

Modelling Strongly Magnetized Neutron Stars in General Relativity

Antonio G. Pili^{1,2,3}, Niccolò Bucciantini^{2,3}, Luca Del Zanna^{1,2,3}

¹ Università degli Studi di Firenze
 ² INAF, OA Arcetri
 ³ INFN, Sezione di Firenze

Annual NewCompStar Conference 2015

Budapest, 06-18-2015

The Magnetic Field of NSs

Magnetar

$$\dot{P} \sim 10^{-11} \mathrm{~s}$$

 $P \sim 2 - 12 \text{ s}$

 $\tau \sim P/2\dot{P} \sim 10^4 \text{ yr}$

$$B \propto \sqrt{P\dot{P}} \sim 10^{14} \text{ G}$$

SGR & AXP

 $\frac{\mathrm{dE}_{\mathrm{rot}}}{\mathrm{dt}} << L_X$

- Emission is fed by the magnetic energy
- B-field amplified at birth
 - core compression
 - differential rotation
 - dynamo
- The initial magnetic configuration rearranges in
- ~100s to a metastable configuration
- Twisted-Torus configuration

Gravitational waves

Fast rotation at birth (~ ms)

Strong magnetic field induces deformation of the star

Efficiency of the emission depends on the geometry of the magnetic field:

- poloidal magnetic fields makes the star oblate
- toroidal magnetic field makes the star prolate
 - Orthogonalization of the rotation of the magnetic axis (Cutler 2002)

GWs

emission

Maximize the efficiency of GW emission

Persistent X-ray spectra:

Black body (@ kT ~ 0.5 keV) + power-law tail from 10keV

Twisted magnetosphere:

Resonant Cyclotron Scattering of thermal photons with electric currents in the magnetosphere (Thompson et al. 2002, Beloborodov & Thompson 2007)

 Low Pdot Magnetar SGR 0418+5729 (B_{dipole} ~ 10¹²G)
 Proton-Cyclotron Line ➡ Strong but localised magnetic field B~10¹⁴G

 Computation of synthetic spectra and light curves (Pavan et al. 2009,Psaltis et al. 2014)

Model the emission on self-consistent GR magnetized NSs

Governing equations

Einstein Equations

- Static and axisymmetric spacetime
- 3+1 formalism of GR → solve only constraint equations
- Conformally flat metric approximation:

$$ds^{2} = -\alpha^{2}(r,\theta) + \psi^{4}(r,\theta)[dr^{2} + r^{2}d\theta^{2} + r^{2}\sin^{2}\theta d\phi^{2}]$$

Lapse function

Conformal factor

- Einstein equations reduce to:
- $\Delta \psi = -2\pi \hat{E} \psi^{-1}$ $\Delta (\alpha \psi) = [2\pi (\hat{E} + 2\hat{S})\psi^{-2}](\alpha \psi)$

 $\hat{E}=\psi^{6}E$ energy density $\hat{S}=\psi^{6}S$ trace of stress energy tensor

- numerically stable form
- ensure local uniqueness
- standard and accurate numerical technique
- consistency with full GR (10⁻⁴)

 $\Delta u = s u^q$ local unicity if sq > 1

Governing equations

GRMHD

- Ideal magnetised plasma in static and axisymmetric spacetime
- Barotropic equation of state (polytropic EOS: $P = K \rho^{\gamma}$ with K=110 and $\gamma=2$)
- GRMHD system reduces to Euler equations:

$$\partial_i \ln h + \partial_i \alpha = \frac{L_i}{\rho h}$$

• If Lorentz force term is exact $L_i = \rho h \partial_i \mathcal{M}$

⇒Bernoulli integral
$$\ln\left(\frac{h}{h_c}\right) + \ln\left(\frac{\alpha}{\alpha_c}\right) - \mathcal{M} = 0$$

 ρ rest mass density h specific enthalpy

 L_i Lorentz force $L_i = \epsilon_{ijk} J^j B^k$ Conduction currents

$$J^i = \alpha^{-1} \epsilon^{ijk} \partial_j(\alpha B_k)$$

Purely Toroidal B-Field $\partial_i \ln(h) + \partial_i \ln(\alpha) + \frac{\alpha B_{\phi} \partial_i (\alpha B_{\phi})}{G} = 0$ $G := \rho h \alpha^2 \psi^4 r^2 \sin^2 \theta$

Magnetisation function

ntegrability requires:
$$B_{\phi} = \alpha^{-1} \mathcal{I}(G), \quad \mathcal{M}(G) = -\int \frac{\mathcal{I}}{G} \frac{\mathrm{d}\mathcal{I}}{\mathrm{d}G} dG$$

"Barotropic magnetization law"

$$\mathcal{I}(G) = K_{\mathrm{m}}G^{m}, \quad \mathcal{M}(G) = -\frac{mK_{\mathrm{m}}^{2}}{2m-1}G^{2m-1}$$

Governing equations

GRMHD

- Ideal magnetised plasma in static and axisymmetric spacetime
- Barotropic equation of state (polytropic EOS: $P = K \rho^{\gamma}$ with K=110 and $\gamma=2$)
- GRMHD system reduces to Euler equations:

$$\partial_i \ln h + \partial_i \alpha = \frac{L_i}{\rho h}$$

• If Lorentz force term is exact $L_i = \rho h \partial_i \mathcal{M}$

→Bernoulli integral
$$\ln\left(\frac{h}{h_c}\right) + \ln\left(\frac{\alpha}{\alpha_c}\right) - \mathcal{M} = 0$$

$$\rho$$
 rest mass density h specific enthalpy

 L_i Lorentz force $L_i = \epsilon_{ijk} J^j B^k$ Conduction currents

$$J^i = \alpha^{-1} \epsilon^{ijk} \partial_j(\alpha B_k)$$

With poloidal B-Field

 Axisymmetry
 →Magnetic quantities depend only on the magnetic flux function A_φ

$$B^{r} = \frac{\partial_{\theta} A_{\phi}}{\psi^{6} r^{2} \sin \theta}, \quad B^{\theta} = -\frac{\partial_{r} A_{\phi}}{\psi^{6} r^{2} \sin \theta}, \quad B^{\phi} = \frac{\mathcal{I}(A_{\phi})}{\alpha \psi^{4} r^{2} \sin^{2} \theta}.$$

Magnetisation function

Grad-Shafranov Equation

$$\tilde{\Delta}_{3}\tilde{A}_{\phi} + \frac{\partial A_{\phi}\partial\ln(\alpha\psi^{-2})}{r\sin\theta} + \psi^{8}r\sin\theta\left(\rho h\frac{d\mathcal{M}}{dA_{\phi}} + \frac{\mathcal{I}}{\sigma}\frac{d\mathcal{I}}{dA_{\phi}}\right) = 0$$

The XNS code

Available at:

www.arcetri.astro.it/science/ahead/XNS/

Scheme of iterations:

- starting guess for the metric and energy/matter (TOV @ first step)
- solve equations for the metric
- solve the Grad-Shafranov equation for A_{ϕ} (if B poloidal)
- solve Bernoulli integral and update fluid quantities

Semi-spectral method

- Use of vector and spherical harmonics
- Elliptic PDEs → system of radial ODEs for each harmonic
- II order radial discretization → direct inversion of tri-diagonal matrices
- Boundary → parity and asymptotic properties of the multipole
- No compactified domains

Typical Run

 N_r =500, N_{θ} =250 N harmonics = 20 ÷ 60

Computational time: few minutes

$$\Delta q = H(q)$$

$$q(r,\theta) = \sum_{l=0}^{\infty} A_l Y_l(\theta)$$

$$\frac{d^2 A_l}{dr^2} + \frac{2}{r} \frac{dA_l}{dr} - \frac{l(l+1)}{r^2} A_l = H_l$$

$$H_l(r) := \int d\Omega H(r,\theta) Y_l(\theta)$$

Analogously for the GS with vector harmonics

Purely toroidal models

R(km)

0

-10

-20

0.0

-20

01

-10

02

0

R(km)

0.3

10

0.4

20

0.5

0.6

R(km)

0

-10

-20

-20

-10

0.2

0

R(km)

0.3

10

0.4

20

0.5

Trends with increasing m:

- B peaks at higher radius
- reduced effect on the stellar structure
- Magnetic tension B²/R_{line}

Purely poloidal models

 $\mathcal{M}(A_{\phi}) = k_{\text{pol}} A_{\phi}$

- Oblate deformation
- Flatter density profile perpendicularly to the magnetic axis

Poloidal Magnetic Field: role of current terms

Twisted Forus Configurations

Stability criterion for twisted torus magnetic field: $0.2 \le \frac{\mathcal{H}_t}{\mathcal{H}} \lesssim 0.99$

(Braithwaite et al. 2009, Duez et al. 2010)

$$\mathcal{M}(A_{\phi}) = k_{\text{pol}}A_{\phi}$$

$$\mathcal{I}(A_{\phi}) = \frac{a}{\zeta + 1} \Theta[A_{\phi} - A_{\phi}^{\text{sur}}] \frac{(A_{\phi} - A_{\phi}^{\text{sur}})^{\zeta + 1}}{(A_{\phi}^{\text{sur}})^{\zeta}}$$
Magnetic Energy Ratio
$$\begin{pmatrix} 0.07 \\ 0.06 \\ z = -0.48 \\ z = -0.49 \\ z = -0.25 \\ z = +0.25 \\ z = +0.25 \\ z = +0.25 \\ z = +0.55 \\ z = +0.55 \\ z = +1.00 \\ z = +0.25 \\ z = +1.00 \\ z = -0.25 \\ z = +0.55 \\ z = +1.00 \\ z = -0.25 \\ z = +0.55 \\ z = +1.00 \\ z = -0.25 \\ z = +0.55 \\ z = +1.00 \\ z = -0.25 \\ z = +0.55 \\ z = +1.00 \\ z = -0.25 \\ z = +0.55 \\ z = +1.00 \\ z = -0.25 \\ z = -0.49 \\ z$$

The introduction oppositely flowing currents might allow toroidal dominated configurations (Ciolfi et al. 2013, Fujisawa et al. 2015)

Models with subtractive currents

Dependence on the stellar model

Bucciantini et al. 2015

"Comparing" deformations

$$\overline{e} := \frac{I_{zz} - I_{xx}}{I_{zz}} \qquad I_{zz} := \int er^4 \sin^3 \theta \, dr \, d\theta \, d\phi$$
$$I_{xx} := \frac{1}{2} \int er^4 \sin \theta (1 + \cos^2 \theta) \, dr \, d\theta \, d\phi.$$

$$\epsilon_B = -\frac{3}{2} \frac{\mathcal{I}_{zz}}{I} \sim 0.4\bar{e}$$
$$\bar{e} \sim 5 \times 10^{-5} B_{16}^2$$

@ 4x10¹⁷G:

- poloidal field $\longrightarrow \bar{e} \sim 0.12$
- toroidal field (m=2) $\longrightarrow \bar{e} \sim -0.1$
- toroidal field (m=10) $\rightarrow \bar{e} \sim -0.02$

Oblate deformation → GW emission is quenched

→ GRB-like events (Bucciantini et al. 2009, 2012 Metzger et al 2011)

- Model with $\lambda = 2$
- Highest value of H_{tor}/H=0.11

$$J^{\phi} = \frac{a^2}{(\zeta+1)\varpi^2} \Theta \left[A_{\phi} - A_{\phi}^{\text{ext}}\right] \frac{\left(A_{\phi} - A_{\phi}^{\text{ext}}\right)^{2\zeta+1}}{\left(A_{\phi}^{\max}\right)^{2\zeta+1}} + \rho h k_{\text{pol}}$$

In the magnetosphere energy of toroidal field ~ 20% poloidal B-field

- External toroidal currents can not exceed the internal ones
- The toroidal energy density in the exterior is comparable with that in the interior

Conclusions

 Models with subtractive currents are poloidal dominated (we can not reach inversion currents)

- The surface B-field is strongly influenced by the location and the distribution of currents

• Limit on the magnetospheric twist: self-regulating mechanism between internal and external currents

Rotating magnetized models **Emission models in GR**

A special thanks go to NewCompStar COST action MP1304 for the travel and local support!!

Thank you!