Can Massive Kaluza-Klein Stars exist?

Szilvia Karsai

G. G. Barnaföldi B. Lukács P. Pósfay

MTA Wigner RCP RMI Hungary

Annual NewCompStar Conference 2015 Budapest

Outline

- 1. Motivation for Kaluza-Klein theory & stars
- 2. A special solution in 1+4D space-time
- 3. Compact Star in Kaluza-Klein World
- 4. M–R relation via varying R_c for 1+4D compact star
- 5. Comparison with standard hyperon star models

- Standard matter by Standard Model
 - Electromagnetic;
 - Weak and
 - Strong interactions
- Grand Unified Theory...
 - Gravity and QFT are not fitting into the same picture
 - GR locally valid; curved space-time
 - QFT globally valid; Minkowski

- Standard matter by Standard Model
 - Electromagnetic;
 - · Weak and
 - Strong interactions
- Grand Unified Theory...
 - Gravity and QFT are not fitting into the same picture
 - GR locally valid; curved space-time
 - QFT globally valid; Minkowski
- Possible way:
- Geometrization of elementary forces
- Introducing new dimensions

Quarks

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

Szilvia Karsai – NewCompStar 2015 Budapest

- Standard matter by Standard Model
 - Electromagnetic;
 - · Weak and
 - Strong interactions
- Grand Unified Theory...
 - Gravity and QFT are not fitting into the same picture
 - GR locally valid; curved space-time
 - QFT globally valid; Minkowski
- Possible way:
- Geometrization of elementary forces
- Introducing new dimensions

- Compact Stars: extremely high energy density →
- Investigation of:
 - Overlap of strong-, electroweak
 - & gravitational forces
 - · Compactified extra dimensions
- Extended description of compact stars: introducing a compactified extra dimension
- Extra dimensional picture:
 - Excited states of particles: geometrical degrees of freedom
 - e.g. strangeness ~ particle moving in extra dimension

Symmetries in case of a Compact Star

- Spherical: invariant under O(3) rotations
- Static: elements of metric and T^{μν} are *t* independent
- → Ideal relativistic fluid: only diagonal elements, $T^{\mu\nu}_{\mu\nu} = 0$
- Isotropic: no explicit φ & θ dependence of the components of g^{µν} and T^{µν}

 Extra dimension(s) need extra assumptions...

[G. G. Barnaföldi, P. Lévai, B. Lukács: "Searching extra dimensions in compact stars" Astron. Nachr. **328**, 809 (2007)]

Assumptions on Kaluza–Klein extra dimension(s)

i. 1+(3+d_c) dimensional space-time:

dimensions are space-like, except first one: time-like

- ii. GR is the same as in 1+3 D → 'Equivalence Principle' is unchanged
- iii. All causality postulates are the same as in 1+3 D (including lightcone structure)
- iv. Extra space-like d dimensions are microscopical
- v. **Complete Killing-symmetry** in the d_c-dimensional

microscopical subspace

Focus on the simplest **d_=1** case!

[G. G. Barnaföldi, P. Lévai, B. Lukács: J. Phys.: CS. **218** (2010)]

Szilvia Karsai – NewCompStar 2015 Budapest

2. A special solution in 1+4D space-time <u>Metric</u>

- i. **Spherical symmetry** \rightarrow O(3) symmetry
- ii. Static picture $\rightarrow g_{\mu 0} = 0$ and $g_{\mu \nu, 0} = 0$
- iii. **4D** $g^{\mu\nu}$ is χ^5 independent
- iv. Killing transformations $\rightarrow g_{01} = 0$ and $g_{51} = 0$

$$g_{\mu\nu} = \begin{cases} g_{00} & g_{01} & 0 & 0 & g_{05} \\ g_{01} & g_{11} & 0 & 0 & g_{15} \\ 0 & 0 & g_{22} & 0 & 0 \\ 0 & 0 & 0 & g_{22} \sin^2 \vartheta & 0 \\ g_{05} & g_{15} & 0 & 0 & g_{55} \end{cases} \xrightarrow{\text{Coordinates:}} t = x^0 \\ f = x^1 \\ g = x^2 \\ \phi = x^3 \\ \chi = x^5 \end{cases}$$

Radial functions for the metric components: v(r), $\lambda(r)$, $\Phi(r)$

Energy-momentum tensor for 1+4D matter

(a) Energy-momentum tensor for anisotrop liquid:

$$T_{\mu\nu} := \epsilon u_{\mu} u_{\nu} - p \left(g_{\mu\nu} - u_{\mu} u_{\nu} + v_{\mu} v_{\nu} \right) - p_5 v_{\mu} v_{\nu}$$

Liquid is isotrop for 3 dimension: $T_1^1 = T_2^2 = T_3^3 = p$ BUT **pressure** $T_5^5 = p_5$ in the 5th direction is anisotrop, with energy-density:

$$T_{\mu\nu} = \operatorname{diag}(\epsilon e^{2\nu}, p e^{2\lambda}, p r^2, p r^2 \sin^2 \vartheta, p_5 e^{2\Phi})$$

(b) Let's construct the **R**_{uv} **Ricci tensor** and **R Ricci scalar**:

$$R := R_i^i = R_1^1 = R_2^2 = R_3^3 = R_4^4 = R_5^5$$

[B. Lukács, T. Pacher: KFKI-1985-74, Budapest, Hungary]

Einstein equations in 1+4D space-time

$$R_{\mu\nu} - \frac{1}{2} R g_{\mu\nu} = -8 \pi G T_{\mu\nu}$$

Components of the **Einstein equation**:

$$-8\pi G \epsilon = e^{-2\lambda} \left[\Phi'' + \Phi'^{2} - \lambda' \Phi' + \frac{2\Phi'}{r} - \frac{2\lambda'}{r} + \frac{1}{r^{2}} \right] - \frac{1}{r^{2}}$$

$$-8\pi G p = e^{-2\lambda} \left[\nu' \Phi' - \frac{2\Phi'}{r} - \frac{2\nu'}{r} - \frac{1}{r^{2}} \right] + \frac{1}{r^{2}}$$

$$-8\pi G p = e^{-2\lambda} \left[-\nu'' - \nu'^{2} - +\nu'\lambda' + \Phi'' - \Phi'^{2} - \nu' \Phi' + \lambda' \Phi' - \frac{\nu'}{r} + \frac{\lambda'}{r} - \frac{\Phi'}{r} \right]$$

$$-8\pi G p_{5} = e^{-2\lambda} \left[-\nu'' - \nu'^{2} + \nu\lambda - \frac{2\nu'}{r} + \frac{2\lambda'}{r} - \frac{1}{r^{2}} \right] + \frac{1}{r^{2}}$$

• Extra variables: p_{s} , $\Phi(r)$

'Observation' of the 5th Dimension

(a) Strangeness as a new degree of freedom: Connection between $\bar{m} = m_s$ and R_c radius:

$$E_5 = \sqrt{\underline{k}^2 + \left(\frac{n}{R_c}\right)^2 + m^2} = \sqrt{\underline{k}^2 + \overline{m}^2}$$

$$\bar{\boldsymbol{m}}^2 = \left(\frac{n}{\boldsymbol{R}_{\boldsymbol{C}}}\right)^2 + m^2$$

m: light (u, d) quark mass
n: excitation number, n=1
m heavy (s) quark mass

(b) Extra 5thD is compactified in an S¹ circle with radius $R_c \rightarrow$ periodical boundary condition

$$\psi(x_5) \approx e^{ik_5 \cdot x_5}$$
 and $\psi(x_5 + 2\pi \mathbf{R}_c) \sim \psi(x_5) \rightarrow k_5 = \frac{n}{\mathbf{R}_c}$

 k_{5} : momentum in the 5th direction; \mathbf{x}_{5} : coordinate in the 5th direction; $\mathbf{n} \in \mathbb{Z}^{+}$ Szilvia Karsai – NewCompStar 2015 Budapest

<u>Thermodynamics for 1+4D</u>

(a) Thermodynamical potential for 1+4D Fermion gas

$$\Omega_{5} = -2 \frac{V_{4}}{\beta} \int \frac{d^{4} k}{(4 \pi)^{4}} \Big[\ln \Big(1 + e^{-\beta (\sqrt{k^{2} + \bar{m}^{2}} - \mu)} \Big) \Big(+ \mu \leftrightarrow \rightarrow -\mu \Big) \Big]$$

$$\bar{m}^{2} = (n/R_{c})^{2} + m^{2} \quad \text{excited mass}$$

$$\int dk_{5} \rightarrow \frac{1}{R_{c}} \Sigma_{n} \quad \text{discretization}$$

$$V_{5} = 2\pi R_{c} V_{4} \quad \text{volume}$$

(b) Thermodynamical potential and its quantities

$$\Omega_{5} = \sum_{n} \Omega_{4} \left(m^{2} + \frac{n^{2}}{\boldsymbol{R}_{C}} \right) = \Omega_{4} (\boldsymbol{\bar{m}})$$

$$p = -\frac{1}{2\pi \boldsymbol{R}_{C}} \frac{\partial \Omega_{5}}{\partial V} \qquad \boldsymbol{p}_{5} = -\frac{1}{2\pi V} \frac{\partial \Omega_{5}}{\partial \boldsymbol{R}_{C}} \qquad \boldsymbol{\epsilon} = \frac{U}{V_{4}}$$

TOV equations for 1+4D

(1) $d\Phi/dr = 0$ special case:

$$\frac{\mathrm{d} \boldsymbol{p}(r)}{\mathrm{d} r} = -\frac{[\boldsymbol{p}(r) + \boldsymbol{\epsilon}(r)][\boldsymbol{M}(r) + 4\pi r^{3} \boldsymbol{p}(r)]}{r[r-2\boldsymbol{M}(r)]}$$

$$p_{5} = 1 - \frac{2M(r)}{r} + \frac{1}{r} \ln \left[1 - \frac{2M(r)}{r} \right] - 2p$$

3. Compact Star in Kaluza-Klein World

(1) $d\Phi/dr = 0'$ special case:

$$\frac{\mathrm{d} \mathbf{p}(r)}{\mathrm{d} r} = -\frac{[\mathbf{p}(r) + \mathbf{\epsilon}(r)][\mathbf{M}(r) + 4\pi r^{3} \mathbf{p}(r)]}{r[r-2\mathbf{M}(r)]}$$

$$\mathbf{p}_{5}(r) = 1 - \frac{2\mathbf{M}(r)}{r} + \frac{1}{r} \ln\left[1 - \frac{2\mathbf{M}(r)}{r}\right] - 2\mathbf{p}$$
Hyperon Star: n⁰, Λ^{0} , ...
VS.
Compact star: with $k_{F} > \hbar/R_{C}$
 $\mathbf{1}_{c}$ extra dimension
M(R) with nth excited state:
 $\mathbf{A} \mathbf{R}_{c} = 0.33 \text{ fm} (\mathbf{E}_{1}, \mathbf{E}_{2}, \mathbf{E}_{3}, ...)$
 $\Delta \mathbf{R}_{c} = 0.66 \text{ fm} (\mathbf{F}_{1}, \mathbf{F}_{2}, \mathbf{F}_{3}, ...)$
(\mathbf{F}_{c} (\mathbf{F}_{1}) (\mathbf{F}_{2}), \mathbf{F}_{3} , ...)
(\mathbf{F}_{c} (\mathbf{F}_{1}) (\mathbf{F}_{2}), \mathbf{F}_{3} , ...)
(\mathbf{F}_{c} (\mathbf{F}_{1}) (\mathbf{F}_{2}), \mathbf{F}_{3} , ...)
(\mathbf{F}_{c} (\mathbf{F}_{1}) (\mathbf{F}_{2}), \mathbf{F}_{3} , ...)
(\mathbf{F}_{c} (\mathbf{F}_{1}) (\mathbf{F}_{2}), \mathbf{F}_{3} , ...)
(\mathbf{F}_{c} (\mathbf{F}_{1}) (\mathbf{F}_{2}), \mathbf{F}_{3} , ...)

Astron. Nachr. 328, 809 (2007)]

3. Compact Star in Kaluza-Klein World

(1) $d\Phi/dr = 0'$ special case:

$$\frac{\mathrm{d} \boldsymbol{p}(r)}{\mathrm{d} r} = -\frac{[\boldsymbol{p}(r) + \boldsymbol{\epsilon}(r)][\boldsymbol{M}(r) + 4\pi r^{3} \boldsymbol{p}(r)]}{r[r - 2\boldsymbol{M}(r)]}$$

$$\boldsymbol{p}_{5}(\boldsymbol{r}) = 1 - \frac{2\boldsymbol{M}(r)}{r} + \frac{1}{r} \ln \left[1 - \frac{2\boldsymbol{M}(r)}{r} \right] - 2\boldsymbol{p}$$

Hyperon Star: n^0 , Λ^0 , ... vs.

Compact star: with $k_F > \hbar/R_C$

 1_{c} extra dimension

M(R) with nth excited state: **A** $\mathbf{R}_{c} = 0.33 \text{ fm} (\mathbf{E}_{1}, \mathbf{E}_{2}, \mathbf{E}_{3}, ...)$ **A** $\mathbf{R}_{c} = 0.66 \text{ fm} (\mathbf{F}_{1}, \mathbf{F}_{2}, \mathbf{F}_{3}, ...)$

[G. G. Barnaföldi, P. Lévai, B. Lukács; Astron. Nachr. **328**, 809 (2007)]

Smooth variation of the compactified D Change of the R

- excitation with:
- larger the $\mathbf{R_c} \rightarrow \Delta m_n \sim \frac{n}{\mathbf{R_c}}$ smaller the excitations to m_n
- similar solutions (shape, stability, etc.)
- Hyp Star noninteracting
 ~ R_c = 0.33 fm

Smooth variation of the compactified D Change of the R.:

- excitation with:
- larger the $\mathbf{R}_{c} \rightarrow \Delta m_{n} \sim \frac{n}{R_{c}}$ smaller the excitations to m_n
- similar solutions (shape, stability, etc.)
- Hyp Star • non-interacting
 - ~ **R_**= 0.33 fm
- Hyp Star interacting matter
 - \rightarrow more massive

Summary

Compact stars in 1+4D were analyzed:

- Static, spherical Schwarzschild-like space-time
- TOV-like eqs. with specific, but exact (stable) solution
- Solutions overlap with strange star models if R_c is set to the mass of strangeness: 10^{-13} cm $< R_c < 10^{-9}$ cm
- Mass limit: determinated by \mathbf{R}_{c} , D \rightarrow
- · larger R_c results \rightarrow decrease in star's mass

* Extra dimensional fermion stars:

- For solutions massive enough →
- Interaction of matter should be treated!

Summary

Compact stars in 1+4D were analyzed:

- Static, spherical Schwarzschild-like space-time
- TOV-like eqs. with specific, but exact (stable) solution
- Solutions overlap with strange star models if R, is set to the mass of
- strangeness: 10^{-13} cm $< R_c < 10^{-9}$ cm
- Mass limit: determinated by R_c , D \rightarrow
- larger R, results → decrease in star's mass

Extra dimensional fermi

- For solutions massive enough \rightarrow
- Interaction of matter should be treated!

Thank You for Your attention!

Backup slides

Smooth variation of the compactified D

Change of the R_c:

• excitation with: larger the $\mathbf{R}_{c} \rightarrow \text{smaller excitations to } \mathbf{m}_{c}$

