Glitches and anti-glitches in accreting pulsars: expected properties and observability

L. Ducci^{1,2}, P. M. Pizzochero^{3,4}, V. Doroshenko¹, A. Santangelo¹, S. Mereghetti⁵, C. Ferrigno²

¹ Institut f
ür Astronomie & Astrophysik, T
übingen; ² ISDC Gen
eve; ³ University of Milan, ⁴ INFN, Milan, ⁵ INAF/IASF Milano

18 June 2015

This work is partially supported by the Bundesministerium für Wirtschaft und Technologie through the Deutsches Zentrum für Luft und Raumfahrt (grant FKZ 50 OG 1301).

Motivation

- Several glitches have been observed in young, isolated pulsars;
- A detection in accretion-powered X-ray pulsars is still lacking;

₩

- Investigate conditions under which glitches are more likely to occur in accreting pulsars;
- Determine the expected properties and observability of glitches;

(Ducci et al. 2015, A&A 578, 52)

Index

Introduction

- Glitches in isolated pulsars
- Models to explain glitches
- X-ray binaries

Olitches and anti-glitches in accreting pulsars

- Starquake and superfluid vortex scenarios
- Results and observability

Annual NewCompStar Conference 2015

Glitches and anti-glitches in accreting pulsars

Part I

Introduction

Glitches in isolated pulsars Models to explain glitches X-ray binaries

Observational properties

- Glitches observed in over 100 isolated radio pulsars and magnetars;
- Long-term spin-down $\dot{\Omega}_{\infty} = 10^{-15} 10^{-10} \, \text{rad} \, \text{s}^{-2};$
- Jumps in angular velocity up to $\Delta\Omega\approx 10^{-4}\,\text{rad}\,\text{s}^{-1};$
- Quasi-exponential relaxation of $\dot{\Omega}(t>t_{
 m gl})$ to $\dot{\Omega}_{\infty}$.

Models to explain glitches:

Starquake models:

- Oblate crust deforms toward a spherical shape as the pulsar slows down;
- Sudden crack in the crust, decrease in the moment of inertia;

superfluid vortex models (Anderson & Itoh 1975):

- Sudden unpinning of neutron superfluid vortices from lattice nuclei;
- Angular momentum stored in vortices is transferred to the non-superfluid component.

Glitches in isolated pulsars Models to explain glitches X-ray binaries

X-ray binaries (NS or BH + donor star)

- X-ray emission produced by the accretion of matter (wind-fed or accretion disk);
- $t_{spin} = ms to \approx 10^4 s;$
- accr. pulsars can experience spin-up and spin-down: caused by the interaction between the accretion flow and the magnetosphere;
- accr. torque ≃ e.m. braking torque in young glitching pulsars;
- rate of glitches $\propto \dot{\Omega}$; \Rightarrow glitches in XRBs more frequent than expected.

Part II

Glitches and anti-glitches in accreting pulsars

(Ducci et al. 2015; A&A 578, 52)

Aims:

- Conditions under which glitches are more likely to occur in accreting pulsars;
- Expected properties of glitches in these objects.

Snowplow model (Pizzochero 2011)

- Snowplow model can predict three observables: Δt_{gl} , $\Delta \Omega_{gl}$, $\Delta \dot{\Omega}_{gl} / \dot{\Omega}_{\infty}$;
- Density profile of the pinning force; maximum value $f_m \approx 10^{15} \, \rm dyn \, cm^{-1}$ at $\rho \approx 0.2 \rho_0$;

- Vortices from *x* < *x*_m accumulates in a vortex layer at *x*_m;
- When $\omega(x_m) = \omega_{max}$, the layer suddenly moves out and exchange the stored angular momentum with the normal component \Rightarrow glitch.

 \Rightarrow accreting pulsars ($\dot{\Omega}_{\infty} < 0$): $\Delta t_{
m gl} \approx 29/\dot{\Omega}_{-11}$ yr; $\Delta \Omega_{
m gl} \approx 10^{-4}$ rad s⁻¹.

Snowplow model (Pizzochero 2011)

- Snowplow model can predict three observables: Δt_{gl} , $\Delta \Omega_{gl}$, $\Delta \dot{\Omega}_{gl} / \dot{\Omega}_{\infty}$;
- Density profile of the pinning force; maximum value $f_m \approx 10^{15} \, \text{dyn cm}^{-1}$ at $\rho \approx 0.2 \rho_0$;

- Vortices from x < x_m accumulates in a vortex layer at x_m;
- When $\omega(x_m) = \omega_{max}$, the layer suddenly moves out and exchange the stored angular momentum with the normal component \Rightarrow glitch.

 $\Rightarrow \text{ accreting pulsars } (\dot{\Omega}_{\infty} < 0): \ \Delta t_{\rm gl} \approx 29/\dot{\Omega}_{-11} \, \text{yr}; \ \Delta \Omega_{\rm gl} \approx 10^{-4} \, \text{rad s}^{-1}.$

Anti-glitch scenario

Some XRBs show long-term spin-up \Rightarrow good candidates for anti-glitches.

anti-glitch:

sudden spin-down caused by a mechanism of angular momentum transfer similar to that of glitches (proposed for the first time by Pines+1980).

• We adapt the snowplow model of Pizzochero 2011 to calculate $\Delta\Omega_{\rm a-gl};$

Anti-glitch scenario

Glitch:

- spin-down of the crust;
- vortices expelled outwards.

Anti-glitch scenario

- the crust accelerates (long-term spin-up);
- new vortices created at R;
- new vortices x > x_m accumulated by the external depinning front moving inward;
- internal depinning front moves outwards across the region x < x_m.

Anti-glitch scenario

- new vortices x > x_m accumulated by the external depinning front moving inward;
- internal depinning front moves outwards across the region x < x_m.

Anti-glitch scenario

- vorticity moves from R to $x_{\rm m}$;
- vorticity moves from the inner crust to the core;

Anti-glitch scenario

- vortices accumulated at x_m by the external depinning front;
- depletion of vortices around x_c (regions with lower pinning potential);
- radii of the depletion region unknown.
- Vortices accumulated at x_m will fill depleted region;
- Transfer of angular momentum will take place in this region.
- $\Delta \Omega_{\rm a-gl} \approx 10^{-5} 10^{-4} \, \rm rad \, s^{-1}$

Anti-glitch scenario

- vortices accumulated at x_m by the external depinning front;
- depletion of vortices around x_c (regions with lower pinning potential);
- radii of the depletion region unknown.
- Vortices accumulated at x_m will fill depleted region;
- Transfer of angular momentum will take place in this region.
- $\Delta\Omega_{\rm a-gl}\approx 10^{-5}-10^{-4}\,\rm rad\,s^{-1}$

Anti-glitch scenario

- vortices accumulated at x_m by the external depinning front;
- depletion of vortices around x_c (regions with lower pinning potential);
- radii of the depletion region unknown.
- Vortices accumulated at x_m will fill depleted region;
- Transfer of angular momentum will take place in this region.
- $\Delta \Omega_{\rm a-gl} \approx 10^{-5} 10^{-4}\, \rm rad\, s^{-1}$

Observability

- Same size of the jumps in angular velocity observed in magnetars and fluxes show that in principle they can also be detected in XRBs;
- *caveat:* A suitable spacing of the observations is required to detect glitches and distinguish them from other timing irregularities induced by variations in the accretion torque;
- Observations of correlated changes in the source flux (typical of accretion torque) should help to recognize them.

$\Delta t_{ m gl} - t_{\infty}$ diagram

Conclusions

We outlined for the first time the expected observational properties of glitches in accreting pulsars.

- Glitches caused by the superfluid: possible, can be detected;
- Anti-glitches in accreting pulsars: possible, can be detected. Unique "laboratory" to study them;
- Anti-glitch ($\dot{\Omega}_{\infty} > 0$): jump in angular velocity: $\Delta \Omega_{\rm a-gl} \approx 10^{-5} 10^{-4} \, \text{rad s}^{-1}$
- GX 1+4 best candidate for the detection of glitches;
- Other results:
- Glitches caused by starquakes: rare and their detection unlikely;
- Coupling timescale between superfluid and normal component $\tau \propto 1/\Omega:$
 - Glitch (anti-glitch) long rise time: $(10^2 10^3)\Omega^{-1}$ s;
 - long recovery timescales;

backup slides

Spin period evolution of GX 1+4

Spin period evolution of 4U 1626-67

Spin period evolution of OAO 1657-415

Starquake glitch scenario

• Interval between glitches estimated from the magnitude of the preceeding one (Baym & Pines 1971):

$$\Delta t_{
m q} = T rac{2 A^2}{B l_0 \Omega^2} |\Delta \epsilon|$$

- $T\equiv -\Omega/\dot{\Omega}_{\infty}$;
- $|\Delta \epsilon|$ is the reduction in oblateness ϵ caused by the previous quake;
- A, B, and I_0 depend on the equation of state and on the crust model adopted.
- we use parameters obtained by Pandharipande+1976 and Zdunik+2008 which updated the Baym-Pines model using different EoSs and crust models;
- ullet \Rightarrow $\Delta t_{
 m q}$ \gg 10⁵ yr;
- Detection of a glitch produced by a starquake in an accreting pulsar is extremely unlikely.

X-ray binaries (NS or BH + donor star)

 X-ray emission produced by the accretion of matter (wind-fed or accretion disk);

•
$$L_x = 10^{32} - 10^{38} \, {
m erg \, s^{-1}}; \ t_{spin} = {
m ms \, to} \approx 10^4 \, {
m s};$$

- how many? few hundreds in our Galaxy (few tens bright accr. pulsars);
- accr. pulsars can experience spin-up and spin-down: caused by the interaction between the accretion flow and the magnetosphere;
- accr. torque ≃ e.m. braking torque in young glitching pulsars;
- rate of glitches ∝ Ω; ⇒ glitches in XRBs more frequent than expected in old pulsars.

Snowplow model (Pizzochero 2011)

- First physically reasonable model to determine where in the star the vorticity is pinned, how much of it is pinned, and for how long;
- Density profile of the pinning force; maximum value $f_m \approx 10^{15} \, \rm dyn \, cm^{-1}$ at $\rho \approx 0.2 \rho_0$;
- Critical lag for depinning ω_{cr} obtained by equating f_{pin} and f_{Mag} ;

\Rightarrow accreting pulsars ($\dot{\Omega}_{\infty} < 0$): $\Delta t_{\rm gl} \approx 29 / \dot{\Omega}_{-11}$ yr; $\Delta \Omega_{\rm gl} \approx 10^{-4}$ rad s⁻¹.

Snowplow model (Pizzochero 2011)

- First physically reasonable model to determine where in the star the vorticity is pinned, how much of it is pinned, and for how long;
- Density profile of the pinning force; maximum value $f_m \approx 10^{15} \, \rm dyn \, cm^{-1}$ at $\rho \approx 0.2 \rho_0$;
- Critical lag for depinning ω_{cr} obtained by equating f_{pin} and f_{Mag} ;

 $\Rightarrow \text{ accreting pulsars } (\dot{\Omega}_{\infty} < 0): \; \Delta t_{\rm gl} \approx 29/\dot{\Omega}_{-11} \, \text{yr}; \; \Delta \Omega_{\rm gl} \approx 10^{-4} \, \text{rad s}^{-1}.$