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Neutron  stars  provide an ideal laboratory to 
study matter under  extreme conditions of 
temperature, density, and spacetime  curvature. 
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•  Which is the  equation of state (EoS) of matter in such 
extreme conditions? 

 
•  What is its  composition and how does it depend on 

temperature? 
 
•  What are the transport properties, thermal conductivity, 

shear and bulk viscosities, electric conductivity, neutrino 
mean free path, etc. which so strongly influence 

      the stellar structure and dynamics? 
 
•  How can  one put to test the theoretical approaches 

developed to describe neutron star  properties? 
 

Gravitational waves emitted by neutron stars at different 
stages of  their evolution, will hopefully provide a  tool to 
investigate these issues. 3 



Gravitational wave interferometric detectors: first generation 

Virgo interferometer (Cascina, Italy) 

GEO600 (British-German) 
Hannover, Germany 

LIGO- I (USA) 
Hanford, WA  

TAMA300 (Japan) (decommissioned)  
first detector to take data 

LIGO-II (USA) 
Livingston, LA 

Next generation will improve sensitivity 
by an order of magnitude 



Advanced 
detectors 

Initial 
detectors 
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LIGO: Fall 2015 
Virgo: next year  



When operating at design sensitivity ,  ADVANCED LIGO/Virgo  are expected 
to detect 
 NS-NS  coalescence seen up to        ~ 300 Mpc 
 NS-BH (1.4-10) Msun                         ~ 650 Mpc 

will we be able to set constraints on the NS EoS using these 
observations?  

ASTROPHYSICAL OBSERVATIONS: FROM OBSERVED SAMPLE OF BINARY PULSARS: 
~  [10-8 – 8x10-6 ] Mpc-3 yr-1 

 

 
RATES FROM POPULATION SYNTHESIS STUDIES   in Mpc-3  yr-1  
 
[10-8   - 10-5]                 NS-NS 

[6x10-10   - 10-6]           NS-BH              LIGO-Virgo coll. CQG 27, 2010 

even in the most pessimistic case we can reasonably say that within  
a decade  we should be able to detect several events    
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One of the main target is the detection of GW signals emitted by  
coalescing  compact binaries 



This deformation of the neutron star has an effect on the orbital motion ,  
and hence on the gravitational waveform; in particular it enters, as we  
shall  later see in the signal phase 
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The way in which the EoS enters the GW signal from binary  
coalescence is mainly through tidal deformation. 



                                       The Newtonian Theory of Tides: 
 
The Love numbers were introduced by  August E. H. Love in 1911: they are  a set of  
dimensionless parameters which measure the rigidity of a planetary body and show  
how its shape changes in response to an  external tidal potential.  

LOVE NUMBERS AND TIDAL DEFORMABILITY 

 
These numbers can be generalized  to stars in General Relativity.  
We are interested in particular in one of these numbers,  which connects the tidal field  
with the quadrupolar deformation of the star. 
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    is related to the l=2 tidal Love number             (or apsidal constant)  by the equation 

Tidal-induced Quadrupole Moment  and  tidal deformability of a Neutron Star 

If a static, spherically symmetric star of mass M  is placed in a static, external, 
quadrupolar tidal field Cij,  it develops a quadrupole moment Qij 
 
To linear order in the   tidal field Cij,  the “tidal - induced”quadrupole moment Qij can 
be written as 

Qij = �Cij

where                is the tidal deformability,  

�

k2 =
3G

2R5
�

k2

How do we find             ?       �

�
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In the star’s local asymptotic frame (asymptotically mass-centered Cartesian coordinates) 
at large distance r, the metric coefficient gtt can be written as  (Thorne 1998) 
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In GR the tidal field Cij is found by projecting the Riemann tensor associated 
to the external field which produces the star deformation, 
onto a parallely transported tetrad attached to the deformed star 
    

Cij = e↵(0)e
�
(i)e

�
(0)e

�
(j)R↵���

Tidal-induced Quadrupole Moment  and  tidal deformability of a Neutron Star 
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Since we have assumed 

In the star’s local asymptotic frame (asymptotically mass-centered Cartesian 
coordinates)  at large distance r, the metric coefficient gtt can be written as  
(Thorne 1998) 
1� gtt
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where ni=xi/r. 

Qij = �Cij

Given the tidal field  Cij  , to find  λ we need to determine the asymptotic 
behaviour of  gtt 
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Tidal-induced Quadrupole Moment  and  tidal deformability of a Neutron Star 
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g↵� = g(0)↵� + h↵�
describes the geometry of the static star,                       
             is the metric perturbation.  g(0)↵� h↵�

h↵� = diag
h
�e⌫(r)H0(r), e

�(r)H2(r), r
2K(r), r2 sin ✓K(r)

i
Y2m(✓,�)

H0 = �H2 = H and, by suitably combining the various components,  
 a relation between H(r) and K(r), and 
a second order differential equation  for H(r): 

Under the action of the external, quadrupolar  tidal field the star’s metric is perturbed   

h↵�

Einstein’s equations linearized about                give: g(0)↵�
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The function H  is the only function we need to find the perturbed metric 

T. Hinderer, ApJ 677,2008 

Expanding               in spherical  harmonics  
(in the Regge-Wheeler gauge) allows to  
write            as 

h↵�
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ν(r) and  λ (r) are the metric funtions 
of the unperturbed star   



the tidal deformability                 and the Love number 
can be found   

H 00 +H 0
⇢
2

r
+ e�


2m(r)

r2
+ 4⇡r(p� ⇢)

��
+H


�6e�

r2
+ 4⇡e�

✓
5⇢+ 9p+

⇢+ p

dp/d⇢

◆
� (⌫0)2

�
= 0

This equation is solved numerically by imposing regularity at r=0, and continuous matching 
at r=R with the exterior solution which is known analitically. The metric is thus completely  
determined, and in particular 

Expanding this quantity at radial infinity and comparing with Thorne’s asymptotic expansion 

gtt = g0tt + htt = �e⌫ [1 +H(r)]

� k2

T. Hinderer, ApJ 677,2008 
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NOTE THAT: 
 
the Love number                  and the tidal deformability                 depend only on the 
stellar compactness  C, a quantity which depends on the equation of state, and on the 
value of H and H’ at the surface, which again depends on the EoS through the pressure and 
density profiles  in the unperturbed star  

where                            is the star compactness,  and                                                                                   
 
 
 

k2 =
8C5

5
(1� 2C)2 [2 + 2C(y � 1)� y]

⇢
2C [6� 3y +

+3C(5y � 8)] + 4C3 [13� 11y + C(3y � 2) +

+2C2(1 + y)
⇤
+ 3(1� 2C)2 [2� y + 2C(y � 1) ln (1� 2C)]

��1

,

C = M/R y = H 0(R)R/H(R)

� =
2R5

3G
k2

�k2

T. Hinderer, ApJ 677,2008 

Love number  

tidal deformability  
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I-Love-Q relations 
In 2013 Yagi and Yunes discovered new relations between the NS moment of 
inertia I, the  Love numbers and the spin-induced  quadrupole moment Q 
that are essentially EoS independent for slowly- rotating NSs  
 
 These three quantities give interesting physical information: 
 
u  the moment of inertia quantifies how fast a NS can spin assumining a  
             fixed angular momentum 
 
u  the spin-induced quadrupole moment describes the NS shape                
             deviates from sphericity due to rotation 
 
u  the Love number quantifies how much deformable the NS is. 

Each of these quantities depend on the EoS,                                    
 the relations between them do not! 

K. Yagi, N. Yunes, Science 241, 2013;   PRD 88, 2013 
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K. Yagi, N. Yunes PRD 88, 2013 

Ī = I/M3
⇤ Q̄ = Q(rot)/[M3

⇤ (S/M
2
⇤ )

2]

M⇤ (APR) [M�]

ln yi = ai + bi lnxi + ci(lnxi)
2 + di(lnxi)

3 + ei(lnxi)
4

yi xi ai bi ci di ei

Ī �̄

(tid) 1.47 0.0817 0.0149 2.87⇥10�4 -3.64 ⇥10�5

Ī Q̄ 1.35 0.697 -0.143 9.94 ⇥10�2 -1.24 ⇥10�2

Q̄ �̄

(tid) 0.194 0.0936 0.0474 -4.21 ⇥10�3 1.23 ⇥10�4

M⇤ (APR) [M�]

�̄(tid) = �/M5
⇤
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h(f) = A(f)ei (f)  (f) =  PP +  Q̄ +  �̄

 PP (f) = 2⇡ftc � �c � ⇡
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Tidal effects in the gravitational wave signal emitted in  NS-NS  binary coalescence 
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both the quadrupole moments and the spin 
terms appear at the 2-PN order and cannot 
be measured independently : in this sense  
we say that there is complete degeracy 
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NOTE THAT: λ is independent 
 of the spins 

QS =
Q̄1 + Q̄2

2
, Qa =

Q̄1 � Q̄2

2

 Tidal contribution: 

 Q̄ =
3

128
(M⇡f)�5/3

⇢
�50

✓
m

2
1

m

2
�

2
1 +

m

2
2

m

2
�

2
2

◆
(QS � 1) +

✓
m

2
1

m

2
�

2
1 �

m

2
2

m

2
�

2
2

◆
Qa

�
x

2

�
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Tidal effects in the gravitational wave signal emitted in  NS-NS  binary coalescence 

h(f) = A(f)ei (f)

tidal effects are measured from the high frequency part of the wave 18 



Although tidal effects enter the phase at high post-Newtonian 
 order (5PN), the tidal deformability which appear in the formula 
is normalized as 

�̄(m) = �(m)/m5 / (R/m)5 ⇠ 102 � 105

so that it may be observable with advanced detectors 
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Will it be possible possible to measure the tidal deformability with 
 the accuracy needed to gain information on the NS EoS ? 

two possible approaches: Fisher-matrix  and     Bayesian analysis 

Fisher matrix in two words:  given a signal  
 
where                                                          is a set of parameters, and given the detector output 

h(t, ~✓)

~✓ = (M, tc,�c,�, ...)

where n(t) is the detector noise which is assumed to be stationary and Gaussian, the estimated  values of  
the source parameters are those which maximize the probability distribution 
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RESULTS WITH THE FISHER MATRIX APPROACH 
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Read, Markakis, Shibata, Uryu, Creighton, PRD79, 2009 
 
using hybrid waveforms (Post-Newtonian+ full GR over the last 3 orbits) 
show that if the EoS is sufficiently stiff, with  a single close-by source (at a distance of 
100 Mpc)  neutron star radius  could be constrained to ~10% 
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RESULTS WITH THE FISHER MATRIX APPROACH 

Maselli, Gualtieri, Ferrari PRD88, 2013   
Using a set of EoS and PN templates including tidal corrections, we evaluated  
how well Advanced LIGO/Virgo and ET could measure  λ  or the stellar compactness C=M/R 
assuming the source at D=20/100 Mpc (LIGO/Virgo) or at D=100 Mpc /2 Gpc (ET) 
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Is the tidal deformability  λ  the “right” parameter to discriminate among different EoS? 
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stiffest EoSs can be distinguished  if we use  λ 
for masses smaller than ~ 1.5 M¤   

Maselli, Gualtieri, Ferrari PRD88, 2013   
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Similar results were obtained in 
 
Damour, Nagar, Villain PRD85, 2012   
 
they use  waveforms constructed with the EOB formalism  extrapolated up to the touching 
of the two NSs. 
 
They show that: if a NS-NS coalescence signal will be detected  with a  
signal-to-noise ratio ≥ 16 by advanced detectors, than the tidal deformability  
can be measured at 95% confidence level for a large set of EoS and for mass ratio  
ranging from 0.7 to 1 
 
For BH-NS system the dephasing turns out to be smaller by ≈ 2 orders of magnitude 
 
Similar results also  in Lackey, Kiutoku, Shibata, Brady, Friedman, PRD85, 2012 
who used hybrid waveforms for NS-BH coalescence (num rel+ one body approximants) 
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These results are based on the assumption of a single detection and on the Fisher 
matrix approach. What if we combine results of multiple detections? 



Bayesian analisys for inferring the NS EoS using more sources 
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Bayesian analysis in three words:  suppose that we are looking for  a signal                      where 
 
                                              is a set of parameters, and the detector output is  

h(t, ~✓)

~✓ = (M, tc,�c,�, ...) d(t)

be I any information that we may have on the signal, for instance the range in which parameters 
may vary and their distribution functions.  We construct the likelihood function 

p(d|h, ~✓, I) = N exp
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#
          = Fourier transform of the data stream 
         =  normalization factor N
d(f)

then we compute the evidence  by integrating 
 the likelihood on the parameter space 

and finally the posterior probability that  
is present in the data, given the collected 
data stream d(f)  and the prior hypothesis I 

P (h|d, I) / P (d|h, I)P (h|I)

P (d|h, I) =
Z

d~✓ P (~✓|I) p(d|h, I)

h(t, ~✓)

Let us now assume that the signal we are looking for may come from  
two different EoS , and let us call them h1 and h2  



Bayesian analisys for inferring the NS EoS using more sources 
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For each template we compute  
the likelihood function 

 the evidence  by integrating the 
 likelihood on the parameter space 

and finally the posterior probability that  
is present in the data, given the collected 
data stream d(f)  and the prior hypothesis I 

If the signal we are looking for may come from two different EoS ,  
say h1 and h2 ,  

P (d|hi, I) =

Z
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If the odds ratio Oi
j is  greater than 1, 

this means that  the data favour the signal  
hi over  hj  i.e., for instance the EoS i with respect to the EoS J 

This analysis can be extended to the case of multiple detections d1, d2, …dN 

(N)Oi
j =

P (hi|I)
P (hj |I)

NY

n=1

P (dn|hi, I)

P (dn|hj , I)

using this formula we can rank the EoS , i.e. 
we can establish which is the EoS which is more 
compatible  with the detected data 

i=1,2 



Using Bayesian analisys for inferring the NS EoS using more sources 

NS-NS signals are injected into simulated data 
of   Advance LIGO/Virgo noise, assuming 
design sensitivity. 
 
They consider  3 different EoS , MS1, H4, SM3, 
which are stiff, moderatly stiff and soft, 
respectively. 
 
The tidal deformability  λ (m)  is given in the 
picture 

Del Pozzo, Agathos,  Meidam,  Li, Tompitak,Veitch,Vitale,, Van Den Broek, PRL 111, 2013 
 

4

where m is the mass of the neutron star that is experienc-
ing the quadrupole deformation, and the function �(m) is
the tidal deformability, which is determined by the EOS.
The deformations of the two neutron stars in turn a↵ect
the orbital motion, and this is one way in which the EOS
gets imprinted upon the gravitational waveform. The
deformability �(m) is related to the second Love number
k2(m) and the neutron star radius R(m) through �(m) =
(2/3) k2(m)R5(m). Tidal e↵ects only enter the phase
starting at 5PN order [64], but as mentioned before, the
prefactors are sizeable (�/M5 / (R/M)5 ⇠ 102 � 105),
which is why we can hope to infer information on the
EOS from the tidal deformation.

The e↵ects of tidal deformations on the orbital motion
were calculated up to 1PN (or 6PN in phase) by Vines,
Flanagan, and Hinderer [44], and more recently to 2.5PN
(or 7.5PN in phase) by Damour, Nagar, and Villain [19].
The latter expression is what we will be using in this
paper; for completeness we reproduce it here. In terms
of the characteristic velocity v = (⇡Mf)1/3, one has

 (v) =  PP(v) + tidal(v), (4)

where  PP(v) is the phase for the inspiral of point parti-
cles, and  tidal(v) is the contribution from tidal e↵ects.
The latter takes the form
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where XA = mA/M , A = 1, 2, and �A = �(mA). We
should note that the calculation leading to this expression
ignores (i) contributions from higher-order multipoles as
these are estimated to give small corrections, and (ii) a
number of as yet unknown functions that appear in the
7PN phase contribution; in [19] these too were argued to
be negligible and we refer to that paper for details.

For the function �(m), in our simulated signals we will
use quartic polynomial fits to predictions corresponding
to di↵erent EOS from Hinderer et al. [18]. Examples of
such fits for a soft (labeled SQM3), a moderate (H4), and
a hard EOS (MS1) are shown in Fig. 1.

C. Quadrupole-monopole e↵ects

As mentioned before, tidal e↵ects are not the only way
the EOS enters into the gravitational waveform. If a
neutron star is spinning, it takes on an oblate shape. As-
suming an axisymmetric mass distribution with respect
to the axis of rotation, the deformation can be expressed
to leading order by means of a dimensionless quadrupole
moment parameter q, defined as [50]

q = �5

2
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⇣ r

M

⌘3
Z 1

�1
⌫(r, ✓)P2(cos ✓) d cos ✓, (6)

where ⌫ = 1/2 ln(�gtt) is a potential related to the met-
ric of a stationary axially symmetric body, and P2(x) =
(3x2 � 1)/2 is the second Legendre polynomial. This
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FIG. 1: The tidal deformability parameter �(m) as a func-
tion of neutron star mass for three di↵erent EOS: a soft
one (SQM3), a moderate one (H4), and a hard one (MS1).
Adapted from [18].

quantity is the general-relativistic equivalent of the New-
tonian mass quadrupole moment.

Since a sti↵er EOS implies a larger neutron star (NS)
radius for a given mass, the quadrupole moment increases
in absolute value with the sti↵ness of the EOS. A few ex-
amples of q estimates for di↵erent EOS were given in [50].
They also demonstrated the dependence on the dimen-
sionless spin �, which for a fixed NS mass can be fit very
well up to the maximum spin value �max (also dependent

masses in the range [1,2] M¤ 

PN waveforms are truncated  at the ISCO or at physical contact 
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stiffest 

softest 

 The detectors noise (the three LIGO+Virgo)   is taken to be stationary and Gaussian 



                               Injections   and Priors 
 
signals are injected assuming sources uniformely distributed in the comoving volume in  
the distance range D =  [100, 250] Mpc 
 
the set of  parameters                includes: 
masses, spin, sky position, orientation, distance, time and phase at coalescence.  
 
sky location and orientation are assumed to be uniformly distributed on a sphere  
phase at coalescence is uniform in [0, 2π] 
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v   spins are set to zero both in the injected signals and in the priors,  
v all injected signals belong to the stiffest EoS, MS1  
 
v mass density distribution of the injected signals  is 
        1)  flat distribution  with masses in the range [1,2] M¤ 
        2) Gaussian, mean value 1.35 M¤  , spread  0.05M¤ 
 
v prior for the mass density distribution uniform in the range  [1,2] M¤ 

In a further analysis they also include spin effects 



1) 20 injected signals   --   all injected signals belong to the stiffest EoS, MS1 
                                             flat distribution  with masses in the range [1,2] M¤ 

    prior for the mass density distribution assumed to be flat in the range  [1,2] M¤ 

If the odds ratio Oi
j is  > 1, this means that   

the data favour the signal hi over  hj  i.e., for instance  
the EoS i with respect to the EoS J 

Oi
j =

P (hi|d, I)
P (hj |d, I)

4

where m is the mass of the neutron star that is experienc-
ing the quadrupole deformation, and the function �(m) is
the tidal deformability, which is determined by the EOS.
The deformations of the two neutron stars in turn a↵ect
the orbital motion, and this is one way in which the EOS
gets imprinted upon the gravitational waveform. The
deformability �(m) is related to the second Love number
k2(m) and the neutron star radius R(m) through �(m) =
(2/3) k2(m)R5(m). Tidal e↵ects only enter the phase
starting at 5PN order [64], but as mentioned before, the
prefactors are sizeable (�/M5 / (R/M)5 ⇠ 102 � 105),
which is why we can hope to infer information on the
EOS from the tidal deformation.

The e↵ects of tidal deformations on the orbital motion
were calculated up to 1PN (or 6PN in phase) by Vines,
Flanagan, and Hinderer [44], and more recently to 2.5PN
(or 7.5PN in phase) by Damour, Nagar, and Villain [19].
The latter expression is what we will be using in this
paper; for completeness we reproduce it here. In terms
of the characteristic velocity v = (⇡Mf)1/3, one has

 (v) =  PP(v) + tidal(v), (4)

where  PP(v) is the phase for the inspiral of point parti-
cles, and  tidal(v) is the contribution from tidal e↵ects.
The latter takes the form

 tidal(v) =
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where XA = mA/M , A = 1, 2, and �A = �(mA). We
should note that the calculation leading to this expression
ignores (i) contributions from higher-order multipoles as
these are estimated to give small corrections, and (ii) a
number of as yet unknown functions that appear in the
7PN phase contribution; in [19] these too were argued to
be negligible and we refer to that paper for details.

For the function �(m), in our simulated signals we will
use quartic polynomial fits to predictions corresponding
to di↵erent EOS from Hinderer et al. [18]. Examples of
such fits for a soft (labeled SQM3), a moderate (H4), and
a hard EOS (MS1) are shown in Fig. 1.

C. Quadrupole-monopole e↵ects

As mentioned before, tidal e↵ects are not the only way
the EOS enters into the gravitational waveform. If a
neutron star is spinning, it takes on an oblate shape. As-
suming an axisymmetric mass distribution with respect
to the axis of rotation, the deformation can be expressed
to leading order by means of a dimensionless quadrupole
moment parameter q, defined as [50]

q = �5

2
lim
r!1

⇣ r

M

⌘3
Z 1

�1
⌫(r, ✓)P2(cos ✓) d cos ✓, (6)

where ⌫ = 1/2 ln(�gtt) is a potential related to the met-
ric of a stationary axially symmetric body, and P2(x) =
(3x2 � 1)/2 is the second Legendre polynomial. This
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FIG. 1: The tidal deformability parameter �(m) as a func-
tion of neutron star mass for three di↵erent EOS: a soft
one (SQM3), a moderate one (H4), and a hard one (MS1).
Adapted from [18].

quantity is the general-relativistic equivalent of the New-
tonian mass quadrupole moment.

Since a sti↵er EOS implies a larger neutron star (NS)
radius for a given mass, the quadrupole moment increases
in absolute value with the sti↵ness of the EOS. A few ex-
amples of q estimates for di↵erent EOS were given in [50].
They also demonstrated the dependence on the dimen-
sionless spin �, which for a fixed NS mass can be fit very
well up to the maximum spin value �max (also dependent
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If we assume  that hi belongs to the EoS   H4   
the odds ratios are larger than 1 in 40% of the data 

If we assume  that hi belongs to the waveform 
with no tidal effects (PP), the odds ratio  
are larger  than 1 in 30% of the data 

If we assume  that hi belongs to the EoS    
SQM3  are larger than 1 in 20% of the data 



If the odds ratio Oi
j is  > 1, this means that   

the data favour the signal hi over  hj  i.e., for instance  
the EoS i with respect to the EoS J 

Oi
j =

P (hi|d, I)
P (hj |d, I)

4

where m is the mass of the neutron star that is experienc-
ing the quadrupole deformation, and the function �(m) is
the tidal deformability, which is determined by the EOS.
The deformations of the two neutron stars in turn a↵ect
the orbital motion, and this is one way in which the EOS
gets imprinted upon the gravitational waveform. The
deformability �(m) is related to the second Love number
k2(m) and the neutron star radius R(m) through �(m) =
(2/3) k2(m)R5(m). Tidal e↵ects only enter the phase
starting at 5PN order [64], but as mentioned before, the
prefactors are sizeable (�/M5 / (R/M)5 ⇠ 102 � 105),
which is why we can hope to infer information on the
EOS from the tidal deformation.

The e↵ects of tidal deformations on the orbital motion
were calculated up to 1PN (or 6PN in phase) by Vines,
Flanagan, and Hinderer [44], and more recently to 2.5PN
(or 7.5PN in phase) by Damour, Nagar, and Villain [19].
The latter expression is what we will be using in this
paper; for completeness we reproduce it here. In terms
of the characteristic velocity v = (⇡Mf)1/3, one has

 (v) =  PP(v) + tidal(v), (4)

where  PP(v) is the phase for the inspiral of point parti-
cles, and  tidal(v) is the contribution from tidal e↵ects.
The latter takes the form

 tidal(v) =
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where XA = mA/M , A = 1, 2, and �A = �(mA). We
should note that the calculation leading to this expression
ignores (i) contributions from higher-order multipoles as
these are estimated to give small corrections, and (ii) a
number of as yet unknown functions that appear in the
7PN phase contribution; in [19] these too were argued to
be negligible and we refer to that paper for details.

For the function �(m), in our simulated signals we will
use quartic polynomial fits to predictions corresponding
to di↵erent EOS from Hinderer et al. [18]. Examples of
such fits for a soft (labeled SQM3), a moderate (H4), and
a hard EOS (MS1) are shown in Fig. 1.

C. Quadrupole-monopole e↵ects

As mentioned before, tidal e↵ects are not the only way
the EOS enters into the gravitational waveform. If a
neutron star is spinning, it takes on an oblate shape. As-
suming an axisymmetric mass distribution with respect
to the axis of rotation, the deformation can be expressed
to leading order by means of a dimensionless quadrupole
moment parameter q, defined as [50]

q = �5

2
lim
r!1

⇣ r
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Z 1
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⌫(r, ✓)P2(cos ✓) d cos ✓, (6)

where ⌫ = 1/2 ln(�gtt) is a potential related to the met-
ric of a stationary axially symmetric body, and P2(x) =
(3x2 � 1)/2 is the second Legendre polynomial. This
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FIG. 1: The tidal deformability parameter �(m) as a func-
tion of neutron star mass for three di↵erent EOS: a soft
one (SQM3), a moderate one (H4), and a hard one (MS1).
Adapted from [18].

quantity is the general-relativistic equivalent of the New-
tonian mass quadrupole moment.

Since a sti↵er EOS implies a larger neutron star (NS)
radius for a given mass, the quadrupole moment increases
in absolute value with the sti↵ness of the EOS. A few ex-
amples of q estimates for di↵erent EOS were given in [50].
They also demonstrated the dependence on the dimen-
sionless spin �, which for a fixed NS mass can be fit very
well up to the maximum spin value �max (also dependent

This ranking is correct, because the EoS H4 is  
closer to MS1 than SQM3 and PP 

30 

Let us now see how this picture changes if we 
inject signals with a mass distribution different from 
the one which is use as a  prior  

H4 is the EoS with the higher probability to correspond  
to the true signals  
SQM3 and the point particle signal (PP) have a lower 
 probability 

2)  injected signals   -- all injected signals belong to the stiffest EoS, MS   
                                     mass distribution  Gaussian, mean value 1.35 M¤  , spread  0.05M¤ 
                                     prior for the mass density distribution uniform in the range  [1,2] M¤ 



2)  injected signals   -- all injected signals belong to the stiffest EoS, MS   
                                     mass distribution  Gaussian, mean value 1.35 M¤  , spread  0.05M¤ 
                                     prior for the mass density distribution uniform in the range  [1,2] M¤ 

If the odds ratio Oi
j is  > 1, this means that   

the data favour the signal hi over  hj  i.e., for instance  
the EoS i with respect to the EoS J 

Oi
j =

P (hi|d, I)
P (hj |d, I)

The ranking of the EoS is again correct: 
H4 is the EoS with the higher probability to correspond  
to the true signals  
SQM3 and PP have a lower probability 

4

where m is the mass of the neutron star that is experienc-
ing the quadrupole deformation, and the function �(m) is
the tidal deformability, which is determined by the EOS.
The deformations of the two neutron stars in turn a↵ect
the orbital motion, and this is one way in which the EOS
gets imprinted upon the gravitational waveform. The
deformability �(m) is related to the second Love number
k2(m) and the neutron star radius R(m) through �(m) =
(2/3) k2(m)R5(m). Tidal e↵ects only enter the phase
starting at 5PN order [64], but as mentioned before, the
prefactors are sizeable (�/M5 / (R/M)5 ⇠ 102 � 105),
which is why we can hope to infer information on the
EOS from the tidal deformation.

The e↵ects of tidal deformations on the orbital motion
were calculated up to 1PN (or 6PN in phase) by Vines,
Flanagan, and Hinderer [44], and more recently to 2.5PN
(or 7.5PN in phase) by Damour, Nagar, and Villain [19].
The latter expression is what we will be using in this
paper; for completeness we reproduce it here. In terms
of the characteristic velocity v = (⇡Mf)1/3, one has

 (v) =  PP(v) + tidal(v), (4)

where  PP(v) is the phase for the inspiral of point parti-
cles, and  tidal(v) is the contribution from tidal e↵ects.
The latter takes the form

 tidal(v) =
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where XA = mA/M , A = 1, 2, and �A = �(mA). We
should note that the calculation leading to this expression
ignores (i) contributions from higher-order multipoles as
these are estimated to give small corrections, and (ii) a
number of as yet unknown functions that appear in the
7PN phase contribution; in [19] these too were argued to
be negligible and we refer to that paper for details.

For the function �(m), in our simulated signals we will
use quartic polynomial fits to predictions corresponding
to di↵erent EOS from Hinderer et al. [18]. Examples of
such fits for a soft (labeled SQM3), a moderate (H4), and
a hard EOS (MS1) are shown in Fig. 1.

C. Quadrupole-monopole e↵ects

As mentioned before, tidal e↵ects are not the only way
the EOS enters into the gravitational waveform. If a
neutron star is spinning, it takes on an oblate shape. As-
suming an axisymmetric mass distribution with respect
to the axis of rotation, the deformation can be expressed
to leading order by means of a dimensionless quadrupole
moment parameter q, defined as [50]

q = �5

2
lim
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⌘3
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⌫(r, ✓)P2(cos ✓) d cos ✓, (6)

where ⌫ = 1/2 ln(�gtt) is a potential related to the met-
ric of a stationary axially symmetric body, and P2(x) =
(3x2 � 1)/2 is the second Legendre polynomial. This

1.0 1.2 1.4 1.6 1.8 2.0
m @M

ü
D

0.5

1.0

1.5

2.0

2.5

l @10-23 s5D

SQM3
H4
MS1

FIG. 1: The tidal deformability parameter �(m) as a func-
tion of neutron star mass for three di↵erent EOS: a soft
one (SQM3), a moderate one (H4), and a hard one (MS1).
Adapted from [18].

quantity is the general-relativistic equivalent of the New-
tonian mass quadrupole moment.

Since a sti↵er EOS implies a larger neutron star (NS)
radius for a given mass, the quadrupole moment increases
in absolute value with the sti↵ness of the EOS. A few ex-
amples of q estimates for di↵erent EOS were given in [50].
They also demonstrated the dependence on the dimen-
sionless spin �, which for a fixed NS mass can be fit very
well up to the maximum spin value �max (also dependent

But this time to reach a confidence level comparable 
to the previous one they need to use more than  
100 detected sources  (against 20 they used  before) !! 
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       If spins are included in the analysis results are similar: 
 
The ranking of the EoS as they come out from the analysis is correct 
only when the injected signals belong to EoS which are very stiff ,  
i.e. matter is very deformable and the tidal deformability is large,  
 provided  a high number of detection will be available. 



However there are theoretical uncertainties which may further bias  the 
presented analysis 
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Concluding Remarks 
The identification of the level of stiffness of NS EoS using detection of gravitational wave 
signals from coalescing NS-NS binaries appears to be possible only for very stiff EoSs,  
                   
It would be difficult to  distinguish moderately stiff EoSs. 
 
If the EoS is very soft,  we would only be able to exclude very stiff EoSs. 
 
In any event: a large number of detections  is needed. 
 

This mainly  arises from our ignorance on the true distribution of masses (and spins) 
in NS-NS binaries 
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- When computing the tidal deformability, there is some degree of arbitrariness in  
     separating the solution describing the external tidal field from that describing the  
     response of the system, even  at the linearized level and for non rotating stars.  
 
Even if the full perturbed solution behaves – by definition – linearly, the multipole 
moments of the    spacetime might be mixed among the two solutions.  
In other words, the multipole moments of the central object might in principle be  
contaminated  by the external solution.  

Much more work has to be done to clarify these important issues 

 Theoretical  issues 

-  if the star rotates multipoles couple and it is not clear how they will appear in the  
     gravitational waveforms which, so far, have been computed using the non-rotating  
     tidal deformability 
 
-  due to these couplings the I-Love-Q relations which have been used in the previous 
      analyses may not hold anymore 
  
Yesterday’s talk by L. Gualtieri 
 Pani, Gualtieri, Maselli, Ferrari, 2015, PRD to appear, arXiv150307365P 
 

An example: Weyl’s solution 
ds2 = −e2Udt2+e2(k−U)(dρ2+dz2)+W2e−2Udφ2 ,             where U, k and W depend only on ρ and  z  


