

A. Melatos (Melbourne)

1. Rotational glitches

GPE SIMS

- 2. Superfluid turbulence
- 3. Magnetic crust-core decoupling

I. "ACTIVE INGREDIENTS"

Slow, erratic phenomena in radio pulsars: glitches, nulling, orthogonal mode switching

DRIVER

- Heat flux... but NS stably stratified thermally
- EM spin down \rightarrow crust-core shear

field decay in magnetars

- Pinned superfluid
- Closed magnetic flux tubes

Hall effect in magnetars

CASCADE TO SHORT SCALES

- Local random pinning → global inhomogeneity
- Shear viscosity \rightarrow turbulent eddies
- Magnetorotational and Tayler instabilities

STELLAR COMPONENTS

- Rigid **crust** \rightarrow EM braking
- Inviscid *n* condensate \rightarrow **superfluid**
- Viscous $p^+ + e^- +$ uncondensed n
 - mutual friction with n condensate
 - locks (?) magnetically to crust
- Array (?) of quantized **vortices** with $\kappa = h/2m_n$
 - "wave function" $\Psi_s \propto e^{i\theta(x)}$ implies $\mathbf{v}_s \propto \nabla \theta$
 - **pinned** to nuclear lattice ($E_{pin} \sim MeV$)

Where is angular momentum stored?

(A) Inner crust SF ($I_{res} \approx 10^{-2}I_0$) plus "crust" ($I_c \approx I_0$), i.e. lattice + p^+ + e^- + core *n* locked magnetically

1. Constant crust-SF lag over long term: $\langle \dot{\Omega}_{res} \rangle = \langle \dot{\Omega}_{c} \rangle$

2. SF glitches (no creep): $\langle \dot{\Omega}_{res} \rangle = \langle \Delta \Omega_{res,g} \rangle / \langle \Delta t_g \rangle$

3. AM conserved in glitch: $I_{res}\Delta\Omega_{res,g} = -I_c\Delta\Omega_{c,g}$

(Link et al. 99)

$$\frac{\left\langle \Delta \Omega_{c,g} \right\rangle}{\left\langle \Delta t_{g} \right\rangle} = -\frac{I_{res}}{I_{c}} \left\langle \dot{\Omega}_{c} \right\rangle$$

few % from radio timing

(B) Inner crust & core SF (e.g. ${}^{3}P_{2}$) ($I_{res} \approx I_{0}$) plus "crust" ($I_{c} \approx 10^{-2}I_{0}$) comprising lattice + p^{+} + e^{-}

- Bragg entrainment reduces SF mobility relative to lattice (Chamel 12; Andersson et al. 12; Newton et al. 15)
- "Crust not enough", $I_{res} > 0.1I_0$
- Consistent if creep dominates

Superfluid vortex-superconductor fluxoid coupling

- Strong... if not tangled... (Ruderman et al. 98; Link 12)
- Weak... e.g. snow plow (Pizzochero 11; Haskell et al. 12), type I superconductor (Jones 06)

II. GLITCHES

Gross-Pitaevskii simulations: trigger mechanism and long-term statistics

"Poisson" waiting times (Melatos et al. 08)

PSR 1341-6220: a leopard can change its spots (Melatos et al. 15)

Avalanche dynamics

- Self-organized criticality
- Earthquakes, sand piles
- Slow, global driver
- Impulsive, local relaxation
- "Stick-slip" motion

San Francisco 1906 SF vortices unpin and move \rightarrow glitch

10¹⁶ vortices per star 10⁶ to 10¹² vortices per glitch

Central limit theorem \rightarrow

narrow range of sizes and waiting times...

... not seen except in Vela and 0537

Vortex motion must be correlated – how?

- Glitches occur at random times
- Range of sizes
- Vortices unpin **collectively**
- Move in "herds" covering a wide area
- **Dodge** sites and **exit** system ("slalom skier")
- Skip sites and repin ("fill in gaps")

Proximity knock-on

Acoustic knock-on

- Power-law $\Delta \Omega$, Poisson Δt (small *N* still...)
- Similar for uniform & random pinning

Waiting times: theory & data

Sizes

Minimum glitch size resolved in Crab? (Espinoza et al. 14)

- Avalanches cover more area
- Post-glitch recovery more complete

Unpin acoustically even if Magnus weak

INTERESTING NUMBERS

Damping coefficient (dimensionless) in GPE

• Rate: condensate \rightarrow excited states

• Need $N_{unpin} \sim N_{total}$ and/or $\Delta R >> \lambda_F \approx 10^{-7} R_*$ to explain largest glitches

$$\frac{\Delta \Omega_c}{\Omega_c} \approx \left(\frac{I_s}{I_c}\right) \left(\frac{N_{unpin}}{N_{total}}\right) \left(\frac{\Delta R}{R_*}\right)$$

- Larger systems → hierarchical N-body code
- In progress (NB. can't do acoustic waves)

III. SF TURBULENCE

Macro... high-*Re* Kolmogorov eddies Micro... tangled unstable vortices

Interior fluid sucked into boundary layer, spun down, then recycled

Ekman pumping ("cup of tea")

(Nakabayashi 83)

(Peralta et al. 05, 08)

(Tsubota group)

VORTEX TANGLE

DONNELLY-GLABERSON INSTABILITY

- Lab experiments (He, BEC) (Glaberson et al. 74)
- Ekman counterflow $V_{np} \approx R\Delta\Omega$ along vortices
- Mutual friction amplifies Kelvin waves
- Low threshold $V_{np} \sim \text{mm s}^{-1}$, fast growth $> \Omega$

PINNING INSTABILITY (Glampedakis et al. 09; Link 12)

- Imperfect pinning \rightarrow vortex creep $\rightarrow V_{np}$
- Grows over days

Quenched by stratification (ρ_p/ρ_n **)?**

(Reisenegger & Goldreich 92; Gusakov & Kantor 13)

Density field (e.g. cloud)

(Hobbs et al. 10) $\sigma_{z} = (720)^{-1/2} \Omega^{-1} \langle \ddot{\Omega}^{2} \rangle^{1/2} T_{obs}^{2}$

IV. MAGNETIC ACTIVITY

Type I or II superconductor; realistic magnetic geometry

Dendritic flux avalanche in MgB₂ (Johansen et al. 02)

"Many magnetic topologies (e.g. closed loops) cannot enforce corotation" (Easson 79)

Are there realistic topologies which can? Unknown!

Fossil super-rotation of core (Melatos 12)

- Tayler or MRI dynamo (Braithwaite 06)
- "Geomagnetic jerks", precession, GWs...

Shear in closed flux tubes (Glampedakis & Lasky 15)

• Kelvin-Helmholtz turbulence? Field \rightarrow crust?

– Proof: slight departure from corotation; $\mathbf{B}=\mathbf{B}_0+\mathbf{B}_1$

 $(4\pi)^{-1}(\mathbf{B}_0\cdot\nabla)(RB_{1\varphi}) = [K(\Omega_{line} - \Omega_{crust}) - k\dot{\Omega}_{crust} + c\dot{\Omega}_n]R^2 + F_{B\varphi}R$

- Non-conservative Fermi liquid forces etc on RHS can't be balanced by pressure gradient
- Integrate along closed **B** loop \rightarrow multivalued $B_{1\phi}$
- Plasma can't adjust; RHS depends on *unperturbed* state, except Ω_{line} (eq'n of motion independent of **B**)
- Generalized to "twisted torus" (Glampedakis & Lasky 15)
- Role of stratification unsolved

A dynamo can exist in a stably stratified star... ...in fact it works better! (Braithwaite 06)

- Driven by shear not thermal convection
- Tayler or MRI instabilities

V. GRAVITATIONAL WAVES

New observational constraints

$$h_{lm} = \frac{G}{c^5 d} \frac{\partial^2}{\partial t^2} \int d^3 x Y_{lm}^* r^l \mathbf{x} \cdot \operatorname{curl}(\rho \mathbf{v})$$

$$\frac{GM}{Rc^{2}} \left(\frac{Rf}{c}\right)^{2} \left(\frac{d}{R}\right)^{-1} \frac{\varepsilon_{\rho N}V}{c}$$

Current quadrupole \propto momentum flux $\propto T^{0i}$

 Vortices reorganize during glitch rise → GW burst (Warszawski & Melatos 12)

 $\Delta t_{rise} > 10 \text{ ms}$

 Ekman pumping during glitch recovery → monochromatic "long transient" (Bennett et al. 10)
 N > 0.5 and K > 3 SF turbulence → stochastic GW (Melatos & Peralta 10; Lasky et al. 13)

 $\Delta\Omega/\Omega < 0.04$ (individual) $\Delta\Omega/\Omega < 0.01$ (all MSPs in Universe)

Coherent LIGO searches for known MSPs
 near EM spin-down limits (Mastrano & Melatos 12)

 $h_0 < 2 \times 10^{-26}$

 $\varepsilon < 7 \times 10^{-8}$

 $B_{int} < 10^{10}$ G (superconductor) NB. Burial or decay starts with $B_{int} > 10^{12}$ G

SUMMARY

- Intermittency \leftrightarrow storage \leftrightarrow self-organization
- GPE sim's of vortex avalanches
- Long-term statistics consistent with data
- **SF turbulence** (macro, micro) & buoyancy
- Timing noise
- Realistic magnetic geometry
- Gravitational wave constraints

PSR 1341-6220: a leopard can change its spots (Melatos et al. 15)

RECENT SF HIGHLIGHTS

- Energy gap (Gusakov & Kantor 13)
- Neutrino emissivity (Leinson 13)
- Transport coefficients & mode damping with hyperons (Kantor & Gusakov 09; Shternin & Yakovlev 08)
- Thermal conductivity (Chamel 12)
- Color-flavor-locked viscosity & mutual friction (Mannarelli et al. 10, 08; Alford et al. 10, 08)
- Entrainment couples SF to crust (Chamel 13) →
 extra angular momentum reservoir for glitches

- Magnetic axis alignment (Barskuov et al. 13)
- Ab initio pinning (Avogadro et al. 08; Pizzochero 11)
- "Snowplow" glitch model (Haskell et al. 12)
- Modes, instabilities, gravitational waves (Passamonti & Andersson 12; Jones 10; Sidery et al. 10)
- **r-modes** (Ho et al. 11; Andersson et al. 10; Bondarescu et al. 09)
- X-ray burst cooling in LMXBs (Ho et al. 13)
- Rotochemical heating in MSPs (Reisenegger et al. 10)
- Dark matter condensate (Kouvaris 12)

Radio

GW

NUCLEAR EXPERIMENTS

Multi-messenger lessons from post-glitch recoveries

Interior fluid sucked into boundary layer, spun down, then recycled

Ekman pumping ("cup of tea")

- Radio data \rightarrow **two** time-scales
 - viscous p^+ - e^- component = Ekman circul'n
 - -n condensate = mutual friction
- Data inconsistent with magnetic locking
- Theory matches ⁴He laboratory data to 1% with no free parameters (van Eysden & Melatos 11)

- Dual exponentials: Ekman, mutual friction
- Predict overshoot if internal lag obeys

$$\Omega_0 - \Omega_{n0} < \frac{7BE^{-1/2}}{20\rho_n K} - 1$$

- Good fit for "ordinary" *n-p-e-*μ matter
- *BE*^{-1/2} too low for CFL (cf. 2SC)

- Periodic GW decaying over days to weeks
- Compressibility *K*, viscosity $E \rightarrow$ boundary layer thickness \rightarrow GW amplitude, decay time

SUPERCONDUCTOR

Differential rotation drives magnetic activity

- **Cas A** cooling $\rightarrow {}^{1}S_{0}$ protons in core
- Incomplete type II Meissner expulsion
 - Fluxoids with quantized magnetic flux $\Phi = h/2e$
 - More fluxoids (~10³¹) than *n* vortices (~10¹⁶)
- Entrainment (current-current interaction) magnetizes *n* vortices
 - Opposite-current-carrying wires repel
 - 0.1 GeV per junction, locked together (maybe...)
- Maxwell stress ~ $BH_{c1} \sim 10^3 B^2$

RECENT SC HIGHLIGHTS

- Multifluid "MHD" theory (Glampedakis et al. 11)
- Poloidal-toroidal equilibria & stability (Lander 13)
- Matching normal crust ↔ type II core (Henriksson & Wasserman 13; Sidery & Alpar 09)
- **Type I in macro domains** (Charbonneau & Zhitnitsky 07)
 - Chiral anomaly (e.g. QCD) \rightarrow current along fluxoids
 - Attractive force \rightarrow type I for $J > J_{crit}$
 - Cf. fluxoid instability \rightarrow tangle when $J < J_{crit}$

- Magnetar oscillations (incl. fluxoid cutting & damping) (Gabler et al. 13; Glampedakis & Jones 14)
- Post-glitch, quasiperiodic, magneto-inertial oscillations (van Eysden 14; Glampedakis et al. 14)
- Crystalline color superconducting core: shear modulus, gravitational waves, cooling (Alford et al. 08; Glampedakis et al. 12; Negreiros et al. 12)
- Indirect spin-down limit on GWs from buried type II field in MSPs (Mastrano & Melatos 12)