Can Massive Kaluza-Klein Stars exist?

Szilvia Karsai

G. G. Barnaföldi
B. Lukács
P. Pósfay

MTA Wigner RCP RMI Hungary
Mificnar

Annual NewCompStar Conference 2015 Budapest

Outline

1. Motivation for Kaluza-Klein theory \& stars
2. A special solution in 1+4D space-time
3. Compact Star in Kaluza-Klein World
4. $M-R$ relation via varying R_{c} for 1+4D compact star
5. Comparison with standard hyperon star models

1. Motivation for Kaluza-Klein Stars

\rightarrow Standard matter by Standard Model

- Electromagnetic;
- Weak and
- Strong interactions
\rightarrow Grand Unified Theory...
- Gravity and QFT are not fitting into the same picture
- GR locally valid; curved space-time
- QFT globally valid; Minkowski

1. Motivation for Kaluza-Klein Stars

\rightarrow Standard matter by Standard Model

- Electromagnetic;
- Weak and
- Strong interactions
\rightarrow Grand Unified Theory...
- Gravity and QFT are not fitting into the same picture
- GR locally valid; curved space-time
- QFT globally valid; Minkowski

\rightarrow Possible way:

- Geometrization of elementary forces
- Introducing new dimensions

1. Motivation for Kaluza-Klein Stars

\rightarrow Standard matter by Standard Model

- Electromagnetic;
- Weak and
- Strong interactions
\rightarrow Grand Unified Theory...
- Gravity and QFT are not fitting into the same picture
- GR locally valid; curved space-time
- QFT globally valid; Minkowski

\rightarrow Possible way:

- Geometrization of elementary forces
- Introducing new dimensions

1. Motivation for Kaluza-Klein Stars

\rightarrow Compact Stars: extremely high energy density \rightarrow

* Investigation of:
- Overlap of strong-, electroweak
\& gravitational forces
- Compactified extra dimensions
\rightarrow Extended description of compact stars: introducing a compactified extra dimension
\rightarrow Extra dimensional picture:
- Excited states of particles:
geometrical degrees of freedom
- e.g. strangeness ~ particle moving in
 extra dimension

Symmetries in case of a Compact Star

\rightarrow Spherical: invariant under O(3) rotations
\rightarrow Static: elements of metric and $T^{\text {av }}$ are t independent
\rightarrow Ideal relativistic fluid: only diagonal elements, $T^{\text {wv }}=0$
\rightarrow Isotropic: no explicit φ \& θ dependence of the components of $g^{\text {av }}$ and $\mathrm{T}^{\text {uv }}$
\rightarrow Extra dimension(s) need extra assumptions...
[G. G. Barnaföldi, P. Lévai, B. Lukács: „Searching extra
dimensions in compact stars"
Astron. Nachr. 328, 809 (2007)]

Assumptions on Kaluza-Klein extra dimension(s)

i. $\left.\mathbf{1 + (3 + d _ { c }}\right)$ dimensional space-time: dimensions are space-like, except first one: time-like
ii. GR is the same as in $1+3 \mathrm{D} \rightarrow$ 'Equivalence Principle' is unchanged
iii. All causality postulates are the same as in $1+3 \mathrm{D}$ (including lightcone structure)
iv. Extra space-like $\mathbf{d}_{\mathbf{c}}$ dimensions are microscopical
v. Complete Killing-symmetry in the d_{c}-dimensional microscopical subspace

Focus on the simplest $\mathbf{d}_{\mathbf{c}}=\mathbf{1}$ case
[G. G. Barnaföldi, P. Lévai, B. Lukács: J. Phys.: CS. 218 (2010)]

2. A special solution in 1+4D space-time

Metric

i. Spherical symmetry $\rightarrow O(3)$ symmetry
ii. Static picture $\rightarrow g_{\mu 0}=0$ and $g_{\mu v, 0}=0$
iii. 4D $g^{\text {av }}$ is x^{5} independent
iv. Killing transformations $\rightarrow g_{01}=0$ and $g_{51}=0$
$g_{\mu \nu}=\left|\begin{array}{ccccc}g_{00} & g_{01} & 0 & 0 & g_{05} \\ g_{01} & g_{11} & 0 & 0 & g_{15} \\ 0 & 0 & g_{22} & 0 & 0 \\ 0 & 0 & 0 & g_{22} \sin ^{2} 9 & 0 \\ g_{05} & g_{15} & 0 & 0 & g_{55}\end{array}\right| \quad \begin{aligned} & \text { Coordinates: } \\ & t=x^{0} \\ & r=x^{1} \\ & 9\end{aligned}$
$g_{\mu v}=\operatorname{diag}\left(\mathrm{e}^{2 v},-\mathrm{e}^{2 \lambda},-r^{2,}-r^{2} \sin ^{2} \vartheta, \mathrm{e}^{2 \Phi}\right)$
Radial functions for the metric components: $v(r), \lambda(r), \Phi(r)$

Energy-momentum tensor for 1+4D matter

(a) Energy-momentum tensor for anisotrop liquid:

$$
T_{\mu v}:=\epsilon u_{\mu} u_{v}-p\left(g_{\mu v}-u_{\mu} u_{v}+v_{\mu} v_{v}\right)-p_{5} v_{\mu} v_{v}
$$

Liquid is isotrop for 3 dimension: $T_{1}^{1}=T_{2}^{2}=T_{3}^{3}=p$
BUT pressure $\boldsymbol{T}_{5}^{5}=\boldsymbol{p}_{5}$ in the $5^{\text {th }}$ direction is anisotrop, with energy-density:

$$
T_{u v}=\operatorname{diag}\left(\epsilon \mathrm{e}^{2 v}, p \mathrm{e}^{2 \lambda}, p r^{2}, p r^{2} \sin ^{2} \vartheta, p_{5} \mathrm{e}^{2 \Phi}\right)
$$

(b) Let's construct the $\boldsymbol{R}_{\mu \nu} \mathbf{R i c c i}$ tensor and \boldsymbol{R} Ricci scalar:

$$
R:=R_{i}^{i}=R_{1}^{1}=R_{2}^{2}=R_{3}^{3}=R_{4}^{4}=R_{5}^{5} \quad \begin{aligned}
& \text { [B. Lukács, T. Pacher: KFKI-1985-74, } \\
& \text { Budapest, Hungary] }
\end{aligned}
$$

Einstein equations in 1+4D space-time

$$
R_{\mu \nu}-\frac{1}{2} R g_{\mu \nu}=-8 \pi G T_{\mu \nu}
$$

Components of the Einstein equation:

$$
\begin{aligned}
& -8 \pi G \epsilon=\mathrm{e}^{-2 \lambda}\left[\Phi^{\prime \prime}+\Phi^{\left.\prime^{\prime 2}-\lambda^{\prime} \Phi^{\prime}+\frac{2 \Phi^{\prime}}{r}-\frac{2 \lambda^{\prime}}{r}+\frac{1}{r^{2}}\right]-\frac{1}{r^{2}}}\right. \\
& -8 \pi G p=\mathrm{e}^{-2 \lambda}\left[v^{\prime} \Phi^{\prime}-\frac{2 \Phi^{\prime}}{r}-\frac{2 v^{\prime}}{r}-\frac{1}{r^{2}}\right]+\frac{1}{r^{2}} \\
& -8 \pi G p=\mathrm{e}^{-2 \lambda}\left[-v^{\prime \prime}-v^{\prime 2}-+v^{\prime} \lambda^{\prime}+\Phi^{\prime \prime}-\Phi^{\prime^{\prime 2}}-v^{\prime} \Phi^{\prime}+\lambda^{\prime} \Phi^{\prime}-\frac{v^{\prime}}{r}+\frac{\lambda^{\prime}}{r}-\frac{\Phi^{\prime}}{r}\right] \\
& -8 \pi G \boldsymbol{p}_{5}=\mathrm{e}^{-2 \lambda}\left[-v^{\prime \prime}-v^{\prime 2}+v \lambda-\frac{2 v^{\prime}}{r}+\frac{2 \lambda^{\prime}}{r}-\frac{1}{r^{2}}\right]+\frac{1}{r^{2}}
\end{aligned}
$$

- Extra variables: $\mathbf{p}_{5}, \Phi(\mathbf{r})$

'Observation' of the 5th Dimension

(a) Strangeness as a new degree of freedom: Connection between $\overline{\boldsymbol{m}}=\boldsymbol{m}_{\boldsymbol{s}}$ and \boldsymbol{R}_{c} radius: $E_{5}=\sqrt{\underline{k}^{2}+\left(\frac{n}{\boldsymbol{R}_{C}}\right)^{2}+m^{2}}=\sqrt{\underline{k}^{2}+\overline{\boldsymbol{m}}^{2}}$ $\overline{\boldsymbol{m}}^{2}=\left(\frac{n}{\boldsymbol{R}_{C}}\right)^{2}+m^{2}$
m : light (u, d) quark mass
n : excitation number, $\mathrm{n}=1$
$\overline{\boldsymbol{m}}$ heavy (s) quark mass

(b) Extra $\mathbf{5}^{\text {th }} \mathbf{D}$ is compactified in an \mathbf{S}^{1} circle with radius \mathbf{R}_{c} \rightarrow periodical boundary condition

$$
\psi\left(x_{5}\right) \approx \mathrm{e}^{i k_{5} \cdot x_{5}} \text { and } \psi\left(x_{5}+2 \pi \boldsymbol{R}_{C}\right) \sim \psi\left(x_{5}\right) \quad \rightarrow \quad k_{5}=\frac{n}{\boldsymbol{R}_{C}}
$$

$\boldsymbol{k}_{5}:$ momentum in the 5th direction; \mathbf{x}_{5} : coordinate in the 5th direction; $\boldsymbol{n} \in \mathbb{Z}^{+}$

Thermodynamics for 1+4D

(a) Thermodynamical potential for 1+4D Fermion gas

$$
\begin{array}{r}
\Omega_{5}=-2 \frac{V_{4}}{\beta} \int \frac{\mathrm{~d}^{4} k}{(4 \pi)^{4}}\left[\ln \left(1+e^{-\beta\left(\sqrt{k^{2}+\bar{m}^{2}}-\mu\right)}\right)(+\mu \leftarrow \rightarrow-\mu)\right] \\
\bar{m}^{2}=\left(n / \boldsymbol{R}_{C}\right)^{2}+m^{2} \\
\int \mathrm{~d} k_{5} \rightarrow \frac{1}{\boldsymbol{R}_{C}} \Sigma_{n} \\
\text { excited mass } \\
V_{5}=2 \pi \boldsymbol{R}_{C} V_{4}
\end{array} \text { discretization } \quad \text { volume }
$$

(b) Thermodynamical potential and its quantities

$$
\begin{aligned}
& \Omega_{5}=\sum_{n} \Omega_{4}\left(m^{2}+\frac{n^{2}}{\boldsymbol{R}_{C}}\right)=\Omega_{4}(\overline{\boldsymbol{m}}) \\
& p=-\frac{1}{2 \pi \boldsymbol{R}_{C}} \frac{\partial \Omega_{5}}{\partial V} \quad \boldsymbol{p}_{5}=-\frac{1}{2 \pi V} \frac{\partial \Omega_{5}}{\partial \boldsymbol{R}_{C}} \quad \epsilon=\frac{U}{V_{4}}
\end{aligned}
$$

TOV equations for $1+4 \mathrm{D}$

(1) 'd $\mathbf{d} / \mathrm{dr}=0$ ' special case:

$$
\begin{aligned}
& \frac{\mathrm{d} \boldsymbol{p}(r)}{\mathrm{d} r}=-\frac{[\boldsymbol{p}(r)+\boldsymbol{\epsilon}(r)]\left[\boldsymbol{M}(r)+4 \pi r^{3} \boldsymbol{p}(r)\right]}{r[r-2 \boldsymbol{M}(r)]} \\
& \boldsymbol{p}_{5}=1-\frac{2 \boldsymbol{M}(r)}{r}+\frac{1}{r} \ln \left[1-\frac{2 \boldsymbol{M}(r)}{r}\right]-2 \boldsymbol{p}
\end{aligned}
$$

3. Compact Star in Kaluza-Klein World

(1) 'd $\mathbf{d} / \mathrm{dr}=\mathbf{0}$ ' special case:
$\frac{\mathrm{d} \boldsymbol{p}(r)}{\mathrm{d} r}=-\frac{[\boldsymbol{p}(r)+\boldsymbol{\epsilon}(r)]\left[\boldsymbol{M}(r)+4 \pi r^{3} \boldsymbol{p}(r)\right]}{r[r-2 \boldsymbol{M}(r)]}$
$\boldsymbol{p}_{5}(r)=1-\frac{2 M(r)}{r}+\frac{1}{r} \ln \left[1-\frac{2 M(r)}{r}\right]-2 \boldsymbol{p}$

Hyperon Star: $n^{0}, \Lambda^{0}, \ldots$
vs.
Compact star: with $k_{F}>\hbar / R_{C}$
1_{c} extra dimension
$\mathbf{M}(\mathbf{R})$ with $\mathrm{n}^{\text {th }}$ excited state:
$\Delta \mathbf{R}_{\mathrm{c}}=0.33 \mathrm{fm}\left(\mathrm{E}_{1}, \mathrm{E}_{2}, \mathrm{E}_{3}, \ldots\right)$
$\Delta \mathbf{R}_{\mathrm{c}}=0.66 \mathrm{fm}\left(\mathrm{F}_{1}, F_{2}, F_{3}, \ldots\right)$

[G. G. Barnaföldi, P. Lévai, B. Lukács; Astron. Nachr. 328, 809 (2007)]

3. Compact Star in Kaluza-Klein World

(1) 'd $\mathbf{d} / \mathbf{d r}=\mathbf{0}$ ' special case:
$\frac{\mathrm{d} \boldsymbol{p}(r)}{\mathrm{d} r}=-\frac{[\boldsymbol{p}(r)+\boldsymbol{\epsilon}(r)]\left[\boldsymbol{M}(r)+4 \pi r^{3} \boldsymbol{p}(r)\right]}{r[r-2 \boldsymbol{M}(r)]}$
$\boldsymbol{p}_{5}(r)=1-\frac{2 M(r)}{r}+\frac{1}{r} \ln \left[1-\frac{2 M(r)}{r}\right]-2 \boldsymbol{p}$

Hyperon Star: $n^{0}, \Lambda^{0}, \ldots$
vs.
Compact star: with $k_{F}>\hbar / R_{C}$
1_{c} extra dimension
$\mathbf{M}(\mathbf{R})$ with $\mathrm{n}^{\text {th }}$ excited state:
$\Delta \mathbf{R}_{\mathrm{c}}=0.33 \mathrm{fm}\left(\mathrm{E}_{1}, \mathrm{E}_{2}, \mathrm{E}_{3}, \ldots\right)$
$\Delta \mathbf{R}_{\mathrm{c}}=0.66 \mathrm{fm}\left(\mathrm{F}_{1}, \mathrm{~F}_{2}, \mathrm{~F}_{3}, \ldots\right)$

[G. G. Barnaföldi, P. Lévai, B. Lukács; Astron. Nachr. 328, 809 (2007)]

Smooth variation of the compactified D
 Change of the \mathbf{R}_{c} :

- excitation with:
- larger the $\underset{\substack{\mathbf{R}_{\mathbf{c}} \rightarrow \Delta m_{n}} \frac{n}{\boldsymbol{R}_{\boldsymbol{C}}}}{\text { smaller the }}$ excitations to m_{n}
- similar solutions (shape, stability, etc.)
- Hyp Star noninteracting
~ $\mathbf{R}_{\mathrm{c}}=0.33 \mathrm{fm}$

Smooth variation of the compactified D
 Change of the \mathbf{R}_{c} :

- excitation with:
- larger the $\underset{\substack{\mathbf{R}_{\mathbf{c}} \rightarrow \Delta m_{n}} \frac{n}{\boldsymbol{R}_{\boldsymbol{C}}}}{\text { smaller the }}$ excitations to m_{n}
- similar solutions (shape, stability, etc.)
- Hyp Star non-interacting
~ $\mathbf{R}_{\mathrm{c}}=0.33 \mathrm{fm}$
- Hyp Star interacting matter
\rightarrow more massive

Summary

\rightarrow Compact stars in 1+4D were analyzed:

- Static, spherical Schwarzschild-like space-time
- TOV-like eqs. with specific, but exact (stable) solution
- Solutions overlap with strange star models if \mathbf{R}_{c} is set to the mass of strangeness: $10^{-13} \mathrm{~cm}<\mathbf{R}_{\mathrm{c}}<10^{-9} \mathrm{~cm}$
- Mass limit: determinated by $\mathbf{R}_{\mathrm{c}}, \mathrm{D} \rightarrow$
- larger \mathbf{R}_{c} results \rightarrow decrease in star's mass
\rightarrow Extra dimensional fermion stars:
- For solutions massive enough \rightarrow
- Interaction of matter should be treated!

Summary

\rightarrow Compact stars in 1+4D were analyzed:

```
Static, spherical Schwarzschild-like space-time
```

TOV-like eqs. with specific, but exact (stable) solution
Solutions-overlap with strange star models if R_{c} is set to the mass of
strangeness: $10^{-13} \mathrm{~cm}<R_{\mathrm{c}}<10^{-9} \mathrm{~cm}$
Mass limit: determinated by $\mathbf{R}_{\mathbf{c}}, \mathbf{D} \rightarrow$
larger i results \rightarrow decrease in star's mass
\rightarrow Extra dimensional fermio

- For solutions massive enough \rightarrow
- Interaction of matter should be treated!

Thank You for Your attention!

Backup slides

Smooth variation of the compactified D

Change of the R_{c} :

- excitation with: larger the $\mathbf{R}_{\mathbf{c}} \rightarrow$ smaller excitations to $m_{n} \quad \Delta m_{n} \sim \frac{n}{\boldsymbol{R}_{\boldsymbol{C}}}$
- Realistic Hyp EoS: Hyperon star interacting matter
- Hyp Star interacting
- Pure N Star interacting

