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QPOs in giant flares of magnetars
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@ Strong modulation =
rotation period (5. ..10s)

@ Additional quasi periodic
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(Israel et al. 2005, Strohmayer & Strohmayer & Watts 2006

Watts 2006, El-Mezeini & lbrahim

2010, Hambaryan et al. 2011 . .
. ) Confirmed QPO frequencies
@ QPOs in normal bursts:

93, 127 and 260Hz SGR 1806-20: 18, 26, 30, 92, 150
625, 1840 Hz
/ SGR 1900+14: 28, 53, 84, 155 Hz

(Huppenkothen et al. 2014)




Where do the QPOs come from? Are they Starquakes?

1.5 times the Sun
eter ~ 20 km

Possible origin of the

observed frequencies

@ Discrete Shear modes
(crust)?

@ Alfvén oscillations at the
turning points of a
continuum (core+crust)?

Solid crust
~1..2km

mostly neu
with other par

Coupled Crust-Core oscillations

(Glampedakis et al. '06; Levin '07; Van Hoven & Levin '11 & '12;
Colaiuda et al. '10 & '11 & '12; Gabler et al. '11 & '12)



Torsional shear modes

Samuelsson & Andersson 2007
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The Alfvén continuum

@ Each field line has proper

T T TT— openlines .
1 Z latopentine eigenfrequency
— closedlines

(purely poloidal magnetic field
+ torsional oscillations)

o Field lines are coupled through:
(i) surface boundary conditions
(ii) the crust
(i) numerics
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(Levin '06 & '07, Sotani et al.'07,
Cerda-Durén et al. '09)



MCoCoA - 2D GRMHD simulations

MCoCoA

Ideal MHD code in dynamical space-time (Godunov type
schemes + flux CT)

Spherical polar coordinates in axisymmetry (2D)
Zero temperature, tabulated EOS

Including elastic crust

Spherically symmetric background
Small-amplitude oscillations

Cowling approximation

In linear regime and axisymmetry poloidal and toroidal
perturbations decouple

only consider torsional oscillations




Results - magneto-elastic oscillations inside the magnetar
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Identifying observed frequencies

@ Frequency ratio of low frequency magneto-elastic
oscillations (antisymmetric, symmetric) is roughly

1:2:3:4:5:...

o Different magnetic field configurations give more
than one fundamental
SGR 1806-20: (18), 26, 30, 92, 150, 625, 1840 Hz

SGR 1900+14: 28, 53, 84, 155 Hz
or 28, 53, 84, 155 Hz




Superfluid neutron star core - one-fluid approximation

Effective one fluid model (decoupling n from p):

p— pp ~ 0.05p
, B> B2

Va= — = —
P Pp

Fundamental oscillations
Exist as before but with:

£ 1 VA B B
Tt R Ryp, RV0.05p

To match observed QPOs:

5xf,

2x 104 < B <1056G
Andersson et al. '09, Glampedakis et al. '11, vanHoven & Levin 11 & 12,
Passamonti & Lander '13




Constant Phase Oscillations

o Alfvén dominated oscillations
confined to the core

@ Magneto-elastic oscillations
@ Continuous phase change

penetrating the crust
o Constant phase




Lowest frequency oscillations /U, at B = 2 x 10'° G

@ | maxima in 6 direction @ n maxima in r direction
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Scaling of the frequencies with B

Alfvén oscillations (in the core) Magneto-elastic oscillations
@ Continuous phase o Constant phase
@ Scale linearly with B @ Scale linearly with B
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Scaling of the frequencies with £, X, at B =5 x 104G

Fitting function: f [Hz] = dy X (£,Xc)?

Alfvén oscillations (in the core) Magneto-elastic oscillations
d~ —0.5 d ~ —0.33
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High frequency QPOs
@ Rapid initial damping
o Long-lived QPOs at f ~ £7-1
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Superfluid neutron star core - High frequency QPOs

Normal fluid
@ n = 1 radial shear mode structure
@ Localized close to equatorial plane

e B 1 ? =predominantly shear
mode only in crust

Superfluid
@ n = 1 radial shear mode structure
@ Close to pole

@ Resonance with Alfvén overtone
of core

Superfluid

Normal fluid

Y [km]




Identifying observed frequencies

@ Frequency ratio of low frequency magneto-elastic
oscillations (antisymmetric, symmetric) is roughly

1:2:3:4:5:...

o Different magnetic field configurations give more
than one fundamental

@ More constant phase oscillations, because different /
dependence

@ High frequency QPO as resonance of higher Alfvén
overtone in core with n > 0 crustal mode if core is
superfluid

SGR 1806-20: (18), 26, 30, 92, 150, 625, 1840 Hz

SGR 1900+14: 28, 53, 84, 155 Hz
or 28, 53, 84, 155 Hz




Magneto-elastic oscillations break out of crust(B ~ 10 G)
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Conclusions
e Antisymmetric (v,,) fundamental magneto-elastic
oscillations can explain low frequency QPOs
Inclusion of superfluid effects:
Low and high frequency QPOs

(]
=
= B estimates in agreement with spin down observations
= Constant phase oscillations (no crustal modes in gaps!)
(]

Break out of oscillations sensitive to magnetic field
strength and superfluid properties

QPOs of SGRs are probably superfluid magneto-elastic
oscillations

Caveats:

o Different field configurations give same QPO frequency for
different field strength

@ Degeneracy between EQOS and magnetic field
configuration/strength
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