambda}(\vec{r})=C_{N N \Lambda}^{K K, \Lambda} \rho_{N}\left[V_{S}^{K K}(\vec{r}) \vec{\sigma}_{1} \cdot \vec{\sigma}_{2}+V_{T}^{K K}(\vec{r}) S_{12}(\hat{r})\right]$
- $V_{N \Lambda}^{K K N, \Sigma / \Sigma^{*}}(\vec{r})=C_{N N \Lambda}^{K K, \Sigma / \Sigma^{*}} \rho_{N}\left[V_{S}^{K K}(\vec{r}) \vec{\sigma}_{1} \cdot \vec{\sigma}_{2}+V_{T}^{K K}(\vec{r}) S_{12}(\hat{r})\right] \overrightarrow{\boldsymbol{\tau}}_{1} \cdot \overrightarrow{1}_{2}$
- $V_{N \Lambda}^{\sigma \sigma N, \bar{N}}(\vec{r})=C_{N N \Lambda}^{\sigma \sigma, \bar{N}}\left[\rho_{\Lambda} V_{C_{1}}^{\sigma \sigma}(\vec{r})+\rho_{\Lambda}^{5 / 3} V_{C_{2}}^{\sigma \sigma}(\vec{r})\right]$
- $V_{N \Lambda}^{\omega \omega N, \bar{N}}(\vec{r})=C_{N N \Lambda}^{\omega \omega, \bar{N}} \rho_{N}\left[V_{C}^{\omega \omega}(\vec{r})+V_{S}^{\omega \omega}(\vec{r}) \vec{\sigma}_{1} \cdot \vec{\sigma}_{2}+V_{T}^{\omega \omega}(\vec{r}) S_{12}(\hat{r})\right]$
- $V_{N \Lambda}^{\sigma \omega N, \bar{N}}(\vec{r})=C_{N N \Lambda}^{\sigma \omega, \bar{N}} \rho_{\Lambda} V_{C}^{\sigma \omega}(\vec{r})$

Effective density-dependent transition $\mathrm{N} \Sigma$ - $\mathrm{N} \Lambda$ from NN Σ - NN Λ

- $V_{N \Sigma \rightarrow N A}^{K K N / N / \Sigma Z^{*}}(\vec{r})=C_{N N \Sigma \rightarrow N N A}^{K K N / V V_{N}} \rho_{N}\left[V_{s}^{K K}(\vec{r}) \vec{\sigma}_{1} \cdot \vec{\sigma}_{2}+V_{T}^{K K}(\vec{r}) S_{12}(\hat{r})\right] \overrightarrow{1}_{1} \cdot \overrightarrow{1}_{2}$

Effect of TBF on Mean Field \& E/A

\checkmark Only NNY considered (preliminar)
\checkmark Repulsion at high densities due to Z-diagram contribution as in NNN

Work is in progress, many more contributions have to be considered, but we can still try to estimate the effect of hyperonic TBF in NS

1-. Construct the hyperonic matter EoS within the BHF at 2 body level
(Av18 NN + NSC89 YN)

2-. Add simple phenomenological density-dependent contact terms that mimic the effect of TBF.

Density-dependent contact terms: (Balberg \& Gal 1997)
Potential of a baryon B_{y} in a sea of baryons B_{x} of density ρ_{x}

Folding $\mathrm{V}_{\mathrm{y}}\left(\rho_{\mathrm{x}}\right)$ with $\rho_{\mathrm{x}}, \mathrm{V}_{\mathrm{x}}\left(\rho_{\mathrm{y}}\right)$ with ρ_{y} and combining with weight factors ρ_{x} / ρ and ρ_{y} / ρ

$$
\varepsilon_{x y}\left(\rho_{x}, \rho_{y}\right)=a_{x y} \rho_{x} \rho_{y}+b_{x y} \rho_{x} \rho_{y}\left(\frac{\rho_{x}^{\gamma_{x y}}+\rho_{y}^{\gamma_{x y}}}{\rho_{x}+\rho_{y}}\right)
$$

attraction
repulsion
larger than 1

Effect of hyperonic TBF on $\mathrm{M}_{\text {max }}$

IV, Logoteta, et al., (2011)

$\gamma_{N N}$	x	$\gamma_{Y N}$	Maximum Mass
	0	-	$1.27(2.22)$
	$1 / 3$	1.49	1.33
2	$2 / 3$	1.69	1.38
	1	1.77	1.41
	0	-	$1.29(2.46)$
	$1 / 3$	1.84	1.38
2.5	$2 / 3$	2.08	1.44
	1	2.19	1.48
	0	-	$1.34(2.72)$
	$1 / 3$	2.23	1.45
3	$2 / 3$	2.49	1.50
	1	2.62	1.54
	0	-	$1.38 \widetilde{2.97}$
	$1 / 3$	2.63	1.51
3.5	$2 / 3$	2.91	1.56
	1	3.05	1.60

Hyperonic TBFs seem not to be the full solution of the "Hyperon Puzzle", although they probably contribute to its solution

$$
1.27<M_{\max }<1.6 M_{\odot}
$$

A comment must be done at this point

Yamamoto et al. (2015)

Lonardoni et al. (2015)

BHF with NN+YN+universal repulsive TBF (multipomeron exchange mecanism)

$$
M_{\max }>2 M_{\odot}
$$

First Quantum Monte Carlo calculation on neutron $+\Lambda$ matter

Some of the parametrizations of the $\Lambda n n$ force give maximum masses compatible with $2 \mathrm{M}_{\odot}$ but the onset of Λ is above the largest density considered in the calculation $\sim 0.56 \mathrm{fm}^{-3}$

Summary \& Conclusions

* Construction of two-meson exchange hyperonic TBF

Repulsion is obtained at high densities (Z-diagram)
D. Logoteta, Ph.D. Thesis (Univ. Coimbra, Sept. 2013)

* Simple model to establish numerical lower and upper limits to the effect of hyperonicTBF on the maximum mass of NS.

Assuming the strength of hyperonic $\mathrm{TBF} \leq$ nucleonic TBF:
$1.27 \mathrm{M}_{\odot}<\mathrm{M}_{\max }<1.60 \mathrm{M}_{\odot} \quad$ compatible with 1.4-1.5 M_{\odot}
but incompatible with observation of very massive NS

$$
\begin{aligned}
& \text { PSR J1903+0327 }(1.67 \pm 0.01) \mathrm{M}_{\odot} \\
& \text { PSR J1614-2230 }(1.97 \pm 0.04) \mathrm{M}_{\odot} \\
& \text { PSR J0348+0432 }(2.01 \pm 0.04) \mathrm{M}_{\odot}
\end{aligned}
$$

* There is not yet a general agreement between different approaches/models

Take away message

Hyperonic Three-Body Forces seem not to be the full solution to the "Hyperon Puzzle", although they probably can contribute to it

- You for your time \& attention
- The sponsors for their support

