QCD Thermodynamics from Effective Field Theories

Chihiro Sasaki

Frankfurt Institute for Advanced Studies, Germany ITP, University of Wroclaw, Poland

Selected Issues:

- interplay between chiral symmetry breaking and confinement
- phase diagram of hot/dense QCD
- hadronic matter near chiral symmetry restoration

What is the origin of matter?

- after EW phase transition: Standard Model (EM & Weak plus Strong int.)
- QCD phase transition is the last transition in the evolution of the Universe!

up, down quarks (~ 5 MeV): SM ingredients Where does the nucleon mass (~ 1 GeV) come from? 10 % from EW/Higgs, and 90 % from QCD!

- scale and confinement? from elementary particle to composite states?
 - · · · fundamental issues in non-abelian gauge theories!

Baryons qqq and Antibaryons q̄q̄q̄ Baryons are fermionic hadrons. There are a few of the many types of baryons.					
Symbol	Name	Quark content	Electric charge	GeV/c ²	Spin
р	proton	uud	1	0.938	1/2
p	antiproton	ūūd	-1	0.938	1/2
n	neutron	udd	0	0.940	1/2
Λ	lambda	uds	0	1.116	1/2
Ω-	omega	SSS	-1	1.672	3/2
Mesons qq Mesons are bosonic hadrons There are a few of the many types of mesons.					
The	Meson re are a fev	NIESO is are bos w of the r	1S qq sonic hadr nany types	ons s of mesoi	15.
The Symbol	Meson re are a fev Name	v of the r Quark	1S qq sonic hadr nany types Electric charge	ons s of mesor GeV/c ²	ıs. Spin
The Symbol π+	Meson re are a fev Name pion	viesof s are bos v of the r Quark content ud	1S qq sonic hadr nany types Electric charge +1	ons s of meson GeV/c ² 0.140	15. Spin 0
The Symbol π+ K ⁻	Meson re are a fev Name pion kaon	v of the r Quark content ud sū	ns qq sonic hadr many types Electric charge +1 -1	ons s of meson GeV/c ² 0.140 0.494	1S. Spin 0 0
The Symbol π ⁺ K ⁻ ρ ⁺	Meson re are a fev Name pion kaon rho	v of the r Quark content ud sū ud	1S qq sonic hadr nany types Electric charge +1 -1 +1	ons s of meson GeV/c ² 0.140 0.494 0.770	15. Spin 0 0 1
The Symbol π+ K ⁻ ρ+ B ⁰	Meson re are a few Name pion kaon rho B-zero	v of the r Quark content ud sū ud db	ns qq sonic hadr many types Electric charge +1 -1 +1 0	ons of meson GeV/c ² 0.140 0.494 0.770 5.279	15. Spin 0 0 1 0

- effective field theories:
 - "particles" contained: either fundamental or composite
 - $-\, {\rm based}$ on fundamental/emergent symmetries
 - broad spectrum of applications to QCD(-like), SM, BSM

Objectives: from hadrons to quarks and gluons

QCD underlies physics of mesons and baryons \cdots nonperturbative!

* how are color-singlet states formed? exotic hadrons?

* dynamical origin of hadronic interactions and masses?

* composition of QCD matter at finite temperature/density?

Dynamical \chiSB & Color Confinement

I. Confinement vs. Dynamical Chiral symmetry Breaking

Hot and dense QCD matter

- relativistic heavy-ion collisions (hot, dense), compact stars (dense)
- how to explore the dynamics? effective theories, simulations on a lattice
- toward EFT at high ρ : lattice input at $\mu_q \sim 0$ & NM properties at ρ_0

QCD thermodynamics at $\mu_q \simeq 0$ from lattice simulations

- deconfinement and SU(2) chiral restoration set in at $T_{\rm pc} \sim 155$ MeV.
 - $\hookrightarrow \text{ conserved charges } \hookrightarrow \text{ melting chiral condensate}$
- strange (s) and charmed (c) mesons are deconfined together with light (u,d) mesons at $T_{\rm pc}!$
- e.g. kurtosis of baryon number fluctuations

$$\kappa = \chi_4^B / \chi_2^B = B^2,$$

$$\chi_n^B = \partial^n (P/T^4) / \partial (\mu_B/T)^n$$

Confinement vs. dynamical chiral symmetry breaking (D χ **SB)** to which extent does D χ SB contain information on confinement?

• Banks-Casher relation: low-lying Dirac eigenmodes generate $\langle \bar{q}q \rangle$.

$$\langle \bar{q}q \rangle = -\lim_{m_q \to \infty} \lim_{V \to \infty} \pi \rho(0), \quad \rho(\lambda) = \frac{1}{V} \sum_n \langle \delta(\lambda - \lambda_n) \rangle$$

removal of low-lying Dirac modes \Rightarrow NO D χ SB Q. does confinement disappear simultaneously?

 linking Polyakov loop to spectral function of *lattice* Dirac operator [Gattringer ('06); Bruckmann, Gattringer, Hagen ('07); Synatschke, Wipf, Langfeld ('08)] manifestly gauge invariant formalism
 [Gongyo, Iritani, Suganuma ('12); Doi, Iritani, Suganuma ('13,14)]

NO particular Dirac-modes that crucially affect confinement! \downarrow disappearance of D χ SB DOES NOT mean deconfinement?

How to suppress unphysical d.o.f.?

• IR cutoff b: NJL, SD eq., AdS/QCD [Ebert, Feldmann, Reinhardt ('96); \cdots] $1/b \sim$ typical size of a hadron \Rightarrow modified FD distribution functions

$$n_q = \theta(\vec{p}^2 - b^2) f_q \,, \quad n_{N_{\pm}} = \theta(\alpha^2 b^2 - \vec{p}^2) f_{N_{\pm}} \,, \quad f_X = 1/1 + e^{\beta(E_X \mp \mu_X)}$$

[T=0: Benic, Mishustin, CS ('15)]

- asymptotic behavior at high density: *non-int.* quark gas, restored chiral symmetry
 ⇒ density dep. IR cutoff, upper limit α_{max} = 2^{-1/3} ~ 0.8
- model setup: $\Omega = \sum_{X=N_{\pm},q} \Omega_X + V_{\sigma} + V_{\omega} + V_{\chi} + V_b$

$$V_b = -\frac{\kappa_b^2}{2}b^2 + \frac{\lambda_b}{4}b^4 \,.$$

parameter fixing: $(\kappa_b, \lambda_b) \leftarrow (\epsilon_{\text{vac}}, T_{\text{ch}})$ from lattice QCD

deconfinement criteria

$$Y_{N_{+}} + Y_{N_{-}} = Y_q; \quad Y_{N_{\pm}} = \frac{\rho_{N_{\pm}}}{\rho_B}, \quad Y_q = \frac{1}{3} \frac{\rho_q}{\rho_B}$$

- quark-meson-nucleon hybrid model at T = 0 and large μ_B $\Rightarrow \rho_{ch}$ separated from ρ_{dec} α -dep.: $\Delta \rho_{cr} / \rho_0 \sim 4\text{-}12$
- \bullet decreasing $\Delta \rho_{\rm cr}(T)$ due to bosonic thermal fluctuations
- holographic QCD approach:
 - $-\log N_c$ limit
 - less parameters

II. Dense Hadronic Matter near Chiral Restoration

Fate of hadron masses toward chiral symmetry restoration

- hadron masses vs. truncation level on lattice [Glozman, Lang, Schrock ('12)]
 - removal of lowest Dirac-eigenmodes \Leftrightarrow NO $\langle \bar{q}q \rangle$
 - \Rightarrow parity partners degenerate *and* stay quite massive!
 - -no universal scaling $(m_{\text{meson}} \sim 2m, m_{\text{baryon}} \sim 3m)$ found \Rightarrow the system remains confined!
- full LQCD: $m_{N^-} \stackrel{T \to T_{ch}}{\to} m_{N^+} \sim m_{N^+}^{(vac)}$ [Aarts et al., ('15)]
- origin of a scale in χ -sym. phase? \cdots trace anomaly $T^{\mu}_{\mu} \sim \langle \frac{\alpha_s}{\pi} G^2 \rangle$ \Rightarrow in-medium gluon condensate: melting toward T_{ch} , but non-vanishing

• embedding gluon condensate: U(1) vs. SU(2) [Paeng, Lee, Rho, CS ('13)] $-U(2)_L \times U(2)_R \sim SU(2)_L \times SU(2)_R \times U(1)_V \rightarrow SU(2)_V \times U(1)_V$ $- \operatorname{RGE}$ analysis: ρNN -int. "runs" whereas ωNN -int. "walks" with $n_B!$ $- m_N^* \sim \operatorname{const.}$: emergence of a χ -inv. mass!

- tetra-quark states in chiral transition:
 - -crucial to nuclear compressibility $K(n_0)$ [Gallas, Giacosa, Pagliara ('11)]
 - new CP? intermediate phase? enlarged symmetry? [Heinz, Struber, Giacosa, Rischke ('08); Harada, CS, Takemoto ('09); Mukherjee, Huang ('13)]

Chiral mixing in a medium

- chiral (V-A) mixing via ρ - a_1 - π interaction
- Weinberg SRs at $T \neq 0$: $f_{\pi} \Leftrightarrow \rho_{V,A}(s)$ [Weinberg ('67); Kapusta, Shuryak ('94)]
 - -smooth reduction of $m_{a_1} \rightarrow m_{
 ho}$ and broader width
 - importance of higher-lying states: ρ', a'_1 [Hohler, Rapp ('14)]

dense QCD:

• no charge-conjugation inv. $\Rightarrow \rho - a_1$ mixing at tree, dispersion modified $\mathcal{L}_{\text{mix}} = 2C\epsilon^{0\nu\lambda\sigma} \text{tr} \left[\partial_{\nu}V_{\lambda} \cdot A_{\sigma} + \partial_{\nu}A_{\lambda} \cdot V_{\sigma}\right]$ transv: $p_0^2 - \vec{p}^2 = \frac{1}{2} \left[m_{\rho}^2 + m_{a_1}^2 \pm \sqrt{(m_{a_1}^2 - m_{\rho}^2)^2 + 16C^2\vec{p}^2}\right]$

• mixing strength: χ EFT [Harada, CS ('09)] vs. AdS/QCD [Domokos, Harvey ('07)]

C = 0.1 GeV vs. 1 GeV at $n_B = n_0!$

 $C = 1 \text{ GeV} \Rightarrow \text{vector-meson condensation at } n_0 !?$

• why $C(n_0) = 1$ GeV in AdS/QCD?

$$C_{\omega} \ll C = C_{\omega} + C_{\omega'} + C_{\omega''} + \cdots?$$

• role of higher KK modes: open moose model [Son, Stephanov ('03)]

$$G_V \stackrel{Q^2 \to \infty}{\to} \frac{1}{8\pi^2} \ln Q^2$$

 \Rightarrow correct high-energy behavior for current correlator!

More and more hadronic states activated toward QCD p.t.! ... How to handle them?

- holographic QCD models: $1/N_c$ corrections?
- 4d effective field theories:

unknown interactions among higher-lying states? if renormalized/integrated out, T, n_B -dep. interactions?

$$\mathcal{L}_{\infty}(\pi, \rho, \omega, \cdots) \sim \mathcal{L}_{\text{low-lying}}(\pi, \rho, \omega, \cdots; g(T, n_B))$$

 $-\operatorname{might}$ be bridged via DS eq. and FRG?

- fixed along with comparison to lattice observables? [CS ('14)]

Summary and Remarks

• EFT approach to hot/dense QCD

- approximation of real-life QCD!

- multifaceted studies of gauge dynamics
 guided by symmetry, topology, ideal limit
- $-\operatorname{available}$ data from lat. simulations and HIC

• Dynamical chiral symmetry breaking vs. confinement

- $-\,dense\,$ matter: 2 separated phase transitions, supported by LQCD w/ Dirac eigenmode expansion
- one induces another? supported by $\mu=0~{\rm LQCD}$
- $-\operatorname{cf.}$ adjoint QCD: $T_{\mathrm{dec}} \neq T_{\mathrm{ch}}$
- More to come from HICs, LQCD and EFTs
- More input from nuclear astrophysics and observations