

Annual NewCompStar Conference 2015

Nucleosynthesis of heavy elements in core-collapse supernovae & neutron star mergers

Almudena Arcones Helmholtz Young Investigator Group

Solar system abundances

Solar photosphere and meteorites: chemical signature of gas cloud where the Sun formed

Contribution of all nucleosynthesis processes

s-process:
slow neutron capture
r-process:
rapid neutron capture

abundance = mass fraction / mass number

Solar system abundances

Solar photosphere and meteorites: chemical signature of gas cloud where the Sun formed

Contribution of all nucleosynthesis processes

abundance = mass fraction / mass number

Solar system abundance

solar r-process = total - s-process - p-process = residual abundances

r-process peaks:

1st peak: A≈80 → N=50 2nd peak: A≈130 → N=82 3rd peak: A≈195 → N=126 rare earth peak A≈165 → ?

Sneden & Cowan 2003

Galactic chemical evolution

ESO PR Photo 25b/02 (30 October 2002)

Oldest observed stars

The very metal-deficient star HE 0107-5240

Elemental abundances in:

- ultra metal-poor stars and

- solar system

Robust r-process for 56<Z<83
Scatter for lighter heavy elements, Z~40

How many "r-processes" contribute to solar system and UMP stars abundances?

- CS 22892-052: Sneden et al. (2003)
- HD 115444: Westin et al. (2000)
- BD+17°324817: Cowan et al. (2002)
- * CS 31082-001: Hill et al. (2002)
- HD 221170: Ivans et al. (2006)
- HE 1523-0901: Frebel et al. (2007)

Sneden, Cowan, Gallino 2008

Trends with metallicity

Fe and Mg produced in same site: core-collapse supernovae

Significant scatter at low metallicities

r-process production rare in the early Galaxy

Mg and Fe production is not coupled to r-process production

The r-process: what do we know?

- Solar system: residual r-process
 r-process peaks and path → fast neutron capture
- Astrophysical environment: explosive and high neutron density
- UMP stars: robust process from 2nd to 3rd peak contribution from other process(es) below 2nd peak
- Chemical evolution: r-process does not occur in every core-collapse supernovae

The r-process: what do we know?

- Solar system: residual r-process
 r-process peaks and path → fast neutron capture
- Astrophysical environment: explosive and high neutron density
- UMP stars: robust process from 2nd to 3rd peak contribution from other process(es) below 2nd peak
- Chemical evolution: r-process does not occur in every core-collapse supernovae

What do we need to know better?

- Astrophysical site(s)
- Nuclear physics

Where does the r-process occur?

Core-collapse supernovae

Neutron star mergers

•neutrino-driven winds (Woosley et al. 1994,...)

- •shocked surface layers (Ning, Qian, Meyer 2007)
- •jets (Winteler et al. 2012)
- •neutrino-induced in He shell (Banerjee, Haxton, Qian 2011)

·dynamic ejecta·neutrino-driven winds·evaporation disk

(Lattimer & Schramm 1974, Freiburghaus et al. 1999,)

Core-collapse supernovae

the death of massive stars and the birth of new elements

Core-collapse supernova simulations

Long-time hydrodynamical simulations:

- ejecta evolution from ~5ms after bounce to ~3s in 2D (Arcones & Janka 2011) and ~10s in 1D (Arcones et al. 2007)
- explosion triggered by neutrinos
- detailed study of nucleosynthesis-relevant conditions

Core-collapse supernova simulations

Long-time hydrodynamical simulations:

- ejecta evolution from ~5ms after bounce to ~3s in 2D (Arcones & Janka 2011) and ~10s in 1D (Arcones et al. 2007)
- explosion triggered by neutrinos
- detailed study of nucleosynthesis-relevant conditions

neutrons and protons form a-particles a-particles recombine into seed nuclei

T < 3 GK

NSE \rightarrow charged particle reactions / α -process \rightarrow r-process T = 10 - 8 GK 8 - 2 GK weak r-process vp-process

for a review see Arcones & Thielemann (2013)

Neutrino-driven wind parameters

r-process \Rightarrow high neutron-to-seed ratio (Y_n/Y_{seed}~100)

- Short expansion time scale: inhibit α-process and formation of seed nuclei
- High entropy: photons dissociate seed nuclei into nucleons

Neutrino-driven wind parameters

r-process \Rightarrow high neutron-to-seed ratio (Y_n/Y_{seed}~100)

- Short expansion time scale: inhibit α-process and formation of seed nuclei
- High entropy: photons dissociate seed nuclei into nucleons

nditions are not realized in drodynamic simulations ones et al. 2007, Fischer et al. 2010, epohl et al. 2010, Roberts et al. 2010, ones & Janka 2011, ...)

$$\begin{split} S_{wind} &= 50 - 120 \ k_B/nuc \\ \tau &= few \ ms \\ Y_e &\approx 0.4 - 0.6? \end{split}$$

ditional aspects:

Id termination, extra energy Irce, rotation and magnetic fields, Itrino oscillations

Which elements are produced in neutrino winds?

Which elements are produced in neutrino winds?

Neutron or proton rich?

Wind Ye still uncertain due to neutrino-matter interactions at high densities

 $Y_e \approx \left[1 + \frac{L_{\bar{\nu}_e}(\epsilon_{\bar{\nu}_e} - 2\Delta + 1.2\Delta^2/\epsilon_{\bar{\nu}_e})}{L_{\nu_e}(\epsilon_{\nu_e} + 2\Delta + 1.2\Delta^2/\epsilon_{\nu_e})}\right]^{-1}$

Qian & Woosley 1996 $(\Delta = m_n - m_p)$

see also Roberts et al. 2012, Martinez-Pinedo et al. 2012

neutron rich: $\epsilon_{\bar{\nu}_e} - \epsilon_{\nu_e} \gtrsim 4\Delta \approx 5 \text{ MeV}$

(Arcones & Montes, 2011)

Lighter heavy elements in neutrino-driven winds

Production of p-nuclei

0.50 neutron rich Abundance x M_{ej} [M_{solar}] ي، 0.48 10⁻⁶ 0.46 23456 8 10⁻⁷ t (s) 10⁻⁸ 10⁻⁹ 38 36 40 42 44 46 48 50 52 Ζ

weak r-process

Overproduction at A=90, magic neutron number N=50 (Hoffman et al. 1996) suggests: only a fraction of neutron-rich ejecta (Wanajo et al. 2011)

(Arcones & Montes, 2011)

Lighter heavy elements in neutrino-driven winds

Ultra metal-poor stars with high and low enrichment of heavy r-process nuclei suggest: at least two components or sites (Qian & Wasserburg):

Travaglio et al. 2004: solar=r-process+s-process+LEPP Montes et al. 2007: solar LEPP ~ UMP LEPP \rightarrow unique

Ultra metal-poor stars with high and low enrichment of heavy r-process nuclei suggest: at least two components or sites (Qian & Wasserburg):

Ultra metal-poor stars with high and low enrichment of heavy r-process nuclei suggest: at least two components or sites (Qian & Wasserburg):

Travaglio et al. 2004: solar=r-process+s-process+LEPP Montes et al. 2007: solar LEPP ~ UMP LEPP \rightarrow unique

Ultra metal-poor stars with high and low enrichment of heavy r-process nuclei suggest: at least two components or sites (Qian & Wasserburg):

Travaglio et al. 2004: solar=r-process+s-process+LEPP Montes et al. 2007: solar LEPP ~ UMP LEPP \rightarrow unique

Nucleosynthesis components

Abundance of many UMP stars can be explained by two components:

Component abundance pattern: Y_H and Y_L

Fit abundance as combination of components:

 $Y_{\rm calc}(Z) = (C_H Y_H(Z) + C_L Y_L(Z)) \cdot 10^{[{\rm Fe}/{\rm H}]}$

C.J. Hansen, Montes, Arcones (2014)

L-component: constraining conditions

L-component abundance ratios:

Sr/Y = 6.13 (//) Sr/Zr = 1.22 (\\) Sr/Ag = 48.2

L-component: constraining conditions

L-component abundance ratios:

Sr/Y = 6.13 (//) Sr/Zr = 1.22 (\\) Sr/Ag = 48.2

L-component: constraining conditions

L-component abundance ratios:

Sr/Y = 6.13 (//) Sr/Zr = 1.22 (\\) Sr/Ag = 48.2

Key reactions: weak r-process

Bliss, Arcones, Montes, Pereira (in prep.)

Astrophysics and nuclear physics uncertainties

Error bar: variation of (α, n) by factors 10 and 0.1 for all isotopic chain

Astrophysics and nuclear physics uncertainties

Error bar: variation of (α,n) by factors 10 and 0.1 for all isotopic chain Color: variation of astrophysical conditions (Y_e)

Astrophysics and nuclear physics uncertainties

Error bar: variation of (α,n) by factors 10 and 0.1 for all isotopic chain Color: variation of astrophysical conditions (Y_e)

Bliss, Arcones, Montes, Pereira (in prep.)

Origin of elements from Sr to Ag

Nucleosynthesis: identify key reactions

Neutron-star mergers

e dat Nephetigran't	Rezzolla et al.

Neutron star mergers

Ejecta from three regions:

- dynamical ejecta
- neutrino-driven wind
- disk evaporation

Neutron star mergers: robust r-process

Right conditions for a successful r-process (Lattimer & Schramm 1974, Freiburghaus et al. 1999)

nucleosynthesis of dynamical ejecta robust r-process:

- extreme neutron-rich conditions ($Y_e = 0.04$)
- several fission cycles

Korobkin, Rosswog, Arcones, Winteler (2012)

see also Bauswein, Goriely, and Janka

Hotokezaka, Kiuchi, Kyutoku, Sekiguchi, Shibata, Tanaka, Wanajo Ramirez-Ruiz, Roberts, ...

Neutron star mergers: robust r-process

.70 .60 .50

x km

Hotokezaka, Kiuchi, Kyutoku, Sekiguchi, Shibata, Tanaka, Wanajo Ramirez-Ruiz, Roberts, ... T (GK)

ρ (g cm⁻³)

Korobkin et al. 2012

Radioactive decay in neutron star mergers

r-process heating affects:

- merger dynamics: late X-ray emission in short GRBs (Metzger, Arcones, Quataert, Martinez-Pinedo 2010)
- remnant evolution (Rosswog, Korobkin, Arcones, Thielemann, Piran 2014)

Radioactive decay in neutron star mergers

Transient with kilo-nova luminosity (Metzger et al. 2010, Roberts et al. 2011, Goriely et al. 2011): direct observation of r-process, EM counter part to GW (see also Kulkarni 2005: macronova)

Multi messenger (e.g. Metzger & Berger 2012, Rosswog 2012, 2013, Bauswein et al. 2013)

NATURE | LETTER near-final version

< 🛛 🖨

A 'kilonova' associated with the short-duration γ-ray burst GRB130603B

N. R. Tanvir, A. J. Levan, A. S. Fruchter, J. Hjorth, R. A. Hounsell, K. Wiersema & R. L. Tunnicliffe

ger et al. 2010, Roberts et al. 2011, rocess, EM counter part to GW

on star mergers

Opacities of r-process elements

Initial models: iron opacities (Metzger et al. 2010, Roberts et al. 2011, Goriely et al. 2011)

Barnes & Kasen 2013: r-process elements have higher opacities

(Kasen, Badnell, Barnes 2013)

Neutron star mergers: neutrino-driven wind

3D simulations after merger disk and neutrino-wind evolution neutrino emission and absorption Nucleosynthesis: 17 000 tracers

Martin et al. (submitted)

see also

Fernandez & Metzger 2013, Metzger & Fernandez 2014, Just et al. 2014, Sekiguchi et al.

Neutron star mergers: neutrino-driven wind t : 4.89e-03 s / T : 9.00 GK / $\rho_{\rm b}$: 4.63e+07 g/cm³ 0 Neutron density 10³⁰ 100 1025 N_n [cm³ 10²⁰ 10¹⁵ -5 10¹⁰ Pb (Z=82) 80 10-2 10-1 10^{1} 10^{0} time [s] proton number, Z 184 -10 ²⁰¹0 60 162 Sn (Z=50) Summed abundances 126 _2 40 -15 Ni (Z=28 \log_{10} Y -682 20 50 -1028 100 150 200 50 0 20 mass number, A -20 50 100 150 200 0

neutron number, N Martin et al. (submitted)

Time and angle dependency

Black hole formation determines time for wind nucleosynthesis (Fernandez & Metzger 2013, Kasen et al. 2015)

Martin et al. (submitted)

Wind and dynamic ejecta

Wind ejecta complement dynamic ejecta

Complete mixing: solar system abundances and UMP stars

Martin et al. (submitted)

Wind and dynamic ejecta

Wind ejecta complement dynamic ejecta

Complete mixing: solar system abundances and UMP stars

Martin et al. (submitted)

Wind kilonova

Less or no heavy r-process depending on angle \rightarrow lower opacities

- Wind kilonova peaks on blue after ~4 hours
- Dynamic ejecta kilonova peaks on IR after 4-5 days

Three times for ns collapse: t=90, 140 and 190 ms

Neutron star mergers and GCE

merger contribution always [Fe/H]>-2 inefficient mixing

merger rate = $83^{+209.1}_{-66.1}$ Myr⁻¹ (Kalogera et al. 2004) stars with M>30 M_{\odot}: black hole

ns merger: Mennekens & Vanbeveren (2014), van de Voort et al. (2015), Ishimaru et al. (2015), ... ns merger + ccsn (jets): Cescutti & Chiappini (2015), Wehmeyer et al. 2015

Supernova-jet-like explosion

3D magneto-hydrodynamical simulations: rapid rotation and strong magnetic fields

matter collimates: neutron-rich jets

right r-process conditions

z [km]

Conclusions

How many r-processes? How many astrophysical sites?

lighter heavy elements (Sr-Y-Zr-...-Ag): neutrino-driven winds

heavy r-process: mergers: dynamical, wind, disk evaporation jet-like supernovae

Needs

Observations: oldest stars, kilo/macronovae, neutrinos, gravitational waves, ...

Neutron-rich nuclei: experiments with radioactive beams, theory

Improved supernova and merger simulations: EoS, neutrino rates

Chemical evolution models