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Physical Motivation: Neutron star (NS) primer
● NS evolutionary pathways strongly depend on magnetic

morphology after crustal ion lattice crystallizes (Pons & Geppert (2007),

Perna+ (2013))
● Initial conditions + crust-confined field sets the evolutionary

stage (Viganò (2013))
● Mysteries remain over uncertain physics in the core
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Physical Motivation: flux expulsion from NS cores

● Observations of ultramagnetic neutron stars (~ 1014 G) 
Mereghetti (2008), Rea & Esposito (2011)

● Could processes in the core be responsible?

● Alpha-dynamo (Goldreich & Reisenegger (1992)), Tayler-Spruit dynamo
(Tayler 1973, Spruit 1999), post-infall driven convection (Obergaulinger+

2014) could amplify field
● Our focus is on expulsion of strong core magnetic fields



  

Overview of driving mechanisms

● Fluxoid buoyancy: bulk radial fluxtube drift (Muslimov & Tsygan

(1985), Baym & Pethick (1975)) 

● Electron drag: scattering of degenerate electron gas from
core fluxtubes (Alpar+ (1984))

● Magnus force: redistribution to perpendicular flow (Jones (1987))

● Fieldline tension: Alfvenic relaxation (Harvey+ (1986), Konenkov &

Geppert (2000), Glampedakis+ (2011))



  

Generalized advective eMHD prescription

● Field-parallel components do not contribute to expulsion
● Bulk advection velocity is derived from combination of forces:

Upper analytic limit on radial fluxtube drift

Principle EOS parameters



  

Magneto-thermal numerical model

● Relativistic 2D model with azimuthal symmetry

Pons & Geppert (2007), Aguilera (2008), Vigano+ (2011-2014)

● Coupled magnetic and thermal time-advance

● Staggered numerical grid

● Hall induction equation with advection (shock-capturing)

● Temperature evolution equation

Ohmic and
stratification Advection

Hall and 
stratification

Neutrino cooling,
Joule heating,

advective heating

Vigano+ (2012)



  

Simulation parameters
● 50 x 50 cells in radius and polar angle (hi-res in crust)

● Skyrme-type EOS from BPS (Baym+(1971), Douchin & Haensel (2001))

● Parametric study with varying impurity (Pons+(2013))

● 100 kyr investigations of three standard initial magnetic field
prescriptions

Core-extended
Hybrid
poloidal

Hybrid
toroidal



  

Results: core-extended fields

● Core field is static

● Crustal stratification
drives field to interface

● Azimuthal advection
much stronger than
poloidal components

● Isothermal cooling



  

Results: hybrid poloidal fields

● Hall decay in crust much
faster than any expulsion

● Nonlinear interaction at
interface → submergence

● Joule-dominated

● Isothermal cooling (no
diffusion)



  

Results: hybrid toroidal fields

● Presence of toroidal field
has negligible effect

● Joule-dominated

● Standard cooling



  

Instantaneous power: core-extended

● Negligible expulsion until 40
kyrs

● Advective heating becomes
efficient by 100 kyrs

● Joule heating dominates



  

Energy conservation: hybrid cases
Hybrid
poloidal

Hybrid
toroidal

● Strong crust-confined fields
are buried into the outer core

● Submergence rate is
comparable to field decay rate

● Higher numerical error due to
strong gradients at interface

● Joule dissipation dominant,
but weak in NS core



  

Bulk magnetic energy transport

Core-extended
Hybrid
poloidal

Hybrid
toroidal

● Standard Hall cascade in crust (~10 kyrs)
● Advective induction of toroidal component in core 

● Weak enhancement of
poloidal crust field 

● Negligible growth of
toroidal component in
core



  

Bulk magnetic energy transport

Core-extended
Hybrid
poloidal

Hybrid
toroidal

● Standard Hall cascade in crust (~10 kyrs)
● Advective induction of toroidal component in core 

● Poloidal → Toroidal
coupling in crust (Hall)

● Submerging field
becomes poloidal in
core

● Possible steady state
beyond 100 kyrs



  

Bulk magnetic energy transport

Core-extended
Hybrid
poloidal

Hybrid
toroidal

● Standard Hall cascade in crust (~10 kyrs)
● Advective induction of toroidal component in core 

● Energy equipartition at
100 kyrs when initially
strong toroidal
component is imposed

● Core-dominated
energy at 100 kyrs



  

Effects on observables

● Presence of core field prevents characteristic knee in P-Pdot

● NS with core advection indistinguishable by advection-free NS



  

Summary
● Expulsion of core magnetic field does not affect

observables in first 100kyrs 
● Realistic ICs predict weak net submergence of crust field

● Temperature evolution is insensitive to core dynamics

● Strong advection is confined to outer core

● Can neglect the core when testing cooling models against
observations

● Microphysics at crust-core interface play important role

● Core field configuration at birth may be critical to future
work
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