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NS-NS coalescing binaries are probably the most promising sources 
for ground-based GW detectors:  Advanced LIGO/Virgo is expecting to detect 

from ~few to ~hundreds of them per year.

The gravitational signal emitted by these processes contains valuable information
on the behaviour of matter at supranuclear densities, 
i.e., on the EoS of matter in the inner core of NSs.

Where can we find the imprint of the NS EoS 
on the GW signal from coalescing binaries?

In the merger signal, when the binary forms (under appropriate conditions)
    a metastable hypermassive NS, oscillating at characteristic frequencies 
    which depends on the NS radius (Shibata, PRL ’05; Oechslin & Janka, PRL ’07; 

     Stergioulas et al.,  MNRAS ’11; Bauswein et al., PRL ’12, PRD ’12, 14;  Takami at al., PRL ’14, PRD ‘15)

In the late inspiral signal, when the tidal deformation of the NSs is large 
enough to affect the gravitational waveform

     (Flanagan & Hinderer, PRD ’08;  Hinderer et al, PRD ‘10; Baiotti et al. PRL ’10, PRD ’11;
      Lackey et al., PRD ’12, PRD ‘14; Bini et al., PRD ’12, Damour et al. PRD ’12, Maselli et al. PRD ’13, 
       Favata PRL ’14; Yagi & Yunes PRD ’14, Bernuzzi et al. ‘15)

In the late inspiral signal, when the tidal deformation of the NSs is large 
enough to affect the gravitational waveform

   

Tidal deformability: a powerful tool to study the NS EoS
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In recent years, a relativistic theory of tidal deformations has been developed

Tidal deformability: a powerful tool to study the NS EoS

(Flanagan & Hinderer PRD ’08; Hinderer ApJ ’08; Binnington & Poisson PRD ’09; Damour & Nagar PRD ’09)

Main idea: in the timescale of orbital motion, << proper oscillations
(but see Maselli et al., PRD ’12), tidal deformations can be treated as stationary

and multipole moments are linear in the moments of the exterior tidal field.

The proportionality constants are the Love numbers, which characterize
the deformatility properties of the star and strongly depend on the NS EoS.

Quadrupole tensor
Tidal tensor

Tidal deformability
l=2 electric tidal

Love number

Most important is the quadrupolar tidal deformation:

Qij = �2

3
k2R

5Eij = ��2Eij
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Tidal deformation affects the PN waveform of late inspiral through λ2

Second generation GW detectors (Adv LIGO/Virgo) may detect λ 
with enough accuracy to constrain the NS EoS.

Third generation detectors (i.e. ET) will be even more sensitive.
(Damour et al. PRD ’12; Del Pozzo et al. PRL ’13; Maselli et al. PRD ‘13) 

λ2

( formally 5PN, but λ~R5 => λ/m5~(R/m)5>>1 )

Tidal deformability: a powerful tool to study the NS EoS

hPN (x) = A(x)ei[�P P (x)+�T (x)]

x = (�mf)2/3 m + m1 + m2 � = m1m2/m2 M = m�3/5

A(x) =

�
5

24

M5/6

�2/3d
f�7/6

�
1 + �1x + �2x

2 + . . .
�

�PP (x) = 2�ftc � �c +
3

128�x5/2

�
1 + �2x + �3x

3/2 + �4x
2 + . . .

�

�T (x) = � 117�̃

8�m5
x5/2

�
1 + �̃2x + �̃3x

3/2 + . . .
�

�̃ =
m1 + 12m2

26m2

=
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Tidal deformation affects the PN waveform of late inspiral through λ

Second generation GW detectors (Adv LIGO/Virgo) may detect λ 
with enough accuracy to constrain the NS EoS.

Third generation detectors (i.e. ET) will be even more sensitive.
(Damour et al. PRD ’12; Del Pozzo et al. PRL ’13; Maselli et al. PRD ‘13) 
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FIG. 4. Measurability of the tidal polarizability parameter
Gµ2 (in units of km5) as a function of the neutron star mass
for a sample of realistic EOS from Table I. This plot refers to
the observation (at the SNR level ρ = 16) of the gravitational
wave signal from an equal-mass BNS merger as seen by a sin-
gle advanced LIGO detector. The solid lines represent the
values of Gµ2 as a function of the NS mass, while the dashed
lines represent the 1 σ (68% confidence level) expected sta-
tistical errors. The vertical line marks the canonical NS mass
1.4M⊙. Note that over a wide range of masses each solid
line lies comfortably above the corresponding measurability
threshold, therefore indicating that the advanced LIGO-Virgo
detector network can significantly measure Gµ2.

either to the conservative prior |β| < 8.5 (second row) or
the lack of any prior (first row) are close to each other
but differ from the strongly β-constrained results by very
significant factors. To be precise, the measurability of the
chirp mass is worsened by a factor larger than seven; that
of the symmetric mass ratio is worsened by a factor of
order 30!; finally, that of Gµ2 is only worsened by about
20%. These results are linked to the different origins of
the effective signals contributing to the measurability of
the various parameters displayed in Fig. 3.
We can roughly summarize the results for the measur-

ability of the nontidal parameters (in the strongly con-
strained β cases) in the following way:

σM
M

≈
4.3× 10−4

ρ
, (67)

and

σν
ν

≈
0.11

ρ
. (68)

For instance, when ρ = 10 this means that the chirp mass
is measured to a fractional precision of 4 × 10−5, while
the symmetric mass ratio is measured at a fractional pre-
cision of 0.01. As usual, the fractional precision on M is

excellent (and has not been very significantly worsened
by the inclusion of the tidal term, as shown by compar-
ing to the results of Refs. [31, 32]). By contrast, the
fractional precision on ν has been significantly worsened
(by a factor of order 1.7) compared to Refs. [31, 32] when
fitting for an extra tidal parameter6. This worsening in
the measurability of ν might make it difficult to distin-
guish stars with a mass ratio between 0.75 and 1. For
instance, if we considered a BNS with MA = 1.2M⊙,
MB = 1.6M⊙ (i.e., MA/MB = 0.75) its symmetric mass
ratio is ν ≈ 0.2449, so that 1− 4ν = 0.0204, correspond-
ing to a fractional δν/ν ≈ 0.02. Comparing this with the
measurement error in ν for ρ = 8, Eq. (68), this is only a
2σ-level deviation. Actually, this problem may be cured
by doing two separate analyses of the GW data, one using
inspiral data only up to a cut-off frequency small enough
to be able to neglect tidal effects (without trying to fit
for tidal parameters), which will probably give a better
estimate of the mass ratio. And a separate analysis of
the data up to (and possibly beyond) the merger aimed
at extracting EOS–dependent information.
The last two columns of the table exhibit the SNR-

normalized absolute and relative errors on Gµ2 in the
case where one uses as upper frequency cut-off fmax =
450 Hz as done in Ref. [5, 9]. The use of such a lower
cut-off leads to a dramatic worsening (by a factor ∼ 7)
of the measurability of Gµ2 (the origin of this worsening
is illustrated in Fig. 2, which includes a line at 450 Hz).
On the other hand, Hinderer et al. [9] computed a

SNR-normalized uncertainty on Gµ2 for the 1.4M⊙ +
1.4M⊙ system equal to σ̂Hinderer

Gµ2
= 35 × 19.3 ×

0.66743104 km5 = 450.84 × 104 km5 (see second row of
their Table II which corresponds7 to a SNR ρ = 35).
Considering for example the SLy EOS, this is a factor
38 larger than the corresponding result in Table II for
our preferred 5-parameter analysis. This large factor
can be viewed as originating from the product of sev-
eral subfactors: (i) a factor of order (f c/450 Hz)2.2 =
(1704/450)2.2 ≈ 18.7 due (according to Eq. (23) of
Ref. [9]) to their use of a cut-off at 450 Hz; (ii) a fac-
tor ∼ 1.24 due their use of a conservative prior (8.5) on
β; iii) a supplementary factor coming from the fact they
also fit for the 2PN spin-spin parameter σ (with a con-
servative prior), thereby working with seven correlated
parameters.

6 Note that when one is fitting for the spin parameter β, the frac-
tional precision of ν becomes dramatically worsened, down to
the level σ̂ln ν ∼ 2.8. In the case of EOSs GNH3 and BSK21 this
renders the fractional accuracy on ν comparable to the fractional
accuracy on Gµ2. In such a case there can be a large difference
in the measurability of λT , Eq. (59) versus λ′

T , Eq. (61), espe-
cially in view of the correspondingly large correlation between
Gµ2 and ν.

7 We could not reconcile the statement in Ref. [9] that they con-
sider a source at a distance of 100 Mpc, with an amplitude av-
eraged over sky position and relative inclination, with the SNR
35 quoted in their Table II, which, according to Abadie et al. [1]
seems to correspond to an optimally oriented source at 100 Mpc.
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FIG. 3 (color online). The quantities ~! ! "~! (left column) and C! ! "C!
(right column) are plotted as functions of the NS mass, at

different luminosity distances dL, for NS-NS binaries and for BH-NS systems with mass ratio q ¼ 2. The parameter errors "~! and "C!

are evaluated for AdvLIGO/Virgo. Different bands correspond to different NS EoSs.
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FIG. 3 (color online). The quantities ~! ! "~! (left column) and C! ! "C!
(right column) are plotted as functions of the NS mass, at

different luminosity distances dL, for NS-NS binaries and for BH-NS systems with mass ratio q ¼ 2. The parameter errors "~! and "C!

are evaluated for AdvLIGO/Virgo. Different bands correspond to different NS EoSs.
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Tidal deformability: a powerful tool to study the NS EoS
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However, these computations are still preliminary.
We need to better understand tidal deformation.

When we compute Love numbers, 
we consider a single,static, isolated star

deformed by a generic tidal field.

The perturbation of the spherically symmetric background has two components: 
the external tidal field, and the deformation induced by this field.

The former is described by the tidal tensor, and grows with rl; 
the latter is described by the quadrupole moments, and decrease with r-l+1.

gtt = �1 +
2m

r
+

3Qij

r3
ninj � Eijr2ninj + . . .

Tidal deformability: a powerful tool to study the NS EoS

2

deformability between polytropes and “realistic” EOS.
In this paper, we calculate the deformability for realistic
EOS, and show that a tidal signature is actually only
marginally detectable with Advanced LIGO.

In Sec. II we describe how the Love number and tidal
deformability can be calculated for tabulated EOS. We
use the equations for k

2

developed in [15], which arise
from a linear perturbation of the Oppenheimer-Volko↵
(OV) equations of hydrostatic equilibrium. In Sec. III we
then calculate k

2

and � as a function of mass for several
EOS commonly found in the literature. We find that,
in contrast to the Love number, the tidal deformability
has a wide range of values, spanning roughly an order of
magnitude over the observed mass range of neutron stars
in binary systems.

As discussed above, the direct practical importance of
the stars’ tidal deformability for gravitational wave ob-
servations of NS binary inspirals is that it encodes the
EOS influence on the waveform’s phase evolution during
the early portion of the signal, where it is accurately mod-
eled by post-Newtonian (PN) methods. In this regime,
the influence of tidal e↵ects is only a small correction to
the point-mass dynamics. However, when the signal is
integrated against a theoretical waveform template over
many cycles, even a small contribution to the phase evo-
lution can be detected and could give information about
the NS structure.

Following [11], we calculate in Sec. IV the measurabil-
ity of the tidal deformability for a wide range of equal-
and unequal- mass binaries, covering the entire expected
range of NS masses and EOS, and with proposed detector
sensitivity curves for second- and third- generation detec-
tors. We show that the measurability of � is quite sensi-
tive to the total mass of the system, with very low-mass
neutron stars contributing significant phase corrections
that are optimistically detectable in Advanced LIGO,
while larger-mass neutron stars are more di�cult to dis-
tinguish from the k

2

= 0 case of black holes [16, 17]. In
third-generation detectors, however, the tenfold increase
in sensitivity allows a finer discrimination between equa-
tions of state leading to potential measurability of a large
portion of proposed EOSs over most of the expected neu-
tron star mass range.

We conclude by briefly considering how the errors
could be improved with a more careful analysis of the
detectors and extension of the understanding of EOS ef-
fects to higher frequencies.

Finally, in the Appendix we compute the leading or-
der EOS-dependent corrections to our model of the tidal
e↵ect and derive explicit expressions for the resulting cor-
rections to the waveform’s phase evolution, extending the
analysis of Ref. [11]. Estimates of the size of the phase
corrections show that the main source of error are post-
1 Newtonian corrections to the Newtonian tidal e↵ect
itself, which are approximately twice as large as other,
EOS-dependent corrections at a frequency of 450 Hz.
Since these point-particle corrections do not depend on
unknown NS physics, they can easily be incorporated into

the analysis. A derivation of the explicit post-Newtonian
correction terms is the subject of Ref. [18].

Conventions: We set G = c = 1.

II. CALCULATION OF THE LOVE NUMBER
AND TIDAL DEFORMABILITY

As in [11] and [15], we consider a static, spherically
symmetric star, placed in a static external quadrupolar
tidal field Eij . To linear order, we define the tidal de-
formability � relating the star’s induced quadrupole mo-
ment Qij to the external tidal field,

Qij = ��Eij . (1)

The coe�cient � is related to the l = 2 dimensionless
tidal Love number k

2

by

k
2

=
3
2
�R�5. (2)

The star’s quadrupole moment Qij and the external
tidal field Eij are defined to be coe�cients in an asymp-
totic expansion of the total metric at large distances r
from the star. This expansion includes, for the met-
ric component gtt in asymptotically Cartesian, mass-
centered coordinates, the standard gravitational poten-
tial m/r, plus two leading order terms arising from the
perturbation, one describing an external tidal field grow-
ing with r2 and one describing the resulting tidal distor-
tion decaying with r�3:

� (1 + gtt)
2

= �m

r
� 3Qij

2r3

ninj + . . . +
Eij

2
r2ninj + . . . ,

(3)

where ni = xi/r and Qij and Eij are both symmetric and
traceless. The relative size of these multipole components
of the perturbed spacetime gives the constant � relating
the quadrupole deformation to the external tidal field as
in Eq. (1).

To compute the metric (3), we use the method dis-
cussed in [15]. We consider the problem of a linear static
perturbation expanded in spherical harmonics following
[19]. Without loss of generality we can set the azimuthal
number m = 0, as the tidal deformation will be axisym-
metric around the line connecting the two stars which
we take as the axis for the spherical harmonic decompo-
sition. Since we will be interested in applications to the
early stage of binary inspirals, we will also specialize to
the leading order for tidal e↵ects, l = 2.

Introducing a linear l = 2 perturbation onto the spher-
ically symmetric star results in a static (zero-frequency),
even-parity perturbation of the metric, which in the
Regge-Wheeler gauge [20] can be simplified [15] to give

ds2 = �e2�(r) [1 + H(r)Y
20

(✓,')] dt2

+e2⇤(r) [1�H(r)Y
20

(✓,')] dr2

+r2 [1�K(r)Y
20

(✓,')]
�

d✓2 + sin2 ✓d'2

�

,

(4)

Solving Einstein’s equations for
static perturbations, one finds 

the coefficients relating tidal tensor
and quadrupole tensor: the Love numbers.

l=2: Qijn
inj = ��2Eijninj
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The l=2 electric-type tidal Love number
(associated with the quadrupolar tidal deformability λ2)

is just one of the Love numbers 
characterising the deformability properties of the NS.

Tidal deformability: a powerful tool to study the NS EoS

However, this construction only concerns non-rotating NSs.
Since NSs do rotate, it is natural to ask:

which are the Love numbers of rotating NSs?
Do we need to include rotation in our analysis,

in order to extract the EoS information from GW data?

g03 = �2


S1

r
+ B(1)r

�
+ . . .

…

g00 = �1 +
2M0

r
+

(l = 0)

r3
+ 2P2(✓)


M2

r3
� E(2)r2 + (l < 2)

�
+ 2P4(✓)


M4

r5
� E(4)r4 + (l < 4)

�
+ . . .

More generally:    Ml, Sl  mass and current multipoles (M0=m=M, S1=J,M2=Q,…),
           electric- and magnetic-type components of the tidal field (~R0i0j)   E(l) , B(l)

Ml = �e
l E(l)

Sl = �m
l B(l)

{λel, λml} : electric-type and 
Love numbers
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A first step toward the determination of Love numbers of rotating NSs:

Tidal deformations of a rotating compact object

(P. Pani, L.G., A. Maselli, V. Ferrari, arXiv:1503.07365;                    P. Landry, E. Poisson, arXiv:1503.07366)

II order in rotation, axisymmetric, stationary tidal fields

I order in rotation,  non-axisymmetric, quasi-stationary tidal fields

P. Pani, L.G., A. Maselli, V. Ferrari, arXiv:1503.07365

II order in rotation, axisymmetric, stationary tidal fields

Our assumptions:

central object slowly spinning: 𝜒=J/M2<<1 (neglect O(𝜒3) )
weak tidal field: tidal sources at large distance r>>M
~stationary tidal field (and stationary distorted star)
axisymmetry m=0 (if not, no stationary solution due to precession)

Two-parameter expansion, in the NS spin and in the tidal field
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Tidal deformations of a rotating compact object

Perturbations induced by tidal source are expanded in tensor spherical harmonics.
Einstein’s equations are solved at 2nd order in spin and 1st order in  tidal field.

7

and third equations in the system (9), yielding

DA,1[h
(1)
0 ] ⌘ h

(1)
0

00 � 2

r2
h
(1)
0 = S

(1)
A , (16)

DA,2[h
(3)
0 ] ⌘ h

(3)
0

00 � 4(3r �M)

r2(r � 2M)
h
(3)
0 = S

(3)
A , (17)

where DA,i are di↵erential operators5 and S
(L)
A are source

terms that are given in Appendix C. The axial met-

ric functions h
(3)
1 and h

(1)
1 vanish identically. As ex-

pected, the sources are proportional to the coupling be-
tween the background gyromagnetic term, gt', and the

zeroth-order function H
(2)
0 . It is easy to verify that the

first-order corrections to the polar perturbations are van-
ishing, so Eq. (10) and the two equations above fully
characterize the polar-led L = 2 system to first order in
the spin. The explicit solution of the equations above is
given in Appendix D. This solution depends on four new
integration constants, ↵1,3 and �1,3, which arise from the
homogeneous problem associated with Eqs. (16) and (17),
and that are discussed in Sec. IIID.

C. Second-order corrections

With the zeroth-order and the first-order solutions at
hand, from the first equation in the system (9) we can
compute the second-order correction to the metric coe�-

cient H(2)
0 (r), which we denote by �H

(2)
0 (r) to distinguish

it from the zeroth order quantity. This correction satis-
fies the following inhomogeneous ODE

DP,2[�H
(2)
0 ] ⌘ �H

(2)
0

00

+
2(r �M)

r(r � 2M)
�H

(2)
0

0

� 2
�

2M2 + 3r2 � 6Mr
�

r2(r � 2M)2
�H

(2)
0 = S

(2)
P , (18)

where the source S
(2)
P is also given in Appendix C. Note

that �H
(2)
1 = 0 (i.e. polar perturbations remain static

also toO(�2)), whereas �H(2)
2 and �K(2) are algebraically

related to �H
(2)
0 and its derivatives.

Finally, to fully characterize the second-order correc-
tions, one needs to compute the last two equations in (9),
which define the second-order terms in the induced L = 0
and L = 4 polar sectors. The L = 4 system reduces to
the second-order ODE

DP,4[�H
(4)
0 ] ⌘ �H

(4)
0

00

+
2(r �M)

r(r � 2M)
�H

(4)
0

0

� 4
�

M2 + 5r2 � 10Mr
�

r2(r � 2M)2
�H

(4)
0 = S

(4)
P , (19)

5 Note that, while DA,2 is obtained from the operator DA,L for
L = 2, the operator DA,1 is di↵erent because L = 1 pertur-
bations satisfy a di↵erent set of equations, as discussed in Ap-
pendix B.

where the source S
(4)
P is given in Appendix C. Also in

this case the other L = 4 polar components follow alge-

braically from �H
(4)
0 and its derivatives.

On the other hand, the L = 0 polar system satisfies a
di↵erent set of equations (cf. Appendix B), which can be
reduced to the following first-order system:

�H
(0)
0

0

+
�H

(0)
2

r � 2M
= S

(0,0)
P , (20)

�H
(0)
2

0

+
�H

(0)
2

r � 2M
= S

(0,2)
P , (21)

and the sources S(0,0)
P and S

(0,2)
P are given in Appendix C.

Remarkably, all the equations above can be solved an-
alytically. Schematically, the nonvanishing metric coef-
ficients to quadratic order in the spin read (reinstating
the bookkeeping parameter ✏a only in these equations)

gtt = �e⌫


1 + 2✏2a

✓

j0 + j2P2 � r2e�⌫

2
(⌦� !̄)2

◆

+✏2a�H
(0)
0 Y 00 +

⇣

H
(2)
0 + ✏2a�H

(2)
0

⌘

Y 20

+✏2a�H
(4)
0 Y 40

i

, (22)

gt' = �✏ar
2(⌦� !̄) sin2 #

+✏a sin#
⇣

h
(1)
0 Y 10

,# + h
(3)
0 Y 30

,#

⌘

, (23)

grr =



1� 2M
r

�

�1

⇥


1 + 2✏2a
m0 +m2P2

r � 2M
+✏2a�H

(0)
2 Y 00 +

⇣

H
(2)
2 + ✏2a�H

(2)
2

⌘

Y 20

+✏2a�H
(4)
2 Y 40

i

, (24)

g## = r2
⇥

1 + 2✏2a(v2 � j2)P2

+✏2a�K
(0)Y 00 +

⇣

K(2) + ✏2a�K
(2)

⌘

Y 20

+✏2a�K
(4)Y 40

i

, (25)

g'' = sin2 #g## , (26)

where we recall that Y `0 = Y `0(#) are the scalar spher-
ical harmonics with m = 0 and P2 ⌘ 2

p

⇡/5Y 20 is a
Legendre polynomial. The radial functions ⌫, M, !̄, j0,
j2, m0, m2, v2 are given in Appendix A; the radial func-

tions h
(1)
0 and h

(2)
0 are given in Appendix D; the radial

functionsH(2)
0 , H(2)

2 andK(2) are given in Eqs. (12)–(14);

whereas the radial functions �H(0)
0 , �H(2)

0 , �H(4)
0 , �H(0)

2 ,

�H
(2)
2 , �H(4)

2 , �K(0), �K(2), �K(4) are cumbersome and,
to avoid typographical errors and help comparison, their
full solution is provided in an online notebook in the Sup-
plemental Material. Note that the only nonvanishing o↵-
diagonal term of the metric is gt' and it only contains
the background gyromagnetic term and the axial pertur-
bations with L = 1 and L = 3.
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and third equations in the system (9), yielding

DA,1[h
(1)
0 ] ⌘ h

(1)
0

00 � 2

r2
h
(1)
0 = S

(1)
A , (16)

DA,2[h
(3)
0 ] ⌘ h

(3)
0

00 � 4(3r �M)

r2(r � 2M)
h
(3)
0 = S

(3)
A , (17)

where DA,i are di↵erential operators5 and S
(L)
A are source

terms that are given in Appendix C. The axial met-

ric functions h
(3)
1 and h

(1)
1 vanish identically. As ex-

pected, the sources are proportional to the coupling be-
tween the background gyromagnetic term, gt', and the

zeroth-order function H
(2)
0 . It is easy to verify that the

first-order corrections to the polar perturbations are van-
ishing, so Eq. (10) and the two equations above fully
characterize the polar-led L = 2 system to first order in
the spin. The explicit solution of the equations above is
given in Appendix D. This solution depends on four new
integration constants, ↵1,3 and �1,3, which arise from the
homogeneous problem associated with Eqs. (16) and (17),
and that are discussed in Sec. IIID.

C. Second-order corrections

With the zeroth-order and the first-order solutions at
hand, from the first equation in the system (9) we can
compute the second-order correction to the metric coe�-

cient H(2)
0 (r), which we denote by �H

(2)
0 (r) to distinguish

it from the zeroth order quantity. This correction satis-
fies the following inhomogeneous ODE

DP,2[�H
(2)
0 ] ⌘ �H

(2)
0

00

+
2(r �M)

r(r � 2M)
�H

(2)
0

0

� 2
�

2M2 + 3r2 � 6Mr
�

r2(r � 2M)2
�H

(2)
0 = S

(2)
P , (18)

where the source S
(2)
P is also given in Appendix C. Note

that �H
(2)
1 = 0 (i.e. polar perturbations remain static

also toO(�2)), whereas �H(2)
2 and �K(2) are algebraically

related to �H
(2)
0 and its derivatives.

Finally, to fully characterize the second-order correc-
tions, one needs to compute the last two equations in (9),
which define the second-order terms in the induced L = 0
and L = 4 polar sectors. The L = 4 system reduces to
the second-order ODE

DP,4[�H
(4)
0 ] ⌘ �H

(4)
0

00

+
2(r �M)

r(r � 2M)
�H

(4)
0

0

� 4
�

M2 + 5r2 � 10Mr
�

r2(r � 2M)2
�H

(4)
0 = S

(4)
P , (19)

5 Note that, while DA,2 is obtained from the operator DA,L for
L = 2, the operator DA,1 is di↵erent because L = 1 pertur-
bations satisfy a di↵erent set of equations, as discussed in Ap-
pendix B.

where the source S
(4)
P is given in Appendix C. Also in

this case the other L = 4 polar components follow alge-

braically from �H
(4)
0 and its derivatives.

On the other hand, the L = 0 polar system satisfies a
di↵erent set of equations (cf. Appendix B), which can be
reduced to the following first-order system:
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�H

(0)
2
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(0,0)
P , (20)

�H
(0)
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0

+
�H

(0)
2

r � 2M
= S

(0,2)
P , (21)

and the sources S(0,0)
P and S

(0,2)
P are given in Appendix C.

Remarkably, all the equations above can be solved an-
alytically. Schematically, the nonvanishing metric coef-
ficients to quadratic order in the spin read (reinstating
the bookkeeping parameter ✏a only in these equations)

gtt = �e⌫


1 + 2✏2a

✓

j0 + j2P2 � r2e�⌫

2
(⌦� !̄)2

◆

+✏2a�H
(0)
0 Y 00 +

⇣

H
(2)
0 + ✏2a�H

(2)
0

⌘

Y 20

+✏2a�H
(4)
0 Y 40

i

, (22)

gt' = �✏ar
2(⌦� !̄) sin2 #

+✏a sin#
⇣

h
(1)
0 Y 10

,# + h
(3)
0 Y 30

,#

⌘

, (23)

grr =



1� 2M
r

�

�1

⇥


1 + 2✏2a
m0 +m2P2

r � 2M
+✏2a�H

(0)
2 Y 00 +

⇣

H
(2)
2 + ✏2a�H

(2)
2

⌘

Y 20

+✏2a�H
(4)
2 Y 40

i

, (24)
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⇥

1 + 2✏2a(v2 � j2)P2
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(0)Y 00 +

⇣

K(2) + ✏2a�K
(2)

⌘

Y 20

+✏2a�K
(4)Y 40

i

, (25)
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where we recall that Y `0 = Y `0(#) are the scalar spher-
ical harmonics with m = 0 and P2 ⌘ 2
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⇡/5Y 20 is a
Legendre polynomial. The radial functions ⌫, M, !̄, j0,
j2, m0, m2, v2 are given in Appendix A; the radial func-

tions h
(1)
0 and h

(2)
0 are given in Appendix D; the radial

functionsH(2)
0 , H(2)

2 andK(2) are given in Eqs. (12)–(14);

whereas the radial functions �H(0)
0 , �H(2)

0 , �H(4)
0 , �H(0)

2 ,

�H
(2)
2 , �H(4)

2 , �K(0), �K(2), �K(4) are cumbersome and,
to avoid typographical errors and help comparison, their
full solution is provided in an online notebook in the Sup-
plemental Material. Note that the only nonvanishing o↵-
diagonal term of the metric is gt' and it only contains
the background gyromagnetic term and the axial pertur-
bations with L = 1 and L = 3.

Coupled system of ODEs 
among polar and axial parity 
components with different 

harmonic indexes

(P. Pani, L.G., A. Maselli, V. Ferrari, arXiv:1503.07365)

Slowly rotating background

Schematic 
structure 

of the 
equations:

5

schematically (see Ref. [72] for a pedagogical derivation)

0 = A` + ✏amĀ` + ✏2aÂ`

+ ✏a(Q`P̃`�1 +Q`+1P̃`+1)

+ ✏2a

h

Q`�1Q`Ă`�2 +Q`+2Q`+1Ă`+2

i

+O(✏3a) , (4)

0 = P` + ✏amP̄` + ✏2aP̂`

+ ✏a(Q`Ã`�1 +Q`+1Ã`+1)

+ ✏2a

h

Q`�1Q`P̆`�2 +Q`+2Q`+1P̆`+2

i

+O(✏3a) , (5)

where we have defined

Q` =

r

`2 �m2

4`2 � 1
, (6)

and A`, Ā`, Ã`, Â`, Ă` are linear combinations of the
axial perturbations with multipolar index `; similarly,
P`, P̄`, P̃`, P̂`, P̆` are linear combinations of the polar
perturbations with index `.

The structure of Eqs. (4)–(5) is interesting. In the
limit of slow rotation a Laporte-like “selection rule” [65]
imposes perturbations with a given parity and index `
to couple only to: (i) perturbations with opposite parity
and index ` ± 1 at O(✏a); (ii) perturbations with same

parity and same index ` up to O(✏2a); (iii) perturbations
with same parity and index `±2 at O(✏2a). Furthermore,
from Eq. (6) it follows that Q

±m = 0, and therefore if
|m| = ` the coupling of perturbations with index ` to
perturbations with indices `� 1 and `� 2 is suppressed.
This general property is known as “propensity rule” [65]
in atomic theory, and states that transitions ` ! ` + 1
are strongly favored over transitions ` ! ` � 1. Note
that the slow-rotation technique is well-known in quan-
tum mechanics and the coe�cients Q` are in fact related
to the usual Clebsch-Gordan coe�cients [72].

C. Axial-led and polar-led perturbations

Due to the coupling between di↵erent multipolar in-
dices, Eqs. (4)–(5) form an infinite system of coupled
ODEs and the spectrum of their solutions is extremely
rich. However, in special configurations the perturbation
equations can be greatly simplified, as we now show.

First, we expand the axial and polar perturbation func-
tions (schematically denoted as a`m and p`m, respec-
tively) that appear in Eqs. (4) and (5):

a`m = a
(0)
`m + ✏a a

(1)
`m + ✏2aa

(2)
`m +O(✏3a)

p`m = p
(0)
`m + ✏a p

(1)
`m + ✏2ap

(2)
`m +O(✏3a) . (7)

The terms Ă`±2 and P̆`±2 in Eqs. (4)–(5) are multiplied
by factors ✏2a, so they only depend on the zeroth-order

perturbation functions, a(0)`±2m, p(0)`±2m. The terms Ã`±1

and P̃`±1 are multiplied by factors ✏a, so they only de-
pend on zeroth- and first-order perturbation functions

a
(0)
`±1m, p(0)`±1m, a(1)`±1m, p(1)`±1m.

Since in the nonrotating limit axial and polar perturba-
tions are decoupled, a possible consistent set of solutions

of the system (4)–(5) has a
(0)
L±2m ⌘ 0, where ` = L is a

specific value of the harmonic index. This ansatz leads
to the “axial-led” [76] subset of Eqs. (4)–(5):

8

>

>

>

>

<

>

>

>

>

:

AL + ✏amĀL + ✏2aÂL + ✏a(QLP̃L�1 +QL+1P̃L+1) = 0
PL+1 + ✏amP̄L+1 + ✏aQL+1ÃL = 0
PL�1 + ✏amP̄L�1 + ✏aQLÃL = 0
AL+2 + ✏aQL+2P̃L+1 + ✏2aQL+1QL+2ĂL = 0
AL�2 + ✏aQL�1P̃L�1 + ✏2aQLQL�1ĂL = 0

,

(8)
where the first equation is solved to second order in the
spin, the second and the third equations are solved to
first order in the spin, and the last two equations do
not contain zeroth- and first-order terms in the spin, i.e.
aL±2 = O(✏2a). The truncation above is consistent be-
cause in the axial equations for ` = L the polar source
terms with ` = L ± 1 appear multiplied by a factor ✏a,

so terms p
(2)
L±1m would be of higher order in the axial

equations.

Similarly, another consistent set of solutions of the

same system has p(0)L±2m ⌘ 0. The corresponding “polar-
led” system reads

8

>

>

>

>

<

>

>

>

>

:

PL + ✏amP̄L + ✏2aP̂L + ✏a(QLÃL�1 +QL+1ÃL+1) = 0
AL+1 + ✏amĀL+1 + ✏aQL+1P̃L = 0
AL�1 + ✏amĀL�1 + ✏aQLP̃L = 0
PL+2 + ✏aQL+2ÃL+1 + ✏2aQL+1QL+2P̆L = 0
PL�2 + ✏aQL�1ÃL�1 + ✏2aQLQL�1P̆L = 0

.

(9)
Interestingly, within this perturbative scheme a notion of
“conserved quantum number” L is still meaningful: even
though, for any given L, rotation couples terms with op-
posite parity and di↵erent multipolar index, the subsys-
tems (8) and (9) are closed, i.e. they contain a finite

number of equations which fully describe the dynamics
to second order in the spin.

The main assumption that leads to Eq. (8) (resp.
Eq. (9)) is that only axial (resp. polar) perturbations
with harmonic index L are activated at zeroth order in
the rotation. In terms of an external tidal field, we are
assuming that such field is a pure ` = L magnetic (resp.
electric) state at zeroth order in the rotation. This as-
sumption would not hold if the zeroth-order tidal field
is a mixture between di↵erent ` states. In such case
one has to deal with the full system (4)–(5), which is
much more involved. However, working with the sys-
tem (9) should provide a reliable approximation, because
the electric quadrupolar (` = 2 ) contribution to the ex-
ternal tidal field is the dominant one.

The explicit form of the axial-led and polar-led sys-
tems (8) and (9) for a spinning stationary and axisym-
metric object is derived in Appendix B and is available
in a Mathematica R

� notebook provided in the Supple-
mental Material.
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We considered l=2 m=0 polar-parity tidal field,
exciting a set of (polar l=2)-led perturbations,

and - to begin with - solved the equations in the exterior of the NS.

Tidal deformations of a rotating compact object
(P. Pani, L.G., A. Maselli, V. Ferrari, arXiv:1503.07365)

General solution:

�gµ⌫ = ↵�g(↵)µ⌫ + ��g(�)µ⌫ +
4X

l=0

�l�g
(�l)
µ⌫

↵ = E(2)M2 External tidal field, 
divergent at infinity ~r2

Response of the
compact object 

to the external field;
vanishes at infinity

Modification of multipole moments

Imposing the boundary conditions
(for BHs: regularity at the horizon; for NSs: matching with interior solution)

one finds the 𝛾s in terms of the αs, and then the Love numbers

�e
l =

@Ml

@E(2)
�m
l =

@Sl

@E(2)
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We considered l=2 m=0 polar-parity tidal field,
exciting a set of (polar l=2)-led perturbations,

and - to begin with - solved the equations in the exterior of the NS.

Tidal deformations of a rotating compact object
(P. Pani, L.G., A. Maselli, V. Ferrari, arXiv:1503.07365)

General solution:

�gµ⌫ = ↵�g(↵)µ⌫ + ��g(�)µ⌫ +
4X

l=0

�l�g
(�l)
µ⌫

Strictly speaking, multipole moments can only be defined 
in asymptotically flat spacetimes!

Then, one considers the solution without the external tidal field
and works out the multipoles Ml, Sl in terms of the 𝛾l,

and then compute the Love numbers

�e
l =

@Ml

@E(2)
�m
l =

@Sl

@E(2)
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Problem: it is not obvious how to distinguish between
the external tidal field and the response of the compact object.

Tidal deformations of a rotating compact object
(P. Pani, L.G., A. Maselli, V. Ferrari, arXiv:1503.07365)

This introduces some arbitrariness in the definition of Love numbers.

But we should keep in mind that these issues need to be clarified, 
even in the non-rotating case,

to be sure that the Love numbers defined in this way are really those 
appearing in the GW waveform.

In the rotating case, the α part has also terms as 1/r3, 1/r4, …
We made the simplest choice, corresponding to a well-behaved BH solution,

extended to the case of NSs.

This problem also occurs in the static, spherically symmetric case, 
but it is less severe than in the static, non-rotating case,

since in that case the powers of r in the two solutions do not overlap:

�gtt = ↵
⇣ r

M

⌘✓
1� 2M

r

◆2

+ �

✓
8

5

M3

r3
+

8

5

M4

r4
+

64

35

M5

r4
+ . . .

◆
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In the case of BHs we explicitly found the full solution,
finding that the Love numbers of a rotating BH are vanishing

(extending results of  Binnington & Poisson PRD ’09) at least up to 2nd order in spin 

Tidal deformations of a rotating compact object
(P. Pani, L.G., A. Maselli, V. Ferrari, arXiv:1503.07365)

Multipole moments of a slowly rotating BH  
are not affected by an external, weak, axisymmetric tidal field

(no-hair apply to tidally deformed BHs)
Ml + iSl = M l+1(i�)l (� = a/M)

The case of NSs is more complex, 
since we have to solve the equations inside the star.

Using the same prescription to define Love numbers, we solved the equations
up to first order in the spin parameter 𝜒.

We generalized the tidal source to both electric and magnetic terms,
and l=2,3 (but still m=0).

(P. Pani, L.G., A. Maselli, V. Ferrari, in preparation)

I will not say more on this BH solution, since we are interested on NSs…
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Rotation couples contributions with different parities and different values of l.

Tidal deformations of a rotating neutron stars
(P. Pani, L.G., A. Maselli, V. Ferrari, in preparation)

Polar l=2 tidal source               polar l=2 Love number:    O(𝜒2)
Our computation

at O(𝜒) 
can not see it!

Axial l=1,3 tidal source               polar l=2 Love number:    O(𝜒)
Our computation

at O(𝜒) 
can see it!

P2 + ✏a(Q1A1 +Q3A3) = 0

We can compute δλe23, not δλe22.
One would expect the contribution of δλe23 to be irrelevant, 

because for typical sources the axial, “magnetic” component is negligible (          )B ⌧ E
but it turns out that  δλe23 can be very large:               ��̄e

23 ⇠ 300�̄e
2

✓
�̄e
2 =

�e
2

M3
, ��̄e

23 =
��e

23

M4

◆

Rotational corrections to Love numbers: ��e
ll0 =

@�Ml

@B(l0)
��m

ll0 =
@�Sl

@E(l0)
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Tidal deformations of a rotating neutron stars
(P. Pani, L.G., A. Maselli, V. Ferrari, in preparation)

We can compute δλe23, not δλe22.
One would expect the contribution of δλe23 to be irrelevant, 

because for typical sources the axial, “magnetic” component is negligible (          )B ⌧ E
but it turns out that  δλe23 can be very large:               ��̄e

23 ⇠ 300�̄e
2

✓
�̄e
2 =

�e
2

M3
, ��̄e

23 =
��e

23

M4

◆

3

we will introduce the notation

��
(``0)
E ⌘ �

(``00)
E,� , ��

(``0)
M ⌘ �

(``00)
M,� . (4)

For example, ��(23)
E denotes the correction to �

(2)
E arising

through the coupling to the axisymmetric magnetic oc-
tupolar (` = 3) component of the tidal field to first order
in the spin.

B. Estimating spin-corrections to the tidal Love
numbers

The relative amplitude of first- and second-order spin
corrections to the tidal Love numbers depends on two
competitive e↵ects: on the one hand the corrections lin-
ear in the spin are larger than the quadratic corrections
when � ⌧ 1, as expected for old NSs in the late stages
of a binary inspiral; on the other hand, the magnetic oc-
tupolar component of the tidal field is suppressed relative
to the quadrupolar electric component, at least when the
orbital velocity is small, v ⌧ 1. It is therefore interest-
ing to discuss in which regime the O(�) axisymmetric
corrections that we compute in this paper are the dom-
inant contribution and also whether spin corrections are
relevant at all.

As a representative example, let us consider an equal-
mass NS-NS binary with total mass⇠ 3M at large orbital
separation r0 � M . To the leading order, the ` = 2,
axisymmetric components of the tidal field scale as

E(m)
0 ⇠ M

r30
, B(2)

m ⇠ M

r30

r
M

r0
, (5)

for the electric component and the magnetic component,
respectively. Note that the latter component is sup-
pressed by a 0.5PN factor v =

p
M/r0. On the other

hand, the ` = 3 components are suppressed by a factor
1/r0 relative to their ` = 2 counterparts, i.e.

E(3)
m ⇠ M

r40
, B(3)

m ⇠ M

r40

r
M

r0
. (6)

Therefore, the deformed quadrupole moment of a spin-
ning NS in an axisymmetric tidal environment to second
order in the spin would approximately read

M2

M3
⇠ M3

r30

"
�̄
(2)
E + �

✓
M

r0

◆3/2

��̄
(23)
E + �2��̄

(22)
E

#

+ �2


4

5
�q � 1

�
, (7)

where barred quantities are made dimensionless by di-
viding the corresponding quantity by suitable powers of

M and, for clarity, we defined ��
(22)
E ⌘ �

(220)
E,+ . In Eq. (7),

the first line represents the tidal corrections, whereas the
second line corresponds to the spin-induced quadrupole
with �q being defined as in Paper I (�q = 0 for a Kerr
black hole).
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FIG. 2. Ratio between the (dimensionless) rotational tidal

Love number ��̄(23)
E and the standard electric quadrupolar

tidal Love number �̄(2)
E for the various EoS considered in this

work.

As we will show, relations similar to Eq. (7) can be
obtained also for other (mass and current) multipole mo-
ments and involve the novel family of tidal Love numbers
defined in Eqs. (2)–(3). The main purpose of the present
work is to compute such spin-induced corrections for a NS
described by a realistic EOS to first order in the spin.
In order to quantify the e↵ect of such spin-induced

corrections, we can compare the O(�) axisymmetric tidal
correction to M2 relative to the static case, namely

�M
O(�)
2

�M
O(�0)
2

⇠ 10�2 ��̄
(23)
E

�̄
(2)
E

⇣ �

0.1

⌘✓
M

R

◆3/2 ✓5R

r0

◆3/2

,(8)

where we have normalized the parameters to � ⇠ 0.1
and r0 ⇠ 5R. This represents an extrapolation because
the expression above are valid when the source of the
tidal field is at large distance from the central object,
r0 � R, but it should nevertheless capture the correct
order of magnitude. It is clear that the relative ampli-

tude depends on the ratio ��̄
(23)
E /�̄

(2)
E which we show in

Fig. 2 as a function of the NS compactness, anticipating
some of the results presented in the rest of this work.
Interestingly, for a typical NS compactness, M/R ⇠ 0.2,

��̄
(23)
E ⇠ 300�̄(2)

E and, from Eq. (8), we find that, for
� ⇠ 0.1, the O(�) correction to M2 is about 20% of
its static counterpart. Because the amplitude of higher-
order tidal multipoles increases near the merger, we ex-
pect such correction to become even larger. This simple
estimate shows that spin corrections to the tidal Love
numbers are nonnegligible and they might considerably
a↵ect the gravitational waveforms near the merger.
Likewise, we can also compare the relative amplitude of

the O(�) and the O(�2) tidal corrections to M2, namely

�M
O(�2)
2

�M
O(�)
2

⇠ ��̄
(22)
E

��̄
(23)
E

⇣ �

0.1

⌘✓
R

M

◆3/2 ⇣ r0
5R

⌘3/2
, (9)

This correction is suppressed by � but is more relevant
at large orbital distance. Clearly, in order to quantity
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Let us consider a concrete example.

Tidal deformations of a rotating neutron stars
(P. Pani, L.G., A. Maselli, V. Ferrari, in preparation)

A NS-NS coalescing binary, with m1=m2=M, at distance r. 
One NS is the source of the tidal field acting on the other. Spin ~ orbital rotation.

Of course, it is very rough to treat the deformed star as stationary:
it is just an order-of-magnitude estimate of the relevance of these corrections.

thus

The l=2, m=0 component of the tidal field is 

E(2) ⇠ M

r3
B(3) ⇠ M3/2

r9/2
M2

M3
⇠ (�̄e

2 + �2��̄e
22)M

2E(2) + ���̄e
23M

4B(3)
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��̄e
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22

!

if r=5R, R=6M,
up to ~10-20%and the error in neglecting

rotational contribution can be
��e

2

�e
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22

�̄e
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Conclusions

They are characterized by Love numbers, relating multipole moments of the 
tidally deformed NS with those of the tidal field. They appear in the 
waveform, and are sensitive of the EoS, but if we want to use it as a main 
tool we should get a better theoretical understanding.

Tidal deformations of NSs can be extremely important to extract information 
on the NS EoS from the gravitational waveform emitted by coalescing NS-NS

We studied tidal deformations of a rotating NS. 
     Exterior solution solved up to O(𝜒2), full solution up to O(𝜒),
     under simplifying assumption (axisymmetric, stationary source).

This source is a bad model for interaction in coalescing binary, but still an 
order-of-magnitude computation reveals that rotation, coupling l=3 to l=2, 
could affect quadrupolar Love number in late inspiral up to ~10-20%.

There is a potential ambiguity in the definition of Love numbers. It mainly 
affects rotating NSs; the non-rotating case should be ok, but we’ll be 100% sure 
only with explicit computation of the 5PN tidal contribution to the waveform

 Even a smaller effect would significantly affect the validity of I-Love-Q


