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The Magnetic Field of NSs
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Short bursts               Lx~1041 erg s-1 

Giant Flares                      Lx >1044 erg s-1 

Persistent Luminosity Lx~1033-1036 erg s-1 

• Emission is fed by the magnetic energy 
• B-field amplified at birth 

• core compression 
• differential rotation  
• dynamo 

• The initial magnetic configuration rearranges in  
 ~100s to a metastable configuration 
• Twisted-Torus configuration 



Gravitational waves
• Fast rotation at birth (~ ms) 
• Strong magnetic field induces deformation of the star

GWs 
emission

• poloidal magnetic fields makes the star oblate 
• toroidal magnetic field makes the star prolate 

Efficiency of the emission depends on the geometry of the magnetic field:
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• Orthogonalization of the rotation of the magnetic 
axis (Cutler 2002) 

• Maximize  the efficiency of GW emission

KGW = (2/5)f(�)(G/c5)I✏2B

Dall’Osso et al. 2009



Twisted Magnetosphere

Tiengo et al. 2013

Persistent X-ray spectra: 
Black body (@ kT ~ 0.5 keV) + power-law tail from 10keV

Twisted magnetosphere: 
Resonant Cyclotron Scattering of thermal photons with 
electric currents in the magnetosphere (Thompson et al. 
2002, Beloborodov & Thompson 2007)

• Low Pdot Magnetar SGR 0418+5729 (Bdipole ~ 1012G) 
• Proton-Cyclotron Line ➡ Strong but localised 

magnetic field B~1014G

Gotz et al. 2006

• Computation of synthetic spectra and 
light curves (Pavan et al. 2009,Psaltis et al. 
2014) 

Model the emission on self-consistent 
GR magnetized NSs 



• Einstein equations reduce to:

Governing equations

• numerically stable form 
• ensure local uniqueness 
• standard and accurate numerical technique 
• consistency with full GR (10-4)

• Static and axisymmetric spacetime 
• 3+1 formalism of GR ➔ solve only constraint equations 
• Conformally flat metric approximation:

Conformal factorLapse function

ds2 = �↵2(r, ✓) +  4(r, ✓)[dr2 + r2d✓2 + r2 sin2 ✓d�2]

Ê =  6E
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energy density

trace of stress energy tensor
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Governing equations

Purely Toroidal B-Field
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Lorentz force can be then obtained through this novel magnetization
function M(Aφ) as

Li = ρh ∂iM = ρh
dM
dAφ

∂iAφ, (22)

and equation (20) can be integrated providing the Bernoulli integral

ln
(

h

hc

)
+ ln

(
α

αc

)
− M = 0, (23)

which, once the functional form M(Aφ) has been chosen and
Aφ(r, θ ) has been found, relates the enthalpy at each point to the
conditions set in the centre (labelled c), where we assume Mc = 0.

Consider now the φ component of the Lorentz force, which must
vanish due to axisymmetry. Thanks to equation (19) we then find
0 = Lφ = α−1Bi∂i(αBφ), thus

Bφ = α−1I(Aφ), (24)

where I(Aφ) is another free function and it is constant on the mag-
netic surfaces. This function is also strictly related to the poloidal
current, since we have

J r = α−1Br dI
dAφ

, J θ = α−1Bθ dI
dAφ

. (25)

The toroidal current can be retrieved from the poloidal component of
the Lorentz force in equation (22). Using also the original definition
Li = ϵijkJjBk we arrive at the expression

J φ = ρh
dM
dAφ

+ I
ϖ 2

dI
dAφ

, (26)

where we have defined ϖ 2 := α2ψ4r2sin 2θ . If, instead, derivatives
of the poloidal magnetic field components are worked out, one finds

J φ = − 1
ψ8r2 sin2θ

[
(∗Aφ + ∂Aφ∂ ln(αψ−2)

]
, (27)

where the following operators have been introduced

(∗ := ∂2
r + 1

r2
∂2

θ − 1
r2 tan θ

∂θ , (28)

∂f ∂g := ∂rf ∂rg + 1
r2

∂θf ∂θg. (29)

Finally, equating the two above expressions for Jφ , and introducing
the new variable Ãφ := Aφ/(r sin θ ) and the new operator

(̃3 := (− 1
r2 sin2θ

=∂2
r +

2
r
∂r + 1

r2
∂2

θ + 1
r2 tan θ

∂θ − 1
r2 sin2θ

,

(30)

for which (̃3Ãφ = (∗Aφ/(r sin θ ) (it coincides with the φ compo-
nent of the vector Laplacian in spherical coordinates), we retrieve
the Grad-Shafranov equation for the magnetic flux function Aφ

(̃3Ãφ + ∂Aφ∂ ln(αψ−2)
r sin θ

+ψ8r sinθ

(
ρh

dM
dAφ

+ I
ϖ 2

dI
dAφ

)
= 0.

(31)

Provided the metric is known (the functions α and ψ in CFC), the
solution procedure is the following: after a choice for the free func-
tions M and I is made, equation (31) is solved over the whole
domain (with appropriate boundary conditions), so that the mag-
netic field and current components can be worked out. As antic-
ipated, the thermodynamical quantities are instead provided from
the Bernoulli equation (equation 23). In the remainder, we shall
provide the choices of the free functions for the various magnetic
configurations we are interested in.

2.4 Choice for poloidal and twisted torus configurations

When Aφ ̸= 0, for which the whole body of the previous section
applies, we need to specify the free functionsM and I, as discussed
just above, in a way appropriate for NS modelling. In analogy
with Ciolfi et al. (2009) we choose here a second-order polynomial
functional form for M, namely

M(Aφ) = kpol

(
Aφ + ξ

1
2
A2

φ

)
, (32)

where kpol is the poloidal magnetization constant, and ξ is the non-
linear poloidal term. On the other hand, the functional form for I
is chosen as

I(Aφ) = a

ζ + 1
+[Aφ − Amax

φ ](Aφ − Amax
φ )ζ+1, (33)

where +[.] is the Heaviside function, Amax
φ is the maximum value the

φ component of the vector potential reaches on the stellar surface,
a is the twisted torus magnetization constant and ζ is the twisted
torus magnetization index.

From equations (25) and (26) the poloidal components of the
conduction current are, for the assumed choices of the free func-
tions

J r = α−1Br a+[Aφ − Amax
φ ](Aφ − Amax

φ )ζ ,

J θ = α−1Bθ a+[Aφ − Amax
φ ](Aφ − Amax

φ )ζ , (34)

whereas the toroidal component is

J φ = ρh kpol(1 + ξAφ)

+ a2

(ζ + 1)ϖ 2
+[Aφ − Amax

φ ](Aφ − Amax
φ )2ζ+1. (35)

The above choice of M(Aφ) and I(Aφ) guarantees that the cur-
rents are all confined within the star. In the purely poloidal case
a = 0, the linear term ∝Aφ in equation (32) always leads to magnetic
field configurations which are dominated by a dipolar component.
Only the non-linear term ∝ A2

φ can in principle lead to currents
that produce higher order multipolar magnetic field configurations.
However, as it will be discussed later, this kind of configuration
can only be realized numerically under special conditions. With our
choice, the toroidal component of the magnetic field differs from
zero only in a rope inside the star, from which the name of twisted
torus configuration.

2.5 Choice for purely toroidal configurations

In the case of a purely toroidal field, most of the formalism leading
to the Grad-Shafranov equation does not apply, since Aφ = 0 and
we cannot define the usual free functions on magnetic surfaces.
However, equation (20) is still valid and we can still look for a
scalar function M (though no longer a function of Aφ) such that
Li = ρh∂iM and leading to the usual Bernoulli equation (equa-
tion 23). The Lorentz force is conveniently written in terms of αBφ ,
and the Euler equation, for the usual assumptions of a barotropic
EOS and conformal metric, becomes

∂i ln h + ∂i ln α + αBφ∂i(αBφ)
ρhϖ 2

= 0. (36)

The above equation is integrable if also the last term can be written
as a gradient of a scalar function. If we now define the new variable,
related to the enthalpy per unit volume ρh, namely

G := ρhϖ 2 = ρhα2ψ4r2 sin2θ, (37)

MNRAS 439, 3541–3563 (2014)
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Lorentz force can be then obtained through this novel magnetization
function M(Aφ) as

Li = ρh ∂iM = ρh
dM
dAφ

∂iAφ, (22)

and equation (20) can be integrated providing the Bernoulli integral

ln
(

h

hc

)
+ ln

(
α

αc

)
− M = 0, (23)

which, once the functional form M(Aφ) has been chosen and
Aφ(r, θ ) has been found, relates the enthalpy at each point to the
conditions set in the centre (labelled c), where we assume Mc = 0.

Consider now the φ component of the Lorentz force, which must
vanish due to axisymmetry. Thanks to equation (19) we then find
0 = Lφ = α−1Bi∂i(αBφ), thus

Bφ = α−1I(Aφ), (24)

where I(Aφ) is another free function and it is constant on the mag-
netic surfaces. This function is also strictly related to the poloidal
current, since we have

J r = α−1Br dI
dAφ

, J θ = α−1Bθ dI
dAφ

. (25)

The toroidal current can be retrieved from the poloidal component of
the Lorentz force in equation (22). Using also the original definition
Li = ϵijkJjBk we arrive at the expression

J φ = ρh
dM
dAφ

+ I
ϖ 2

dI
dAφ

, (26)

where we have defined ϖ 2 := α2ψ4r2sin 2θ . If, instead, derivatives
of the poloidal magnetic field components are worked out, one finds

J φ = − 1
ψ8r2 sin2θ

[
(∗Aφ + ∂Aφ∂ ln(αψ−2)

]
, (27)

where the following operators have been introduced

(∗ := ∂2
r + 1

r2
∂2

θ − 1
r2 tan θ

∂θ , (28)

∂f ∂g := ∂rf ∂rg + 1
r2

∂θf ∂θg. (29)

Finally, equating the two above expressions for Jφ , and introducing
the new variable Ãφ := Aφ/(r sin θ ) and the new operator

(̃3 := (− 1
r2 sin2θ

=∂2
r +

2
r
∂r + 1

r2
∂2

θ + 1
r2 tan θ

∂θ − 1
r2 sin2θ

,

(30)

for which (̃3Ãφ = (∗Aφ/(r sin θ ) (it coincides with the φ compo-
nent of the vector Laplacian in spherical coordinates), we retrieve
the Grad-Shafranov equation for the magnetic flux function Aφ

(̃3Ãφ + ∂Aφ∂ ln(αψ−2)
r sin θ

+ψ8r sinθ

(
ρh

dM
dAφ

+ I
ϖ 2

dI
dAφ

)
= 0.

(31)

Provided the metric is known (the functions α and ψ in CFC), the
solution procedure is the following: after a choice for the free func-
tions M and I is made, equation (31) is solved over the whole
domain (with appropriate boundary conditions), so that the mag-
netic field and current components can be worked out. As antic-
ipated, the thermodynamical quantities are instead provided from
the Bernoulli equation (equation 23). In the remainder, we shall
provide the choices of the free functions for the various magnetic
configurations we are interested in.

2.4 Choice for poloidal and twisted torus configurations

When Aφ ̸= 0, for which the whole body of the previous section
applies, we need to specify the free functionsM and I, as discussed
just above, in a way appropriate for NS modelling. In analogy
with Ciolfi et al. (2009) we choose here a second-order polynomial
functional form for M, namely

M(Aφ) = kpol

(
Aφ + ξ

1
2
A2

φ

)
, (32)

where kpol is the poloidal magnetization constant, and ξ is the non-
linear poloidal term. On the other hand, the functional form for I
is chosen as

I(Aφ) = a

ζ + 1
+[Aφ − Amax

φ ](Aφ − Amax
φ )ζ+1, (33)

where +[.] is the Heaviside function, Amax
φ is the maximum value the

φ component of the vector potential reaches on the stellar surface,
a is the twisted torus magnetization constant and ζ is the twisted
torus magnetization index.

From equations (25) and (26) the poloidal components of the
conduction current are, for the assumed choices of the free func-
tions

J r = α−1Br a+[Aφ − Amax
φ ](Aφ − Amax

φ )ζ ,

J θ = α−1Bθ a+[Aφ − Amax
φ ](Aφ − Amax

φ )ζ , (34)

whereas the toroidal component is

J φ = ρh kpol(1 + ξAφ)

+ a2

(ζ + 1)ϖ 2
+[Aφ − Amax

φ ](Aφ − Amax
φ )2ζ+1. (35)

The above choice of M(Aφ) and I(Aφ) guarantees that the cur-
rents are all confined within the star. In the purely poloidal case
a = 0, the linear term ∝Aφ in equation (32) always leads to magnetic
field configurations which are dominated by a dipolar component.
Only the non-linear term ∝ A2

φ can in principle lead to currents
that produce higher order multipolar magnetic field configurations.
However, as it will be discussed later, this kind of configuration
can only be realized numerically under special conditions. With our
choice, the toroidal component of the magnetic field differs from
zero only in a rope inside the star, from which the name of twisted
torus configuration.

2.5 Choice for purely toroidal configurations

In the case of a purely toroidal field, most of the formalism leading
to the Grad-Shafranov equation does not apply, since Aφ = 0 and
we cannot define the usual free functions on magnetic surfaces.
However, equation (20) is still valid and we can still look for a
scalar function M (though no longer a function of Aφ) such that
Li = ρh∂iM and leading to the usual Bernoulli equation (equa-
tion 23). The Lorentz force is conveniently written in terms of αBφ ,
and the Euler equation, for the usual assumptions of a barotropic
EOS and conformal metric, becomes

∂i ln h + ∂i ln α + αBφ∂i(αBφ)
ρhϖ 2

= 0. (36)

The above equation is integrable if also the last term can be written
as a gradient of a scalar function. If we now define the new variable,
related to the enthalpy per unit volume ρh, namely

G := ρhϖ 2 = ρhα2ψ4r2 sin2θ, (37)
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Integrability requires:

3546 A. G. Pili, N. Bucciantini and L. Del Zanna

this is possible provided

Bφ = α−1I(G), M(G) = −
∫ I

G

dI
dG

dG, (38)

basically as in the previous case but with a change of depen-
dency, where the magnetization function is to be plugged into
equation (23).

A common assumption (KY08, FR12) is to choose a barotropic-
type expression for I too, for example

I(G) = KmGm, M(G) = − mK2
m

2m − 1
G2m−1, (39)

where Km is the toroidal magnetization constant, and m ≥ 1 is
the toroidal magnetization index. Once the CFC metric has been
provided (the functions α and ψ), the equilibrium is then found by
first solving the Bernoulli equation for the specific enthalpy h

ln
(

h

hc

)
+ ln

(
α

αc

)
+ mK2

m

2m − 1
(ρhϖ 2)2m−1 = 0, (40)

providing also ρ, e and p through the assumed EOS, while the
magnetic field is

Bφ = α−1Km(ρhϖ 2)m. (41)

When applied to the modelling of magnetized NSs, such choice of
the free function I (and consequently of M) ensures that the field is
fully confined within the star, and that it is symmetric with respect
to the equatorial plane.

3 N U M E R I C A L S C H E M E

The non-linear Poisson-like equations [equations (15) and (16)] are
a subset of those found in the XCFC formalism, and for this reason
we employ the same numerical algorithm described in Bucciantini
& Del Zanna (2013), to which the reader is referred to for a complete
description. Let us here briefly summarize it for convenience. Solu-
tions, for the scalar quantities of interest (ψ and αψ), are searched
in terms of a series of spherical harmonics Yl(θ )

u(r, θ ) :=
∞∑

l=0

[Al(r)Yl(θ )]. (42)

The Laplacian can then be reduced to a series of radial second order
boundary value ODEs for the coefficients Al(r) of each harmonic,
which are then solved using tridiagonal matrix inversion, on the
same radial grid where the solution is discretized. Given that the
equations are non-linear this procedure is repeated until conver-
gence, using in the source term the value of the solution computed
at the previous iteration.

If a poloidal field is present, also the Grad-Shafranov equation
(equation 31), needs to be solved. Interestingly, this can be reduced
to the solution of a non-linear vector Poisson equation, which is for-
mally equivalent to the equation for the shift-vector (to be more pre-
cise its φ component) in the XCFC approximation. Ãφ is searched
in terms of a series of vector-spherical harmonics

Ãφ(r, θ ) :=
∞∑

l=0

[Cl(r)Y ′
l (θ )]. (43)

The only difference is that now the source term is non-linear. Again
we can use the same algorithm, with a combination of vector spher-
ical harmonics decomposition for the angular part, and matrix in-
version for the radial part (Bucciantini & Del Zanna 2013). Now,
this is iterated until convergence, because of the non-linearity of the
source terms.

The use of spherical harmonics allows us to preserve the correct
behaviour on the axis, the correct parity at the centre, and the correct
asymptotic trend at the other radius, without the need to use a
compactified domain.

Solutions are discretized on a grid in spherical coordinates in
the domain r = [0, 25], θ = [0, π]. For purely toroidal or purely
poloidal cases we use 250 points in the radial direction and 100
points in the angular one. For TT configurations we instead used
500 points in the radial direction and 200 points in the angular one.
The radial domain has been chosen such that its outer boundary is
far enough from the stellar surface, so that higher order multipoles
in the various quantities (i.e. in the metric terms) become negligible.
The boundary conditions at the inner radial boundary at r = 0 are
chosen such that each radial coefficients Al(r), Cl(r) goes to 0 with
parity ( − 1)l. Note that this is different from imposing that they go to
0 as r l. This latter choice is only justified in vacuum, for a flat space-
time, while in all our cases, the source terms (including terms that
contain the vector potential itself) extend all the way to the centre.
The outer boundary of the computational domain is always located
outside the stellar surface, which is defined as the place where the
density drops below a fiducial small value (usually 10−5 to 10−4

times the value of the central density). This implies that at the outer
boundary both the equations for the metric coefficients α and φ

and the equation for the vector potential reduce to the equations in
vacuum. At the outer radius we impose that each coefficient Al(r),
Cl(r) goes to 0 as r−(l + 1).

Note that, unlike in previous works (Tomimura & Eriguchi 2005;
Lander & Jones 2009, 2012; Ciolfi et al. 2009, 2010; Glampedakis
et al. 2012; Ciolfi & Rezzolla 2013) we do not solve separately the
Maxwell and Einstein equations inside the star and outside it and
then match them at the surface. We instead solve these equations in
the full domain, including both the star (where the source term are
confined) and the outside ‘vacuum’. This automatically guarantees
that solutions are continuous and smooth at the stellar surface.
It also allows the stellar surface to adjust freely, and not to any
imposed shape. We have verified that the solutions we obtain are
independent of the location of the outer radius. Our previous results
(X-ECHO) for the metric solver indicate that this global approach,
where solutions of non-linear elliptic equations are searched over
the entire domain, at once, gives correct results, without the need to
introduce matching conditions, at often undefined surfaces. In fact,
while in a perturbative approach one can safely assume the stellar
surface to be spherical, this cannot be done for strong fields, and the
shape of the NS surface is itself unknown. The correct behaviour
on the axis is instead automatically guaranteed by the properties of
spherical harmonics.

We have verified that at this resolution, the discretization errors
of our solutions are !10−3, and at most reach 10−2 for the most
extreme TT configurations. This is likely due to the fact that in
the latter case, the toroidal field is concentrated in a narrow torus-
like region at the edge of the star, while for purely poloidal and
purely toroidal cases, all the quantities are smoothly distributed in
the domain.

In models with purely toroidal or purely poloidal field we have
used 20 spherical harmonics. For TT configurations we have used
about 40 harmonics. We have also verified that increasing the num-
ber of spherical harmonics does not improve significantly the re-
sults. Again the twisted torus configurations are the ones requiring
in general a higher number of spherical harmonics. We found that
10 are already sufficient to provide results with an accuracy of the
order of 10−3 both for the purely poloidal or purely toroidal cases.
Instead for the most extreme TT cases we used up to 50 harmonics.

MNRAS 439, 3541–3563 (2014)
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this is possible provided

Bφ = α−1I(G), M(G) = −
∫ I

G

dI
dG

dG, (38)

basically as in the previous case but with a change of depen-
dency, where the magnetization function is to be plugged into
equation (23).

A common assumption (KY08, FR12) is to choose a barotropic-
type expression for I too, for example

I(G) = KmGm, M(G) = − mK2
m

2m − 1
G2m−1, (39)

where Km is the toroidal magnetization constant, and m ≥ 1 is
the toroidal magnetization index. Once the CFC metric has been
provided (the functions α and ψ), the equilibrium is then found by
first solving the Bernoulli equation for the specific enthalpy h

ln
(

h

hc

)
+ ln

(
α

αc

)
+ mK2

m

2m − 1
(ρhϖ 2)2m−1 = 0, (40)

providing also ρ, e and p through the assumed EOS, while the
magnetic field is

Bφ = α−1Km(ρhϖ 2)m. (41)

When applied to the modelling of magnetized NSs, such choice of
the free function I (and consequently of M) ensures that the field is
fully confined within the star, and that it is symmetric with respect
to the equatorial plane.

3 N U M E R I C A L S C H E M E

The non-linear Poisson-like equations [equations (15) and (16)] are
a subset of those found in the XCFC formalism, and for this reason
we employ the same numerical algorithm described in Bucciantini
& Del Zanna (2013), to which the reader is referred to for a complete
description. Let us here briefly summarize it for convenience. Solu-
tions, for the scalar quantities of interest (ψ and αψ), are searched
in terms of a series of spherical harmonics Yl(θ )

u(r, θ ) :=
∞∑

l=0

[Al(r)Yl(θ )]. (42)

The Laplacian can then be reduced to a series of radial second order
boundary value ODEs for the coefficients Al(r) of each harmonic,
which are then solved using tridiagonal matrix inversion, on the
same radial grid where the solution is discretized. Given that the
equations are non-linear this procedure is repeated until conver-
gence, using in the source term the value of the solution computed
at the previous iteration.

If a poloidal field is present, also the Grad-Shafranov equation
(equation 31), needs to be solved. Interestingly, this can be reduced
to the solution of a non-linear vector Poisson equation, which is for-
mally equivalent to the equation for the shift-vector (to be more pre-
cise its φ component) in the XCFC approximation. Ãφ is searched
in terms of a series of vector-spherical harmonics

Ãφ(r, θ ) :=
∞∑

l=0

[Cl(r)Y ′
l (θ )]. (43)

The only difference is that now the source term is non-linear. Again
we can use the same algorithm, with a combination of vector spher-
ical harmonics decomposition for the angular part, and matrix in-
version for the radial part (Bucciantini & Del Zanna 2013). Now,
this is iterated until convergence, because of the non-linearity of the
source terms.

The use of spherical harmonics allows us to preserve the correct
behaviour on the axis, the correct parity at the centre, and the correct
asymptotic trend at the other radius, without the need to use a
compactified domain.

Solutions are discretized on a grid in spherical coordinates in
the domain r = [0, 25], θ = [0, π]. For purely toroidal or purely
poloidal cases we use 250 points in the radial direction and 100
points in the angular one. For TT configurations we instead used
500 points in the radial direction and 200 points in the angular one.
The radial domain has been chosen such that its outer boundary is
far enough from the stellar surface, so that higher order multipoles
in the various quantities (i.e. in the metric terms) become negligible.
The boundary conditions at the inner radial boundary at r = 0 are
chosen such that each radial coefficients Al(r), Cl(r) goes to 0 with
parity ( − 1)l. Note that this is different from imposing that they go to
0 as r l. This latter choice is only justified in vacuum, for a flat space-
time, while in all our cases, the source terms (including terms that
contain the vector potential itself) extend all the way to the centre.
The outer boundary of the computational domain is always located
outside the stellar surface, which is defined as the place where the
density drops below a fiducial small value (usually 10−5 to 10−4

times the value of the central density). This implies that at the outer
boundary both the equations for the metric coefficients α and φ

and the equation for the vector potential reduce to the equations in
vacuum. At the outer radius we impose that each coefficient Al(r),
Cl(r) goes to 0 as r−(l + 1).

Note that, unlike in previous works (Tomimura & Eriguchi 2005;
Lander & Jones 2009, 2012; Ciolfi et al. 2009, 2010; Glampedakis
et al. 2012; Ciolfi & Rezzolla 2013) we do not solve separately the
Maxwell and Einstein equations inside the star and outside it and
then match them at the surface. We instead solve these equations in
the full domain, including both the star (where the source term are
confined) and the outside ‘vacuum’. This automatically guarantees
that solutions are continuous and smooth at the stellar surface.
It also allows the stellar surface to adjust freely, and not to any
imposed shape. We have verified that the solutions we obtain are
independent of the location of the outer radius. Our previous results
(X-ECHO) for the metric solver indicate that this global approach,
where solutions of non-linear elliptic equations are searched over
the entire domain, at once, gives correct results, without the need to
introduce matching conditions, at often undefined surfaces. In fact,
while in a perturbative approach one can safely assume the stellar
surface to be spherical, this cannot be done for strong fields, and the
shape of the NS surface is itself unknown. The correct behaviour
on the axis is instead automatically guaranteed by the properties of
spherical harmonics.

We have verified that at this resolution, the discretization errors
of our solutions are !10−3, and at most reach 10−2 for the most
extreme TT configurations. This is likely due to the fact that in
the latter case, the toroidal field is concentrated in a narrow torus-
like region at the edge of the star, while for purely poloidal and
purely toroidal cases, all the quantities are smoothly distributed in
the domain.

In models with purely toroidal or purely poloidal field we have
used 20 spherical harmonics. For TT configurations we have used
about 40 harmonics. We have also verified that increasing the num-
ber of spherical harmonics does not improve significantly the re-
sults. Again the twisted torus configurations are the ones requiring
in general a higher number of spherical harmonics. We found that
10 are already sufficient to provide results with an accuracy of the
order of 10−3 both for the purely poloidal or purely toroidal cases.
Instead for the most extreme TT cases we used up to 50 harmonics.
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“Barotropic magnetization law”

• If Lorentz force term is exact  

➡Bernoulli integral

• Ideal magnetised plasma in static  and axisymmetric spacetime 
• Barotropic equation of state ( polytropic EOS: P = K ργ with  K=110 and γ=2 ) 
• GRMHD system reduces to Euler equations: 
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Grad-Shafranov Equation

NSs with twisted magnetosphere in GR 2823

setup. In Section 4, we present and discuss our models, and finally
we conclude in Section5. In the following, we assume a signature
( −, +, +, +) for the space–time metric, employing Latin letters i,
j, k, . . . (running from 1 to 3) for 3D spatial tensor components. We
set c = G = 1 and all

√
4π factors are absorbed in the definition of

the electromagnetic fields.

2 FORMALISM

All our magnetized NS models will be assumed here as non-rotating
(as previously discussed, magnetars have a long rotation period) and
axisymmetric. Ideal, General Relativistic Magnetohydrodynamics
(GRMHD) is supposed to hold in the interior of the star, and it is
also assumed to hold in the external magnetosphere, where plasma
inertia is certainly negligible (this actually corresponds to the so-
called force-free regime). Our formalism follows the notation used
in PBD14, to which the reader is referred for a more complete
discussion.

2.1 The GRMHD Grad–Shafranov equation

When the stress-energy tensor describing the matter distribution
and the magnetic field of a NS is axisymmetric, then the space–
time itself must retain the same symmetry (Carter 1970, 1973). As
we showed in PBD14, NS models in full GR can be conveniently
computed, preserving a high accuracy, in the so-called conformally
flat approximation for the space–time metric (Wilson, Mathews &
Marronetti 1996; Wilson & Mathews 2003). This allows one to
notably simplify Einstein equations recasting them in a numerical
stable form, and yet to derive results that are fully consistent (with
typical relative errors ∼10−4) with more sophisticated approaches to
GR (Cordero-Carrión et al. 2009; Bucciantini & Del Zanna 2011). In
the case of a static non-rotating star the line element of a conformally
flat space–time is written, using spherical like coordinates (t, r, θ ,
φ), as

ds2 = −α2dt2 + ψ4(dr2 + r2dθ2 + r2 sin2θ dφ2), (1)

where α is the lapse function and ψ is the conformal factor, depen-
dent on the position. We note that, since we consider a non-rotating
star, the line element does not contain any mixed term dxidt, corre-
sponding to a vanishing shift vector β i = 0 in the 3 + 1 formalism.
Both the metric functions α and ψ are obtained solving Einstein
equations that, in the specific case of conformal flatness and a static
NS, reduce to a set of two non-linear elliptic partial differential
equations (PDEs; see PBD14 or Bucciantini & Del Zanna 2011).

In an axisymmetric and static space–time the electromagnetic
field can be described uniquely in terms of a magnetic potential,
which coincides with the covariant φ component of the vector po-
tential Aφ , and it is usually referred to as the magnetic flux function.
In particular, the solenoidality condition, together with axisymme-
try, allows one to express the poloidal component of the magnetic
field as a gradient of the magnetic flux function, whereas the toroidal
counterpart is related to Aφ by means of a free scalar current func-
tion I that depends on Aφ alone. Thus, under the assumption of a
conformally flat metric, the components of the magnetic field are
given by

Br = ∂θAφ

ψ6r2 sin θ
, Bθ = − ∂rAφ

ψ6r2 sin θ
, Bφ = I(Aφ)

αψ4r2 sin2 θ
.

(2)

From the static GRMHD system, in the presence of an external
magnetic field and assuming a barotropic equation of state (EoS)
for the fluid, the Euler equation can be written as

∂i ln h + ∂i ln α = dM
dAφ

∂iAφ, (3)

where ρ is the rest mass density, h := (e + p)/ρ is the specific
enthalpy, e and p are the energy density and the thermal pressure,
respectively. Here, we have already related the Lorentz force com-
ponent Li to the gradient of the magnetization function M(Aφ)
through

ρh∂iM = Li = ϵijkJ
jBk, (4)

in which J i = α−1ϵijk∂j (αBk) are the conduction currents that can
be expressed, in terms of I and M, with

J r = α−1Br dI
dAφ

, J θ = α−1Bθ dI
dAφ

,

J φ = ρh
dM
dAφ

+ I
ϖ 2

dI
dAφ

, (5)

where we have defined ϖ := αψ2rsin θ .
Integrating equation (3) one obtains the Bernoulli integral

ln
(

h

hc

)
+ ln

(
α

αc

)
− M = 0, (6)

which, once the functional form of M has been chosen and both
α and Aφ are available, relates the enthalpy at each point to the
conditions set at the centre of the star (labelled c), where we as-
sume Mc = 0. Finally, the magnetic flux function Aφ is related
to the metric terms and the hydrodynamical quantities through the
GRMHD GS equation

)̃3Ãφ + ∂Aφ∂ ln(αψ−2)
r sin θ

+ψ8r sinθ

(
ρh

dM
dAφ

+ I
ϖ 2

dI
dAφ

)
= 0.

(7)

This is obtained by working out the derivatives of the magnetic
field in equation (4) introducing, for convenience, the new variable
Ãφ = Aφ/(r sin θ ) and the following differential operators

)̃3 :=) − 1
r2 sin2θ

=∂2
r + 2

r
∂r + 1

r2
∂2

θ + 1
r2 tan θ

∂θ − 1
r2 sin2θ

,

(8)

∂f ∂g := ∂rf ∂rg + 1
r2

∂θf ∂θg. (9)

The GS equation, which governs the GRMHD equilibrium inside
the star, can be extended also outside if we describe the external
magnetosphere as a low-density plasma where the force-free regime
is valid. Indeed, in the non-rotating case, the force-free condition
reduces to the vanishing of the Lorentz force Li = 0, and one can
again obtain a GS equation that corresponds to equation (7) in the ρ

→ 0 limit. We notice that taking the non-relativistic limit of equation
(7) with ρ → 0 leads to the non-rotating limit of the so-called pulsar
equation (Glampedakis et al. 2014).

Finally, we recall that our choice of expressing all the electromag-
netic quantities as functions of Aφ is not appropriate in the case of
a purely toroidal magnetic field, which instead requires a different
description, see PBD14 or Gourgoulhon et al. (2011) for details.
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Magnetisation function



Scheme of iterations: 
• starting guess for the metric and energy/matter (TOV @ first step) 
• solve equations for the metric 
• solve the Grad-Shafranov equation for Aφ ( if B poloidal ) 
• solve Bernoulli integral and update fluid quantities 

The XNS code
     Available at:

www.arcetri.astro.it/science/ahead/XNS/

Semi-spectral method
• Use of vector and spherical harmonics 
• Elliptic PDEs → system of radial ODEs for each harmonic 
• II order radial discretization → direct inversion of tri-diagonal matrices 
• Boundary → parity and asymptotic properties of the multipole 
• No compactified domains

4.2. Risoluzione delle equazioni XCFC multidimensionali

Come abbiamo già visto nel capitolo 1 attraverso la decomposizione conforme

la derivata covariante indotta sulle sezioni tridimensionali della foliazione è data

dal classico operatore nabla nello spazio piatto. Ora, con la scelta della nuova

base e
ı̂

, potremo utilizzare le formule standard del calcolo vettoriale in coordinate

sferiche per gli operatori � e �
L

e di conseguenza sfruttare le relazioni fornite

nell’Appendice B.

Siccome siamo interessati a soluzioni assisimmetriche di seguito considereremo

nello specifico questo regime. Nell’ipotesi di assisimmetria (m = 0) la funzione

scalare q, dell’equazione (4.30), può essere sviluppata in armoniche sferiche come:

q(r, ✓) =
1X

l=0

A
l

Y
l

(✓) , (4.38)

dove con Y
l

si è indicato:

Y
l

⌘ Y
l0(✓) =

r
2l + 1

4⇡
P
l

(cos ✓), (4.39)

e P
l

(cos ✓) è il polinomio di Legendre. Ora calcolando il Laplaciano attraver-

so questa decomposizione e sfruttando il fatto che le armoniche sferiche sono

autofunzioni del Laplaciano [proprietà (B.7)] l’equazione ellittica per q diventa:

1X

l=0

✓
d2A

l

dr2
+

2

r

dA
l

dr
� l(l + 1)

r2
A

l

◆
Y
l

(✓) = H, (4.40)

Moltiplicando ambo i membri per il complesso coniugato Y ⇤
l

(✓), integrando sul-

l’angolo solido e sfruttando le proprietà di ortogonalità (B.5) e completezza (B.6)

delle armoniche sferiche si ottiene infine:

d2A
l

dr2
+

2

r

dA
l

dr
� l(l + 1)

r2
A

l

= H
l

, (4.41)

dove il termine sorgente è dato da:

H
l

(r) :=

Z
d⌦H(r, ✓)Y

l

(✓). (4.42)

Abbiamo cos̀ı ottenuto una serie di equazioni di↵erenziali ordinarie per ogni va-

lore di l. Lo stesso procedimento può essere adoperato per le equazioni vettoriali

(4.31). In questo caso bisognerà però valutare il comportamento delle armoni-

che sferiche vettoriali rispetto all’operatore �
L

come mostrato nell’Appendice B.
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delle armoniche sferiche si ottiene infine:

d2A
l

dr2
+

2

r

dA
l

dr
� l(l + 1)

r2
A

l

= H
l

, (4.41)

dove il termine sorgente è dato da:
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�q = H(q)

Analogously for the GS 
with vector harmonics

Typical Run
Nr=500, Nθ=250
N harmonics = 20 ÷ 60

Computational time: 
few minutes
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this is possible provided

Bφ = α−1I(G), M(G) = −
∫ I

G

dI
dG

dG, (38)

basically as in the previous case but with a change of depen-
dency, where the magnetization function is to be plugged into
equation (23).

A common assumption (KY08, FR12) is to choose a barotropic-
type expression for I too, for example

I(G) = KmGm, M(G) = − mK2
m

2m − 1
G2m−1, (39)

where Km is the toroidal magnetization constant, and m ≥ 1 is
the toroidal magnetization index. Once the CFC metric has been
provided (the functions α and ψ), the equilibrium is then found by
first solving the Bernoulli equation for the specific enthalpy h

ln
(

h

hc

)
+ ln

(
α

αc

)
+ mK2

m

2m − 1
(ρhϖ 2)2m−1 = 0, (40)

providing also ρ, e and p through the assumed EOS, while the
magnetic field is

Bφ = α−1Km(ρhϖ 2)m. (41)

When applied to the modelling of magnetized NSs, such choice of
the free function I (and consequently of M) ensures that the field is
fully confined within the star, and that it is symmetric with respect
to the equatorial plane.

3 N U M E R I C A L S C H E M E

The non-linear Poisson-like equations [equations (15) and (16)] are
a subset of those found in the XCFC formalism, and for this reason
we employ the same numerical algorithm described in Bucciantini
& Del Zanna (2013), to which the reader is referred to for a complete
description. Let us here briefly summarize it for convenience. Solu-
tions, for the scalar quantities of interest (ψ and αψ), are searched
in terms of a series of spherical harmonics Yl(θ )

u(r, θ ) :=
∞∑

l=0

[Al(r)Yl(θ )]. (42)

The Laplacian can then be reduced to a series of radial second order
boundary value ODEs for the coefficients Al(r) of each harmonic,
which are then solved using tridiagonal matrix inversion, on the
same radial grid where the solution is discretized. Given that the
equations are non-linear this procedure is repeated until conver-
gence, using in the source term the value of the solution computed
at the previous iteration.

If a poloidal field is present, also the Grad-Shafranov equation
(equation 31), needs to be solved. Interestingly, this can be reduced
to the solution of a non-linear vector Poisson equation, which is for-
mally equivalent to the equation for the shift-vector (to be more pre-
cise its φ component) in the XCFC approximation. Ãφ is searched
in terms of a series of vector-spherical harmonics

Ãφ(r, θ ) :=
∞∑

l=0

[Cl(r)Y ′
l (θ )]. (43)

The only difference is that now the source term is non-linear. Again
we can use the same algorithm, with a combination of vector spher-
ical harmonics decomposition for the angular part, and matrix in-
version for the radial part (Bucciantini & Del Zanna 2013). Now,
this is iterated until convergence, because of the non-linearity of the
source terms.

The use of spherical harmonics allows us to preserve the correct
behaviour on the axis, the correct parity at the centre, and the correct
asymptotic trend at the other radius, without the need to use a
compactified domain.

Solutions are discretized on a grid in spherical coordinates in
the domain r = [0, 25], θ = [0, π]. For purely toroidal or purely
poloidal cases we use 250 points in the radial direction and 100
points in the angular one. For TT configurations we instead used
500 points in the radial direction and 200 points in the angular one.
The radial domain has been chosen such that its outer boundary is
far enough from the stellar surface, so that higher order multipoles
in the various quantities (i.e. in the metric terms) become negligible.
The boundary conditions at the inner radial boundary at r = 0 are
chosen such that each radial coefficients Al(r), Cl(r) goes to 0 with
parity ( − 1)l. Note that this is different from imposing that they go to
0 as r l. This latter choice is only justified in vacuum, for a flat space-
time, while in all our cases, the source terms (including terms that
contain the vector potential itself) extend all the way to the centre.
The outer boundary of the computational domain is always located
outside the stellar surface, which is defined as the place where the
density drops below a fiducial small value (usually 10−5 to 10−4

times the value of the central density). This implies that at the outer
boundary both the equations for the metric coefficients α and φ

and the equation for the vector potential reduce to the equations in
vacuum. At the outer radius we impose that each coefficient Al(r),
Cl(r) goes to 0 as r−(l + 1).

Note that, unlike in previous works (Tomimura & Eriguchi 2005;
Lander & Jones 2009, 2012; Ciolfi et al. 2009, 2010; Glampedakis
et al. 2012; Ciolfi & Rezzolla 2013) we do not solve separately the
Maxwell and Einstein equations inside the star and outside it and
then match them at the surface. We instead solve these equations in
the full domain, including both the star (where the source term are
confined) and the outside ‘vacuum’. This automatically guarantees
that solutions are continuous and smooth at the stellar surface.
It also allows the stellar surface to adjust freely, and not to any
imposed shape. We have verified that the solutions we obtain are
independent of the location of the outer radius. Our previous results
(X-ECHO) for the metric solver indicate that this global approach,
where solutions of non-linear elliptic equations are searched over
the entire domain, at once, gives correct results, without the need to
introduce matching conditions, at often undefined surfaces. In fact,
while in a perturbative approach one can safely assume the stellar
surface to be spherical, this cannot be done for strong fields, and the
shape of the NS surface is itself unknown. The correct behaviour
on the axis is instead automatically guaranteed by the properties of
spherical harmonics.

We have verified that at this resolution, the discretization errors
of our solutions are !10−3, and at most reach 10−2 for the most
extreme TT configurations. This is likely due to the fact that in
the latter case, the toroidal field is concentrated in a narrow torus-
like region at the edge of the star, while for purely poloidal and
purely toroidal cases, all the quantities are smoothly distributed in
the domain.

In models with purely toroidal or purely poloidal field we have
used 20 spherical harmonics. For TT configurations we have used
about 40 harmonics. We have also verified that increasing the num-
ber of spherical harmonics does not improve significantly the re-
sults. Again the twisted torus configurations are the ones requiring
in general a higher number of spherical harmonics. We found that
10 are already sufficient to provide results with an accuracy of the
order of 10−3 both for the purely poloidal or purely toroidal cases.
Instead for the most extreme TT cases we used up to 50 harmonics.
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Lorentz force can be then obtained through this novel magnetization
function M(Aφ) as

Li = ρh ∂iM = ρh
dM
dAφ

∂iAφ, (22)

and equation (20) can be integrated providing the Bernoulli integral

ln
(

h

hc

)
+ ln

(
α

αc

)
− M = 0, (23)

which, once the functional form M(Aφ) has been chosen and
Aφ(r, θ ) has been found, relates the enthalpy at each point to the
conditions set in the centre (labelled c), where we assume Mc = 0.

Consider now the φ component of the Lorentz force, which must
vanish due to axisymmetry. Thanks to equation (19) we then find
0 = Lφ = α−1Bi∂i(αBφ), thus

Bφ = α−1I(Aφ), (24)

where I(Aφ) is another free function and it is constant on the mag-
netic surfaces. This function is also strictly related to the poloidal
current, since we have

J r = α−1Br dI
dAφ

, J θ = α−1Bθ dI
dAφ

. (25)

The toroidal current can be retrieved from the poloidal component of
the Lorentz force in equation (22). Using also the original definition
Li = ϵijkJjBk we arrive at the expression

J φ = ρh
dM
dAφ

+ I
ϖ 2

dI
dAφ

, (26)

where we have defined ϖ 2 := α2ψ4r2sin 2θ . If, instead, derivatives
of the poloidal magnetic field components are worked out, one finds

J φ = − 1
ψ8r2 sin2θ

[
(∗Aφ + ∂Aφ∂ ln(αψ−2)

]
, (27)

where the following operators have been introduced

(∗ := ∂2
r + 1

r2
∂2

θ − 1
r2 tan θ

∂θ , (28)

∂f ∂g := ∂rf ∂rg + 1
r2

∂θf ∂θg. (29)

Finally, equating the two above expressions for Jφ , and introducing
the new variable Ãφ := Aφ/(r sin θ ) and the new operator

(̃3 := (− 1
r2 sin2θ

=∂2
r +

2
r
∂r + 1

r2
∂2

θ + 1
r2 tan θ

∂θ − 1
r2 sin2θ

,

(30)

for which (̃3Ãφ = (∗Aφ/(r sin θ ) (it coincides with the φ compo-
nent of the vector Laplacian in spherical coordinates), we retrieve
the Grad-Shafranov equation for the magnetic flux function Aφ

(̃3Ãφ + ∂Aφ∂ ln(αψ−2)
r sin θ

+ψ8r sinθ

(
ρh

dM
dAφ

+ I
ϖ 2

dI
dAφ

)
= 0.

(31)

Provided the metric is known (the functions α and ψ in CFC), the
solution procedure is the following: after a choice for the free func-
tions M and I is made, equation (31) is solved over the whole
domain (with appropriate boundary conditions), so that the mag-
netic field and current components can be worked out. As antic-
ipated, the thermodynamical quantities are instead provided from
the Bernoulli equation (equation 23). In the remainder, we shall
provide the choices of the free functions for the various magnetic
configurations we are interested in.

2.4 Choice for poloidal and twisted torus configurations

When Aφ ̸= 0, for which the whole body of the previous section
applies, we need to specify the free functionsM and I, as discussed
just above, in a way appropriate for NS modelling. In analogy
with Ciolfi et al. (2009) we choose here a second-order polynomial
functional form for M, namely

M(Aφ) = kpol

(
Aφ + ξ

1
2
A2

φ

)
, (32)

where kpol is the poloidal magnetization constant, and ξ is the non-
linear poloidal term. On the other hand, the functional form for I
is chosen as

I(Aφ) = a

ζ + 1
+[Aφ − Amax

φ ](Aφ − Amax
φ )ζ+1, (33)

where +[.] is the Heaviside function, Amax
φ is the maximum value the

φ component of the vector potential reaches on the stellar surface,
a is the twisted torus magnetization constant and ζ is the twisted
torus magnetization index.

From equations (25) and (26) the poloidal components of the
conduction current are, for the assumed choices of the free func-
tions

J r = α−1Br a+[Aφ − Amax
φ ](Aφ − Amax

φ )ζ ,

J θ = α−1Bθ a+[Aφ − Amax
φ ](Aφ − Amax

φ )ζ , (34)

whereas the toroidal component is

J φ = ρh kpol(1 + ξAφ)

+ a2

(ζ + 1)ϖ 2
+[Aφ − Amax

φ ](Aφ − Amax
φ )2ζ+1. (35)

The above choice of M(Aφ) and I(Aφ) guarantees that the cur-
rents are all confined within the star. In the purely poloidal case
a = 0, the linear term ∝Aφ in equation (32) always leads to magnetic
field configurations which are dominated by a dipolar component.
Only the non-linear term ∝ A2

φ can in principle lead to currents
that produce higher order multipolar magnetic field configurations.
However, as it will be discussed later, this kind of configuration
can only be realized numerically under special conditions. With our
choice, the toroidal component of the magnetic field differs from
zero only in a rope inside the star, from which the name of twisted
torus configuration.

2.5 Choice for purely toroidal configurations

In the case of a purely toroidal field, most of the formalism leading
to the Grad-Shafranov equation does not apply, since Aφ = 0 and
we cannot define the usual free functions on magnetic surfaces.
However, equation (20) is still valid and we can still look for a
scalar function M (though no longer a function of Aφ) such that
Li = ρh∂iM and leading to the usual Bernoulli equation (equa-
tion 23). The Lorentz force is conveniently written in terms of αBφ ,
and the Euler equation, for the usual assumptions of a barotropic
EOS and conformal metric, becomes

∂i ln h + ∂i ln α + αBφ∂i(αBφ)
ρhϖ 2

= 0. (36)

The above equation is integrable if also the last term can be written
as a gradient of a scalar function. If we now define the new variable,
related to the enthalpy per unit volume ρh, namely

G := ρhϖ 2 = ρhα2ψ4r2 sin2θ, (37)
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Lorentz force can be then obtained through this novel magnetization
function M(Aφ) as

Li = ρh ∂iM = ρh
dM
dAφ

∂iAφ, (22)

and equation (20) can be integrated providing the Bernoulli integral

ln
(

h

hc

)
+ ln

(
α

αc

)
− M = 0, (23)

which, once the functional form M(Aφ) has been chosen and
Aφ(r, θ ) has been found, relates the enthalpy at each point to the
conditions set in the centre (labelled c), where we assume Mc = 0.

Consider now the φ component of the Lorentz force, which must
vanish due to axisymmetry. Thanks to equation (19) we then find
0 = Lφ = α−1Bi∂i(αBφ), thus

Bφ = α−1I(Aφ), (24)

where I(Aφ) is another free function and it is constant on the mag-
netic surfaces. This function is also strictly related to the poloidal
current, since we have

J r = α−1Br dI
dAφ

, J θ = α−1Bθ dI
dAφ

. (25)

The toroidal current can be retrieved from the poloidal component of
the Lorentz force in equation (22). Using also the original definition
Li = ϵijkJjBk we arrive at the expression

J φ = ρh
dM
dAφ

+ I
ϖ 2

dI
dAφ

, (26)

where we have defined ϖ 2 := α2ψ4r2sin 2θ . If, instead, derivatives
of the poloidal magnetic field components are worked out, one finds

J φ = − 1
ψ8r2 sin2θ

[
(∗Aφ + ∂Aφ∂ ln(αψ−2)

]
, (27)

where the following operators have been introduced

(∗ := ∂2
r + 1

r2
∂2

θ − 1
r2 tan θ

∂θ , (28)

∂f ∂g := ∂rf ∂rg + 1
r2

∂θf ∂θg. (29)

Finally, equating the two above expressions for Jφ , and introducing
the new variable Ãφ := Aφ/(r sin θ ) and the new operator

(̃3 := (− 1
r2 sin2θ

=∂2
r +

2
r
∂r + 1

r2
∂2

θ + 1
r2 tan θ

∂θ − 1
r2 sin2θ

,

(30)

for which (̃3Ãφ = (∗Aφ/(r sin θ ) (it coincides with the φ compo-
nent of the vector Laplacian in spherical coordinates), we retrieve
the Grad-Shafranov equation for the magnetic flux function Aφ

(̃3Ãφ + ∂Aφ∂ ln(αψ−2)
r sin θ

+ψ8r sinθ

(
ρh

dM
dAφ

+ I
ϖ 2

dI
dAφ

)
= 0.

(31)

Provided the metric is known (the functions α and ψ in CFC), the
solution procedure is the following: after a choice for the free func-
tions M and I is made, equation (31) is solved over the whole
domain (with appropriate boundary conditions), so that the mag-
netic field and current components can be worked out. As antic-
ipated, the thermodynamical quantities are instead provided from
the Bernoulli equation (equation 23). In the remainder, we shall
provide the choices of the free functions for the various magnetic
configurations we are interested in.

2.4 Choice for poloidal and twisted torus configurations

When Aφ ̸= 0, for which the whole body of the previous section
applies, we need to specify the free functionsM and I, as discussed
just above, in a way appropriate for NS modelling. In analogy
with Ciolfi et al. (2009) we choose here a second-order polynomial
functional form for M, namely

M(Aφ) = kpol

(
Aφ + ξ

1
2
A2

φ

)
, (32)

where kpol is the poloidal magnetization constant, and ξ is the non-
linear poloidal term. On the other hand, the functional form for I
is chosen as

I(Aφ) = a

ζ + 1
+[Aφ − Amax

φ ](Aφ − Amax
φ )ζ+1, (33)

where +[.] is the Heaviside function, Amax
φ is the maximum value the

φ component of the vector potential reaches on the stellar surface,
a is the twisted torus magnetization constant and ζ is the twisted
torus magnetization index.

From equations (25) and (26) the poloidal components of the
conduction current are, for the assumed choices of the free func-
tions

J r = α−1Br a+[Aφ − Amax
φ ](Aφ − Amax

φ )ζ ,

J θ = α−1Bθ a+[Aφ − Amax
φ ](Aφ − Amax

φ )ζ , (34)

whereas the toroidal component is

J φ = ρh kpol(1 + ξAφ)

+ a2

(ζ + 1)ϖ 2
+[Aφ − Amax

φ ](Aφ − Amax
φ )2ζ+1. (35)

The above choice of M(Aφ) and I(Aφ) guarantees that the cur-
rents are all confined within the star. In the purely poloidal case
a = 0, the linear term ∝Aφ in equation (32) always leads to magnetic
field configurations which are dominated by a dipolar component.
Only the non-linear term ∝ A2

φ can in principle lead to currents
that produce higher order multipolar magnetic field configurations.
However, as it will be discussed later, this kind of configuration
can only be realized numerically under special conditions. With our
choice, the toroidal component of the magnetic field differs from
zero only in a rope inside the star, from which the name of twisted
torus configuration.

2.5 Choice for purely toroidal configurations

In the case of a purely toroidal field, most of the formalism leading
to the Grad-Shafranov equation does not apply, since Aφ = 0 and
we cannot define the usual free functions on magnetic surfaces.
However, equation (20) is still valid and we can still look for a
scalar function M (though no longer a function of Aφ) such that
Li = ρh∂iM and leading to the usual Bernoulli equation (equa-
tion 23). The Lorentz force is conveniently written in terms of αBφ ,
and the Euler equation, for the usual assumptions of a barotropic
EOS and conformal metric, becomes

∂i ln h + ∂i ln α + αBφ∂i(αBφ)
ρhϖ 2

= 0. (36)

The above equation is integrable if also the last term can be written
as a gradient of a scalar function. If we now define the new variable,
related to the enthalpy per unit volume ρh, namely

G := ρhϖ 2 = ρhα2ψ4r2 sin2θ, (37)
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Prolate deformation: 
• axial compression 
• inflation of low-density outer 

layers 
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Figure 1. Meridional distribution and isocontours of the magnetic field strength B =
√

BφBφ (top) and of the baryonic density (bottom) for models with
baryonic mass M0 = 1.68 M⊙, maximum magnetic field strength Bmax = 6.134 × 1017 G, with magnetic index m = 1 (left) and m = 2 (right). Blue curves
represent the surface of the star. Other global quantities related to these configurations are listed in Table 1.

the latter results against KY08. The first thing to notice is that Bmax is
not a monotonic function of the magnetization constant Km. On the
contrary Bmax initially increases with Km, till it reaches a maximum
value, and then for higher values of Km it drops. This is due to the
expansion of the star. For small values of Km, the stellar radius is
marginally affected, and an increase in Km leads to a higher field.
However at higher values of Km the radius of the star is largely
inflated and a further increase in Km translates into an expansion of
the star, and a consequent reduction of the maximum internal field.
If "M, "Rcirc, or ē are plotted against the total magnetic energy, we
find that there appears to be a monotonic trend, at least in the range
covered by our models. A similar effect shows up in the behaviour
of the central density. For small values of Km the magnetic tension
tends to compress the matter in the core, increasing its density.
However as soon as the magnetic field becomes strong enough to
cause the outer layer of the star to expand, the central density begins
to drop (recall that the sequence is for a fixed baryonic mass). The
same comparison with KY08 in the m = 2 (FR12 present only the
m = 1 case) is shown in Fig. 3.

Following KY08 we have carried out a full sampling of the param-
eter space. In Fig. 4 we plot the gravitational mass M as a function
of the central density ρc both for sequences with a constant baryonic

mass M0 and a constant magnetic flux $. The first thing to notice
is that the maximum gravitational mass, at fixed magnetic flux $,
increases with $. Moreover for a given $ the model with the max-
imum gravitational mass have also the maximum rest mass. On the
other hand the minimum gravitational mass, at fixed rest mass M0,
decreases with M0. Similarly, for a given M0 the model with the
minimal gravitational mass have also the minimum magnetic flux.
The filled circles locate the maximum gravitational mass models in
the sequences of constant $. The global quantities related to these
configurations are summarized in Table 2.

Interestingly, while for the vast majority of our magnetized mod-
els the gravitational mass, for a given central density, is higher than
in the unmagnetized case, for small values of $ this is not true at
densities below ∼1.8 × 1015 g cm−3 for m = 1. This is a manifes-
tation of the same effect discussed above in relation to the trend of
the central density in Fig. 2. This effect was already present to a
lesser extent in KY08, but not discussed.

Our set of models allows us also to construct sequences char-
acterized by a constant magnetic field strength Bmax or a constant
deformation rate ē. It is evident that models with a higher cen-
tral density, which usually correspond to more compact stars, can
harbour a higher magnetic field with a smaller deformation.
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Figure 1. Meridional distribution and isocontours of the magnetic field strength B =
√

BφBφ (top) and of the baryonic density (bottom) for models with
baryonic mass M0 = 1.68 M⊙, maximum magnetic field strength Bmax = 6.134 × 1017 G, with magnetic index m = 1 (left) and m = 2 (right). Blue curves
represent the surface of the star. Other global quantities related to these configurations are listed in Table 1.

the latter results against KY08. The first thing to notice is that Bmax is
not a monotonic function of the magnetization constant Km. On the
contrary Bmax initially increases with Km, till it reaches a maximum
value, and then for higher values of Km it drops. This is due to the
expansion of the star. For small values of Km, the stellar radius is
marginally affected, and an increase in Km leads to a higher field.
However at higher values of Km the radius of the star is largely
inflated and a further increase in Km translates into an expansion of
the star, and a consequent reduction of the maximum internal field.
If "M, "Rcirc, or ē are plotted against the total magnetic energy, we
find that there appears to be a monotonic trend, at least in the range
covered by our models. A similar effect shows up in the behaviour
of the central density. For small values of Km the magnetic tension
tends to compress the matter in the core, increasing its density.
However as soon as the magnetic field becomes strong enough to
cause the outer layer of the star to expand, the central density begins
to drop (recall that the sequence is for a fixed baryonic mass). The
same comparison with KY08 in the m = 2 (FR12 present only the
m = 1 case) is shown in Fig. 3.

Following KY08 we have carried out a full sampling of the param-
eter space. In Fig. 4 we plot the gravitational mass M as a function
of the central density ρc both for sequences with a constant baryonic

mass M0 and a constant magnetic flux $. The first thing to notice
is that the maximum gravitational mass, at fixed magnetic flux $,
increases with $. Moreover for a given $ the model with the max-
imum gravitational mass have also the maximum rest mass. On the
other hand the minimum gravitational mass, at fixed rest mass M0,
decreases with M0. Similarly, for a given M0 the model with the
minimal gravitational mass have also the minimum magnetic flux.
The filled circles locate the maximum gravitational mass models in
the sequences of constant $. The global quantities related to these
configurations are summarized in Table 2.

Interestingly, while for the vast majority of our magnetized mod-
els the gravitational mass, for a given central density, is higher than
in the unmagnetized case, for small values of $ this is not true at
densities below ∼1.8 × 1015 g cm−3 for m = 1. This is a manifes-
tation of the same effect discussed above in relation to the trend of
the central density in Fig. 2. This effect was already present to a
lesser extent in KY08, but not discussed.

Our set of models allows us also to construct sequences char-
acterized by a constant magnetic field strength Bmax or a constant
deformation rate ē. It is evident that models with a higher cen-
tral density, which usually correspond to more compact stars, can
harbour a higher magnetic field with a smaller deformation.
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Figure 1. Meridional distribution and isocontours of the magnetic field strength B =
√

BφBφ (top) and of the baryonic density (bottom) for models with
baryonic mass M0 = 1.68 M⊙, maximum magnetic field strength Bmax = 6.134 × 1017 G, with magnetic index m = 1 (left) and m = 2 (right). Blue curves
represent the surface of the star. Other global quantities related to these configurations are listed in Table 1.

the latter results against KY08. The first thing to notice is that Bmax is
not a monotonic function of the magnetization constant Km. On the
contrary Bmax initially increases with Km, till it reaches a maximum
value, and then for higher values of Km it drops. This is due to the
expansion of the star. For small values of Km, the stellar radius is
marginally affected, and an increase in Km leads to a higher field.
However at higher values of Km the radius of the star is largely
inflated and a further increase in Km translates into an expansion of
the star, and a consequent reduction of the maximum internal field.
If "M, "Rcirc, or ē are plotted against the total magnetic energy, we
find that there appears to be a monotonic trend, at least in the range
covered by our models. A similar effect shows up in the behaviour
of the central density. For small values of Km the magnetic tension
tends to compress the matter in the core, increasing its density.
However as soon as the magnetic field becomes strong enough to
cause the outer layer of the star to expand, the central density begins
to drop (recall that the sequence is for a fixed baryonic mass). The
same comparison with KY08 in the m = 2 (FR12 present only the
m = 1 case) is shown in Fig. 3.

Following KY08 we have carried out a full sampling of the param-
eter space. In Fig. 4 we plot the gravitational mass M as a function
of the central density ρc both for sequences with a constant baryonic

mass M0 and a constant magnetic flux $. The first thing to notice
is that the maximum gravitational mass, at fixed magnetic flux $,
increases with $. Moreover for a given $ the model with the max-
imum gravitational mass have also the maximum rest mass. On the
other hand the minimum gravitational mass, at fixed rest mass M0,
decreases with M0. Similarly, for a given M0 the model with the
minimal gravitational mass have also the minimum magnetic flux.
The filled circles locate the maximum gravitational mass models in
the sequences of constant $. The global quantities related to these
configurations are summarized in Table 2.

Interestingly, while for the vast majority of our magnetized mod-
els the gravitational mass, for a given central density, is higher than
in the unmagnetized case, for small values of $ this is not true at
densities below ∼1.8 × 1015 g cm−3 for m = 1. This is a manifes-
tation of the same effect discussed above in relation to the trend of
the central density in Fig. 2. This effect was already present to a
lesser extent in KY08, but not discussed.

Our set of models allows us also to construct sequences char-
acterized by a constant magnetic field strength Bmax or a constant
deformation rate ē. It is evident that models with a higher cen-
tral density, which usually correspond to more compact stars, can
harbour a higher magnetic field with a smaller deformation.
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Purely poloidal models
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Table 3. Global quantities from selected configurations belonging to the equilibrium sequences shown in Fig. 10, at
M = 1.551 M⊙. For each value of ξ we show the details for the configuration with the maximal magnetic dipole moment.
For cases with ξ = 20, 40 we also present those configurations where ratio |J1|/|J0| ≃ 1. For the definition of the various
quantities see Appendix B.

Model ρc M0 Rcirc rp/re ē H/W Bmax µ |J1|/|J0|
(1014 g cm−3) (M⊙) (km) (10−1) (10−1) (10−2) (1017 G) (1035 erg G−1)

ξ = 20 8.149 1.678 14.48 9.656 0.468 1.443 2.692 0.629 0.989
6.810 1.665 15.54 8.420 1.773 6.656 4.595 1.477 2.421

ξ = 40 8.426 1.680 14.35 9.827 0.127 0.979 1.417 0.118 0.990
7.320 1.670 15.11 8.857 1.352 4.837 3.964 1.230 4.023

ξ = −5 6.176 1.663 15.75 7.774 2.067 7.482 6.243 1.510 0.585

ξ = −10 7.543 1.674 14.79 8.996 1.014 3.099 4.782 0.911 0.691

Figure 11. Left panel: equilibrium sequences with fixed magnetic field moment µ and fixed baryonic mass M0. Right panel: equilibrium sequences with fixed
deformation rate ē and maximum field strength Bmax. The baryonic mass is expressed in units of M⊙, the magnetic dipole moment in units of 1035 erg G−1

and the maximum field strength in units of 1018 G. The red line shows the unmagnetized sequence while the filled dots locate the configurations with maximum
mass for a given dipole moment µ. Parameters for these configurations are listed in Table 4.

Table 4. Global quantities from the poloidal models with maximum gravitational mass in sequences
with fixed magnetic dipole moment µ, shown in Fig. 11. For the definition of the various quantities see
Appendix B.

ρc M M0 Rcirc H/W Bmax ē rp/re µ

(1014 g cm−3) (M⊙) (M⊙) (km) (10−2) (1017 G) (10−1) (10−1) (1035 erg G−1)

17.29 1.725 1.892 11.96 1.821 6.162 0.481 9.551 0.543
17.19 1.740 1.903 11.89 4.275 9.406 1.036 8.961 0.833
16.76 1.757 1.916 11.93 6.647 11.70 1.481 8.442 1.041
16.45 1.785 1.938 12.00 10.17 14.45 2.012 7.922 1.290

that any current added to the outer layers must be compensated by
a reduction of the current in the deeper ones (to keep µ constant).
Giving that deformations are dominated by the core region, this
explains why the star is less oblate. The opposite argument applies
for subtractive currents.

Finally, we have repeated a detailed parameter study, in analogy
to what has been presented in the previous section, to explore the
space (ρc, kpol). In Fig. 11 (see also Table 4) we show various
sequences characterized by either a constant baryonic mass M0, or
a constant magnetic dipole moment µ, or a constant maximum field
strength Bmax, or a constant deformation rate ē. We have limited our
study to models with ξ = 0, because the addition of other currents
leads in general to minor effects. Again, it is found that systems
with lower central densities are in general characterized by larger
deformation for a given magnetic field and/or magnetic moment.

There is, however, no inversion trend analogous to the one found
for purely toroidal configurations.

4.3 Mixed field

Finally, in this subsection we will illustrate in detail the properties
of TT configurations. For all the cases we present, we have adopted
a functional form for M identical to the one used in the purely
poloidal case [see equation (32)] but only assuming linear terms for
the toroidal currents, ξ = 0. Note, however, that the presence of a
toroidal field is equivalent to the existence of an effective non-linear
current term. The toroidal magnetic field is instead generated by a
current term I, given by equation (33). Again we have selected the
simplest case: a ̸= 0 and ζ = 0. We focus here on fully non-linear
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Figure 5. Left panel: magnetic field surfaces (isocontours of Ãφ ) and distribution of the magnetic strength B =
√

BrBr + BθBθ . Right panel: baryonic
density distribution. The blue curves represent the surface of the star. The model is characterized by M0 = 1.68 M⊙, Bmax = 6.256 × 1017 G and magnetic
dipole moment µ = 2.18835 erg G−1.

that our operative definition of magnetic dipole moment is different
than the one given by BB95, which is valid only in the asymptoti-
cally flat limit, where magnetic field vanishes (see the discussion in
Appendix B). Given that BB95 solve in the correct quasi-isotropic
metric, the comparison is also a check on the accuracy of the CFC
approximation. It is evident that the CFC approximation gives re-
sults that are in excellent agreement with what is found in the correct
full GR regime.

In Fig. 5 we present a model with a purely poloidal field. The
model has been obtained in the simple case ξ = 0, where only
linear currents are present: Jφ = ρhkpol. The model has a rest mass
M0 = 1.680 M⊙, a maximum magnetic field Bmax = 6.256 × 1017G,
and a dipole moment µ = 2.188 × 1035 erg G−1.

In contrast to the toroidal case, for a purely poloidal magnetic
field the NS acquires an oblate shape. The magnetic field threads
the entire star, and reaches its maximum at the very centre. The
pressure support provided by the magnetic field leads to a flattening
of the density profile in the equatorial plane. It is possible, for
highly magnetized cases, to build equilibrium models where the
density has its maximum, not at the centre, but in a ring-like region
in the equatorial plane (see Fig. 6). Qualitatively, these effects are
analogous to those produced by rotation. Rotation leads to oblate
configurations, and for a very fast rotator, to doughnut-like density
distribution. The main difference, however, is that rotation acts
preferentially in the outer stellar layers, leaving the central core
unaffected in all but the most extreme cases. A poloidal magnetic
field instead acts preferentially in the core, where it peaks.

Another difference with respect to cases with a purely toroidal
field is the fact that the magnetic field extends smoothly outside
the NS surface. Surface currents are needed to confine it entirely
within the star. As a consequence, from an astrophysical point of
view, the dipole moment µ is a far more important parameter than
the magnetic flux %, because it is in principle an observable (it is
easily measured from spin-down).

Similarly to what was done in the case of a purely toroidal mag-
netic field, we have built an equilibrium sequence, in the simplest
case ξ = 0, at fixed baryonic mass M0 = 1.680 M⊙ (Fig. 7). Changes
in the various global quantities are shown as a function of the max-
imum magnetic field inside the star Bmax. The results in Fig. 7

Figure 6. Baryonic density distribution for an extremely deformed config-
uration with a toroidal-like shape. This configuration is characterized by a
baryonic rest mass M0 = 1.749 M⊙, a gravitational mass M = 1.661 M⊙, a
maximum field strength Bmax = 5.815 × 1017 G, a magnetic dipole moment
µ = 3.595 × 1035 erg G−1, a circumferential radius Rcirc = 19.33 km and a
mean deformation rate ē = 0.386.

show that the central density ρc decreases with Bmax while the
gravitational mass M, the circumferential radius Rcirc and the mean
deformation rate ē, which is now positive (oblateness), grow. As in
the toroidal case, for this sequence, there appears to be a maximum
value of magnetic field Bmax ≈ 6.25 × 1017 G. However, we have
not been able to build models with higher magnetization, and so
we cannot say if such value is reached asymptotically, or, as in the
toroidal case, increasing further the magnetization, leads to a re-
duction of the maximum field strength. The other main qualitative
difference with respect to the toroidal case is the trend of the cen-
tral density, which is now a monotonic function of the maximum
magnetic field. From a quantitative point of view we notice that the
central density is more affected by the magnetic field. In Fig. 8 we
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Figure 5. Left panel: magnetic field surfaces (isocontours of Ãφ ) and distribution of the magnetic strength B =
√

BrBr + BθBθ . Right panel: baryonic
density distribution. The blue curves represent the surface of the star. The model is characterized by M0 = 1.68 M⊙, Bmax = 6.256 × 1017 G and magnetic
dipole moment µ = 2.18835 erg G−1.
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show that the central density ρc decreases with Bmax while the
gravitational mass M, the circumferential radius Rcirc and the mean
deformation rate ē, which is now positive (oblateness), grow. As in
the toroidal case, for this sequence, there appears to be a maximum
value of magnetic field Bmax ≈ 6.25 × 1017 G. However, we have
not been able to build models with higher magnetization, and so
we cannot say if such value is reached asymptotically, or, as in the
toroidal case, increasing further the magnetization, leads to a re-
duction of the maximum field strength. The other main qualitative
difference with respect to the toroidal case is the trend of the cen-
tral density, which is now a monotonic function of the maximum
magnetic field. From a quantitative point of view we notice that the
central density is more affected by the magnetic field. In Fig. 8 we
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Lorentz force can be then obtained through this novel magnetization
function M(Aφ) as

Li = ρh ∂iM = ρh
dM
dAφ

∂iAφ, (22)

and equation (20) can be integrated providing the Bernoulli integral

ln
(

h

hc

)
+ ln

(
α

αc

)
− M = 0, (23)

which, once the functional form M(Aφ) has been chosen and
Aφ(r, θ ) has been found, relates the enthalpy at each point to the
conditions set in the centre (labelled c), where we assume Mc = 0.

Consider now the φ component of the Lorentz force, which must
vanish due to axisymmetry. Thanks to equation (19) we then find
0 = Lφ = α−1Bi∂i(αBφ), thus

Bφ = α−1I(Aφ), (24)

where I(Aφ) is another free function and it is constant on the mag-
netic surfaces. This function is also strictly related to the poloidal
current, since we have

J r = α−1Br dI
dAφ

, J θ = α−1Bθ dI
dAφ

. (25)

The toroidal current can be retrieved from the poloidal component of
the Lorentz force in equation (22). Using also the original definition
Li = ϵijkJjBk we arrive at the expression

J φ = ρh
dM
dAφ

+ I
ϖ 2

dI
dAφ

, (26)

where we have defined ϖ 2 := α2ψ4r2sin 2θ . If, instead, derivatives
of the poloidal magnetic field components are worked out, one finds

J φ = − 1
ψ8r2 sin2θ

[
(∗Aφ + ∂Aφ∂ ln(αψ−2)

]
, (27)

where the following operators have been introduced

(∗ := ∂2
r + 1

r2
∂2

θ − 1
r2 tan θ

∂θ , (28)

∂f ∂g := ∂rf ∂rg + 1
r2

∂θf ∂θg. (29)

Finally, equating the two above expressions for Jφ , and introducing
the new variable Ãφ := Aφ/(r sin θ ) and the new operator

(̃3 := (− 1
r2 sin2θ

=∂2
r +

2
r
∂r + 1

r2
∂2

θ + 1
r2 tan θ

∂θ − 1
r2 sin2θ

,

(30)

for which (̃3Ãφ = (∗Aφ/(r sin θ ) (it coincides with the φ compo-
nent of the vector Laplacian in spherical coordinates), we retrieve
the Grad-Shafranov equation for the magnetic flux function Aφ

(̃3Ãφ + ∂Aφ∂ ln(αψ−2)
r sin θ

+ψ8r sinθ

(
ρh

dM
dAφ

+ I
ϖ 2

dI
dAφ

)
= 0.

(31)

Provided the metric is known (the functions α and ψ in CFC), the
solution procedure is the following: after a choice for the free func-
tions M and I is made, equation (31) is solved over the whole
domain (with appropriate boundary conditions), so that the mag-
netic field and current components can be worked out. As antic-
ipated, the thermodynamical quantities are instead provided from
the Bernoulli equation (equation 23). In the remainder, we shall
provide the choices of the free functions for the various magnetic
configurations we are interested in.

2.4 Choice for poloidal and twisted torus configurations

When Aφ ̸= 0, for which the whole body of the previous section
applies, we need to specify the free functionsM and I, as discussed
just above, in a way appropriate for NS modelling. In analogy
with Ciolfi et al. (2009) we choose here a second-order polynomial
functional form for M, namely

M(Aφ) = kpol

(
Aφ + ξ

1
2
A2

φ

)
, (32)

where kpol is the poloidal magnetization constant, and ξ is the non-
linear poloidal term. On the other hand, the functional form for I
is chosen as

I(Aφ) = a

ζ + 1
+[Aφ − Amax

φ ](Aφ − Amax
φ )ζ+1, (33)

where +[.] is the Heaviside function, Amax
φ is the maximum value the

φ component of the vector potential reaches on the stellar surface,
a is the twisted torus magnetization constant and ζ is the twisted
torus magnetization index.

From equations (25) and (26) the poloidal components of the
conduction current are, for the assumed choices of the free func-
tions

J r = α−1Br a+[Aφ − Amax
φ ](Aφ − Amax

φ )ζ ,

J θ = α−1Bθ a+[Aφ − Amax
φ ](Aφ − Amax

φ )ζ , (34)

whereas the toroidal component is

J φ = ρh kpol(1 + ξAφ)

+ a2

(ζ + 1)ϖ 2
+[Aφ − Amax

φ ](Aφ − Amax
φ )2ζ+1. (35)

The above choice of M(Aφ) and I(Aφ) guarantees that the cur-
rents are all confined within the star. In the purely poloidal case
a = 0, the linear term ∝Aφ in equation (32) always leads to magnetic
field configurations which are dominated by a dipolar component.
Only the non-linear term ∝ A2

φ can in principle lead to currents
that produce higher order multipolar magnetic field configurations.
However, as it will be discussed later, this kind of configuration
can only be realized numerically under special conditions. With our
choice, the toroidal component of the magnetic field differs from
zero only in a rope inside the star, from which the name of twisted
torus configuration.

2.5 Choice for purely toroidal configurations

In the case of a purely toroidal field, most of the formalism leading
to the Grad-Shafranov equation does not apply, since Aφ = 0 and
we cannot define the usual free functions on magnetic surfaces.
However, equation (20) is still valid and we can still look for a
scalar function M (though no longer a function of Aφ) such that
Li = ρh∂iM and leading to the usual Bernoulli equation (equa-
tion 23). The Lorentz force is conveniently written in terms of αBφ ,
and the Euler equation, for the usual assumptions of a barotropic
EOS and conformal metric, becomes

∂i ln h + ∂i ln α + αBφ∂i(αBφ)
ρhϖ 2

= 0. (36)

The above equation is integrable if also the last term can be written
as a gradient of a scalar function. If we now define the new variable,
related to the enthalpy per unit volume ρh, namely

G := ρhϖ 2 = ρhα2ψ4r2 sin2θ, (37)
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Lorentz force can be then obtained through this novel magnetization
function M(Aφ) as

Li = ρh ∂iM = ρh
dM
dAφ

∂iAφ, (22)

and equation (20) can be integrated providing the Bernoulli integral

ln
(

h

hc

)
+ ln

(
α

αc

)
− M = 0, (23)

which, once the functional form M(Aφ) has been chosen and
Aφ(r, θ ) has been found, relates the enthalpy at each point to the
conditions set in the centre (labelled c), where we assume Mc = 0.

Consider now the φ component of the Lorentz force, which must
vanish due to axisymmetry. Thanks to equation (19) we then find
0 = Lφ = α−1Bi∂i(αBφ), thus

Bφ = α−1I(Aφ), (24)

where I(Aφ) is another free function and it is constant on the mag-
netic surfaces. This function is also strictly related to the poloidal
current, since we have

J r = α−1Br dI
dAφ

, J θ = α−1Bθ dI
dAφ

. (25)

The toroidal current can be retrieved from the poloidal component of
the Lorentz force in equation (22). Using also the original definition
Li = ϵijkJjBk we arrive at the expression

J φ = ρh
dM
dAφ

+ I
ϖ 2

dI
dAφ

, (26)

where we have defined ϖ 2 := α2ψ4r2sin 2θ . If, instead, derivatives
of the poloidal magnetic field components are worked out, one finds

J φ = − 1
ψ8r2 sin2θ

[
(∗Aφ + ∂Aφ∂ ln(αψ−2)

]
, (27)

where the following operators have been introduced

(∗ := ∂2
r + 1

r2
∂2

θ − 1
r2 tan θ

∂θ , (28)

∂f ∂g := ∂rf ∂rg + 1
r2

∂θf ∂θg. (29)

Finally, equating the two above expressions for Jφ , and introducing
the new variable Ãφ := Aφ/(r sin θ ) and the new operator

(̃3 := (− 1
r2 sin2θ

=∂2
r +

2
r
∂r + 1

r2
∂2

θ + 1
r2 tan θ

∂θ − 1
r2 sin2θ

,

(30)

for which (̃3Ãφ = (∗Aφ/(r sin θ ) (it coincides with the φ compo-
nent of the vector Laplacian in spherical coordinates), we retrieve
the Grad-Shafranov equation for the magnetic flux function Aφ

(̃3Ãφ + ∂Aφ∂ ln(αψ−2)
r sin θ

+ψ8r sinθ

(
ρh

dM
dAφ

+ I
ϖ 2

dI
dAφ

)
= 0.

(31)

Provided the metric is known (the functions α and ψ in CFC), the
solution procedure is the following: after a choice for the free func-
tions M and I is made, equation (31) is solved over the whole
domain (with appropriate boundary conditions), so that the mag-
netic field and current components can be worked out. As antic-
ipated, the thermodynamical quantities are instead provided from
the Bernoulli equation (equation 23). In the remainder, we shall
provide the choices of the free functions for the various magnetic
configurations we are interested in.

2.4 Choice for poloidal and twisted torus configurations

When Aφ ̸= 0, for which the whole body of the previous section
applies, we need to specify the free functionsM and I, as discussed
just above, in a way appropriate for NS modelling. In analogy
with Ciolfi et al. (2009) we choose here a second-order polynomial
functional form for M, namely

M(Aφ) = kpol

(
Aφ + ξ

1
2
A2

φ

)
, (32)

where kpol is the poloidal magnetization constant, and ξ is the non-
linear poloidal term. On the other hand, the functional form for I
is chosen as

I(Aφ) = a

ζ + 1
+[Aφ − Amax

φ ](Aφ − Amax
φ )ζ+1, (33)

where +[.] is the Heaviside function, Amax
φ is the maximum value the

φ component of the vector potential reaches on the stellar surface,
a is the twisted torus magnetization constant and ζ is the twisted
torus magnetization index.

From equations (25) and (26) the poloidal components of the
conduction current are, for the assumed choices of the free func-
tions

J r = α−1Br a+[Aφ − Amax
φ ](Aφ − Amax

φ )ζ ,

J θ = α−1Bθ a+[Aφ − Amax
φ ](Aφ − Amax

φ )ζ , (34)

whereas the toroidal component is

J φ = ρh kpol(1 + ξAφ)

+ a2

(ζ + 1)ϖ 2
+[Aφ − Amax

φ ](Aφ − Amax
φ )2ζ+1. (35)

The above choice of M(Aφ) and I(Aφ) guarantees that the cur-
rents are all confined within the star. In the purely poloidal case
a = 0, the linear term ∝Aφ in equation (32) always leads to magnetic
field configurations which are dominated by a dipolar component.
Only the non-linear term ∝ A2

φ can in principle lead to currents
that produce higher order multipolar magnetic field configurations.
However, as it will be discussed later, this kind of configuration
can only be realized numerically under special conditions. With our
choice, the toroidal component of the magnetic field differs from
zero only in a rope inside the star, from which the name of twisted
torus configuration.

2.5 Choice for purely toroidal configurations

In the case of a purely toroidal field, most of the formalism leading
to the Grad-Shafranov equation does not apply, since Aφ = 0 and
we cannot define the usual free functions on magnetic surfaces.
However, equation (20) is still valid and we can still look for a
scalar function M (though no longer a function of Aφ) such that
Li = ρh∂iM and leading to the usual Bernoulli equation (equa-
tion 23). The Lorentz force is conveniently written in terms of αBφ ,
and the Euler equation, for the usual assumptions of a barotropic
EOS and conformal metric, becomes

∂i ln h + ∂i ln α + αBφ∂i(αBφ)
ρhϖ 2

= 0. (36)

The above equation is integrable if also the last term can be written
as a gradient of a scalar function. If we now define the new variable,
related to the enthalpy per unit volume ρh, namely

G := ρhϖ 2 = ρhα2ψ4r2 sin2θ, (37)
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• Oblate deformation 
• Flatter density profile perpendicularly to the magnetic axis
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Figure 2. Purely poloidal field case. Strength of the azimuthal current in units of 1019G s�1 (left half of each panel) and stenght of the poloidal magnetic field
in units 1014 G (right half of each panel). White contours represent magnetic field surfaces (isocontours of A�). The left column represents cases with ⌫ = 1,
the central one those with ⌫ = 4, the right one those with ⌫ = 10. From top to bottom, rows represent cases with ⇠ = 2.0, 10.0, 50.0, 200.0. The thick green line
is the stellar surface. In all cases the surface magnetic field at the pole is 1014 G.
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Figure 3. Purely poloidal field case. Magnetic field at the surface normalized to the value at the pole, for various values of ⇠. Left column represents cases
with ⌫ = 1, central column cases with ⌫ = 4 and right column cases with ⌫ = 10. Upper panels display the total strentgh of the poloidal magnetic field, middle
panles the strength of the parallel ✓ component, and lower panels the radial one.

acterized by a torus-like region, in the interior of the star, just under
the stellar surface, where the toroidal field is confined. This geom-
etry can be obtained if one chooses for the current function I the
form of Eq. (13). In Fig.4 we show the magnetic field distribution
for a typical TT solution.

Particular attention has been recently devoted to the study
of this kind of systems, because there is evidence that magnetic
field, in a fluid star, tends to relax toward a twisted torus geom-
etry, and that only mixed configurations can be dynamically sta-
ble (Braithwaite 2009; Braithwaite & Nordlund 2006; Braithwaite
& Spruit 2006). Motivated by these dynamical studies, e↵orts in
the past have gone toward modelling systems where the equilib-
rium magnetic geometry was such that the magnetic energy was
dominated by the toroidal component. Despite several attempts in
various regimes (Ciolfi et al. 2009; Lander & Jones 2009; Pili, Buc-
ciantini & Del Zanna 2014a), only configurations where the ener-
getics was dominated by the poloidal component could be found.
Recently Ciolfi & Rezzolla (2013) have shown that a very peculiar
current distribution might be required in order to obtain toroidally
dominated systems. This raises questions about the importance of
the specific choice in the form of currents I and M. More pre-
cisely one would like to know if previous failure to get toroidally
dominated geometries is due to a limited sample of the parameter
space, or if only very ad hoc choices for the current distribution
satisfy this requirement. Moreover most of the e↵orts have concen-
trated onto understanding how this magnetic field acts on the star,
and the amount of deformation that it induces. This is mostly mo-
tivated by searches for possible gravitational waves from neutron
stars. Attention has focused on a limited set of models, and current
distributions. In particular a deep investigation has been carried out
only for the case ⇣ = 0 and ⇣ = 0.1 (Lander & Jones 2009; Pili,
Bucciantini & Del Zanna 2014a).

Here we present a full investigation of TT configurations for
various values of the parameter ⇣. This parameter regulates the
shape of the current distribution inside the torus. For ⇣ ! �0.5 the
current becomes uniformly distributed within the torus, while for
⇣ > 0 it concentrates in the vicinity of the neutral line, where the
poloidal field vanishes. It was shown that it is the integrated current
associated with the current function I that prevents TT configura-
tions to reach the toroidal dominated regime. As the strength of this

Figure 4. Magnetic field for a twisted torus (TT) configuration with ⇣ = 0
and a = 1.5 (corresponding to the maximum of the ratioHtor/H). Strength
of the toroidal magnetic field (left), and poloidal magnetic field (right) nor-
malized to the surface value at the pole. White contours represent magnetic
field surfaces (isocontours of A�). The thick green line is the stellar surface.

current increases, the toroidal field rises, but the torus-like region
shrinks toward the surface of the star and its volume diminish.

In Fig. 5 we show how the ratio of magnetic energy associated
to the toroidal fieldHtor over the total magnetic energyH changes
with the parameter a and ⇣. The maximum value of this ratio is al-
ways of the order of 0.06, slightly higher for smaller values of ⇣.
In all cases we verified that at high values of a the volume of the
region containing the toroidal magnetic field is strongly reduced.
For ⇣ = 1 we could not find equilibrium models (solution of the
GS equation) all the way to the maximum (the algorithm failed
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Figure 1. Purely poloidal field case. Strength of the azimuthal current in units of 1019G s�1 (left half of each panel) and strength of the poloidal magnetic field
in units 1014 G (right half of each panel). White contours represent magnetic field surfaces (isocontours of A�). The left column represents cases with ⌫ = 1,
the central one those with ⌫ = 4, the right one those with ⌫ = 10. From top to bottom, rows represent cases with ⇠ = �0.5,�0.9,�0.98,�1.0. The thick green
line is the stellar surface. In all cases the surface magnetic field at the pole is 1014 G.
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Figure 2. Purely poloidal field case. Strength of the azimuthal current in units of 1019G s�1 (left half of each panel) and stenght of the poloidal magnetic field
in units 1014 G (right half of each panel). White contours represent magnetic field surfaces (isocontours of A�). The left column represents cases with ⌫ = 1,
the central one those with ⌫ = 4, the right one those with ⌫ = 10. From top to bottom, rows represent cases with ⇠ = 2.0, 10.0, 50.0, 200.0. The thick green line
is the stellar surface. In all cases the surface magnetic field at the pole is 1014 G.
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Figure 3. Purely poloidal field case. Magnetic field at the surface normalized to the value at the pole, for various values of ⇠. Left column represents cases
with ⌫ = 1, central column cases with ⌫ = 4 and right column cases with ⌫ = 10. Upper panels display the total strentgh of the poloidal magnetic field, middle
panles the strength of the parallel ✓ component, and lower panels the radial one.

acterized by a torus-like region, in the interior of the star, just under
the stellar surface, where the toroidal field is confined. This geom-
etry can be obtained if one chooses for the current function I the
form of Eq. (13). In Fig.4 we show the magnetic field distribution
for a typical TT solution.

Particular attention has been recently devoted to the study
of this kind of systems, because there is evidence that magnetic
field, in a fluid star, tends to relax toward a twisted torus geom-
etry, and that only mixed configurations can be dynamically sta-
ble (Braithwaite 2009; Braithwaite & Nordlund 2006; Braithwaite
& Spruit 2006). Motivated by these dynamical studies, e↵orts in
the past have gone toward modelling systems where the equilib-
rium magnetic geometry was such that the magnetic energy was
dominated by the toroidal component. Despite several attempts in
various regimes (Ciolfi et al. 2009; Lander & Jones 2009; Pili, Buc-
ciantini & Del Zanna 2014a), only configurations where the ener-
getics was dominated by the poloidal component could be found.
Recently Ciolfi & Rezzolla (2013) have shown that a very peculiar
current distribution might be required in order to obtain toroidally
dominated systems. This raises questions about the importance of
the specific choice in the form of currents I and M. More pre-
cisely one would like to know if previous failure to get toroidally
dominated geometries is due to a limited sample of the parameter
space, or if only very ad hoc choices for the current distribution
satisfy this requirement. Moreover most of the e↵orts have concen-
trated onto understanding how this magnetic field acts on the star,
and the amount of deformation that it induces. This is mostly mo-
tivated by searches for possible gravitational waves from neutron
stars. Attention has focused on a limited set of models, and current
distributions. In particular a deep investigation has been carried out
only for the case ⇣ = 0 and ⇣ = 0.1 (Lander & Jones 2009; Pili,
Bucciantini & Del Zanna 2014a).

Here we present a full investigation of TT configurations for
various values of the parameter ⇣. This parameter regulates the
shape of the current distribution inside the torus. For ⇣ ! �0.5 the
current becomes uniformly distributed within the torus, while for
⇣ > 0 it concentrates in the vicinity of the neutral line, where the
poloidal field vanishes. It was shown that it is the integrated current
associated with the current function I that prevents TT configura-
tions to reach the toroidal dominated regime. As the strength of this

Figure 4. Magnetic field for a twisted torus (TT) configuration with ⇣ = 0
and a = 1.5 (corresponding to the maximum of the ratioHtor/H). Strength
of the toroidal magnetic field (left), and poloidal magnetic field (right) nor-
malized to the surface value at the pole. White contours represent magnetic
field surfaces (isocontours of A�). The thick green line is the stellar surface.

current increases, the toroidal field rises, but the torus-like region
shrinks toward the surface of the star and its volume diminish.

In Fig. 5 we show how the ratio of magnetic energy associated
to the toroidal fieldHtor over the total magnetic energyH changes
with the parameter a and ⇣. The maximum value of this ratio is al-
ways of the order of 0.06, slightly higher for smaller values of ⇣.
In all cases we verified that at high values of a the volume of the
region containing the toroidal magnetic field is strongly reduced.
For ⇣ = 1 we could not find equilibrium models (solution of the
GS equation) all the way to the maximum (the algorithm failed
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Twisted Torus Configurations
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Figure 3. Purely poloidal field case. Magnetic field at the surface normalized to the value at the pole, for various values of ξ . Left-hand column represents
cases with ν = 1, central column cases with ν = 4, and right-hand column cases with ν = 10. Upper panels display the total strength of the poloidal magnetic
field, middle panels the strength of the parallel θ component, and lower panels the radial one.

Figure 4. Magnetic field for a TT configuration with ζ = 0 and a = 1.5
(corresponding to the maximum of the ratioHtor/H). Strength of the toroidal
magnetic field (left) and poloidal magnetic field (right) normalized to the
surface value at the pole. White contours represent magnetic field surfaces
(isocontours of Aφ ). The thick green line is the stellar surface. Axes refer to
a Cartesian frame centred on the origin and with the z-axis corresponding
to the symmetry axis.

2009; Lander & Jones 2009; Pili et al. 2014a), only configurations
where the energetics was dominated by the poloidal component
could be found. Recently Ciolfi & Rezzolla (2013, hereafter CR13)
have shown that a very peculiar current distribution might be re-
quired in order to obtain toroidally dominated systems. This raises
questions about the importance of the specific choice in the form
of currents I and M. More precisely one would like to know if
previous failure to get toroidally dominated geometries is due to
a limited sample of the parameter space, or if only very ad hoc
choices for the current distribution satisfy this requirement. More-
over most of the efforts have concentrated on to understanding how
this magnetic field acts on the star, and the amount of deformation

Figure 5. Value of the ratio Htor/H for TT sequences characterized
by different values for ζ as a function of a. The dashed lines corre-
spond to configurations where the ratio between the maximum strength
of the toroidal magnetic field, Bmax

tor , and the maximum strength of the
poloidal component, Bmax

pol , is constant. From bottom to top Bmax
tor /Bmax

pol =
0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.8, 1.0, 1.25.

that it induces. This is mostly motivated by searches for possible
gravitational waves from NSs. Attention has focused on a limited
set of models, and current distributions. In particular a deep investi-
gation has been carried out only for the case ζ = 0 and 0.1 (Lander
& Jones 2009; Pili et al. 2014a).

Here we present a full investigation of TT configurations for vari-
ous values of the parameter ζ . This parameter regulates the shape of
the current distribution inside the torus. For ζ → −0.5 the current
becomes uniformly distributed within the torus, while for ζ > 0 it
concentrates in the vicinity of the neutral line, where the poloidal
field vanishes. It was shown that it is the integrated current associ-
ated with the current function I that prevents TT configurations to
reach the toroidal-dominated regime. As the strength of this current
increases, the toroidal field rises, but the torus-like region shrinks
towards the surface of the star and its volume diminishes.

In Fig. 5 we show how the ratio of magnetic energy associated
with the toroidal fieldHtor over the total magnetic energyH changes

MNRAS 447, 3278–3290 (2015)
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term proportional to the rest mass density. In this case one recovers
the force-free regime (Pili, Bucciantini & Del Zanna 2014c).

2.2 The currents distribution

As anticipated, the purpose of this paper is to study the properties
of various distributions of induction currents, and related magnetic
field configurations, in order to derive general trends and to under-
stand what parameter governs the key aspects of the magnetic field
geometry. For this reason we have adopted functional forms for
the free M(Aφ) and I(Aφ) functions allowing us to sample a large
parameter space, and to investigate configurations with important
morphological properties.

The magnetization function M has been chosen in order to in-
clude non-linear terms in the form

M(Aφ) = kpolAφ

[
1 + ξ

ν + 1

(
Aφ

Amax
φ

)ν]
, (12)

where kpol is the poloidal magnetization constant, ν is the poloidal
magnetization index of the non-linear term, which is normalized to
the maximum value of the vector potential itself Amax

φ . This normal-
ization prevents the non-linear term from diverging, and it allows
the system to remain within the weak field limit. The magnetization
function M vanishes outside the surface of the NS.

For the current function I, we adopted either the form

I(Aφ) = a

ζ + 1
%[Aφ − Asur

φ ]
(Aφ − Asur

φ )ζ+1

(Asur
φ )ζ

, (13)

or

I(Aφ) = a

ζ + 1
%[Aφ − Asur

φ ]
(Aφ − Asur

φ )ζ+1(Amax
φ − Aφ)ζ+1

(Asur
φ Amax

φ )ζ+1/2 ,

(14)

where %[ · ] is the Heaviside function, Asur
φ is the maximum value

that the φ component of the vector potential reaches on the stellar
surface, a is the toroidal magnetization constant and ζ is the toroidal
magnetization index. In both cases the toroidal magnetic field is
fully confined within the star. However, the first case corresponds
to a twisted torus (TT) configuration, where the azimuthal current
has the same sign over its domain and the toroidal field reaches
its maximum where the poloidal field vanishes. On the other hand,
the second case corresponds to a twisted ring (TR) configuration,
where the current changes its sign, and the toroidal field vanishes
in the same place where the poloidal field goes to zero.

With our normalization choices in equations (12)–(14), the so-
lution of the GS equation does not depend on the strength of the
magnetic field. In the limit of a weak field, the metric and fluid
quantities ρ, h, ψ , and α can be assumed as fixed, such that, if Aφ

is a solution of the GS equation for given values of kpol, ξ , ν, a, ζ ,
then ηAφ will be a solution of the GS equation for ηkpol, ξ , ν, a, ζ ,
for both TT and TR cases. Our solution can be thus renormalized
to any value of the magnetic field strength. In particular we have
chosen to display our solution by normalizing the strength of the
magnetic field at the pole to 1014 G. We verified that the limit of
a weak field holds to a high level of accuracy up to a maximum
strength ∼1016 G, corresponding to a typical surface magnetic field
∼a few × 1015 G (Pili et al. 2014, in preparation). For higher fields,
we observe non-linear variations in the ratios of magnetic quantities,
higher than the overall accuracy of our scheme (see Section 2.3). A
partial investigation of the strong field regime, for purely poloidal
cases, is presented in Appendix B.

2.3 The numerical set-up

In all our models we assume that the NS is described by a poly-
tropic EoS p = Kaρ

γa (a special case of the general barotropic EoS
p = p(ρ)), with an adiabatic index γ a = 2. Unless otherwise stated,
the polytropic constant is chosen to be Ka = 110 (in geometrized
units).1 Given that we are here interested in studying different distri-
butions of currents, in the limit of weak magnetic fields, we assume
a fiducial model for the NS that is unaffected by the magnetic field
itself, unless otherwise stated. The role of a strong field has been
already investigated in a previous paper (Pili et al. 2014a).

The fiducial NS model used for computing, on top of it, the
various magnetic field configurations, has a central rest mass den-
sity ρc = 6.354 × 1014 g cm−3, a baryonic mass M0 = 1.500 M⊙,
a gravitational mass M = 1.400 M⊙, and a circumferential ra-
dius Rcirc = 15.22 km (corresponding to an isotropic radius
RNS = 13.06 km). This fiducial model is computed in isotropic co-
ordinates using the algorithms and the numerical scheme described
in Bucciantini & Del Zanna (2011).

On top of this fiducial model we then solve the GS equation,
equation (9), as described in Pili et al. (2014a). Let us briefly recall
here the main features of the algorithm employed. The GS equation
is a non-linear vector Poisson equation for the azimuthal component
of the regularized potential Ãφ . The solution is searched in the form
of a series of vector spherical harmonics:

Ãφ(r, θ ) :=
lmax∑

l=0

[Cl(r)Y ′
l (θ )], (15)

where Yl(θ ) are the standard scalar spherical harmonics, the ′ indi-
cates derivation with respect to θ , and we have used the axisymmet-
ric assumption to exclude terms with m ̸= 0. We want to stress here
again that in the low magnetization limit one can safely assume
that the metric and the matter distribution are unaffected by the
magnetic field, then in the present approximation we only need to
solve the GS equation, for any given fluid structure and associated
space–time metric.

Our algorithm allows us to solve the GS equation over the entire
numerical domain including both the interior of the star and the
surrounding magnetosphere where the rest mass density is numer-
ically set to a fiducial small value (∼10−6 times the value of the
rest mass density at the centre of the star), without the need of a
matching procedure between the exterior solution with the interior
one. The threshold value for the rest mass density is chosen such
that lowering it further produces negligible changes (much smaller
than the overall accuracy of our scheme). We want also to point
here that typical rest mass densities in the atmospheres of proto-NS
are ∼106–108 g cm−3 (Thompson, Burrows & Meyer 2001). This
also guarantees smoothness of the solutions at the stellar surface,
avoiding surface currents. Moreover, the harmonic decomposition
ensures the correct behaviour of the solution on the axis of symme-
try, and the asymptotic trend of the radial coefficients Cl(r) can be
correctly imposed such that they go to 0 with parity ( − 1)l at the
centre, and as Cl(r) ∝ r−(l + 1) at the outer boundary.

The decomposition in equation (15) reduces the GS equation to
a system of radial second-order elliptical non-linear partial differ-
ential equations (PDEs) for the various coefficients Cl(r). These are
solved, using a direct tridiagonal matrix inversion (Bucciantini &
Del Zanna 2011; Pili et al. 2014a). The entire procedure is repeated
until the solution converges with accuracy ∼10−8.

1 This corresponds to Ka = 1.6 × 105 cm5 g−1 s−2.
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term proportional to the rest mass density. In this case one recovers
the force-free regime (Pili, Bucciantini & Del Zanna 2014c).

2.2 The currents distribution

As anticipated, the purpose of this paper is to study the properties
of various distributions of induction currents, and related magnetic
field configurations, in order to derive general trends and to under-
stand what parameter governs the key aspects of the magnetic field
geometry. For this reason we have adopted functional forms for
the free M(Aφ) and I(Aφ) functions allowing us to sample a large
parameter space, and to investigate configurations with important
morphological properties.

The magnetization function M has been chosen in order to in-
clude non-linear terms in the form

M(Aφ) = kpolAφ

[
1 + ξ

ν + 1

(
Aφ

Amax
φ

)ν]
, (12)

where kpol is the poloidal magnetization constant, ν is the poloidal
magnetization index of the non-linear term, which is normalized to
the maximum value of the vector potential itself Amax

φ . This normal-
ization prevents the non-linear term from diverging, and it allows
the system to remain within the weak field limit. The magnetization
function M vanishes outside the surface of the NS.

For the current function I, we adopted either the form

I(Aφ) = a

ζ + 1
%[Aφ − Asur

φ ]
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φ )ζ+1

(Asur
φ )ζ

, (13)

or

I(Aφ) = a
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φ − Aφ)ζ+1

(Asur
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(14)

where %[ · ] is the Heaviside function, Asur
φ is the maximum value

that the φ component of the vector potential reaches on the stellar
surface, a is the toroidal magnetization constant and ζ is the toroidal
magnetization index. In both cases the toroidal magnetic field is
fully confined within the star. However, the first case corresponds
to a twisted torus (TT) configuration, where the azimuthal current
has the same sign over its domain and the toroidal field reaches
its maximum where the poloidal field vanishes. On the other hand,
the second case corresponds to a twisted ring (TR) configuration,
where the current changes its sign, and the toroidal field vanishes
in the same place where the poloidal field goes to zero.

With our normalization choices in equations (12)–(14), the so-
lution of the GS equation does not depend on the strength of the
magnetic field. In the limit of a weak field, the metric and fluid
quantities ρ, h, ψ , and α can be assumed as fixed, such that, if Aφ

is a solution of the GS equation for given values of kpol, ξ , ν, a, ζ ,
then ηAφ will be a solution of the GS equation for ηkpol, ξ , ν, a, ζ ,
for both TT and TR cases. Our solution can be thus renormalized
to any value of the magnetic field strength. In particular we have
chosen to display our solution by normalizing the strength of the
magnetic field at the pole to 1014 G. We verified that the limit of
a weak field holds to a high level of accuracy up to a maximum
strength ∼1016 G, corresponding to a typical surface magnetic field
∼a few × 1015 G (Pili et al. 2014, in preparation). For higher fields,
we observe non-linear variations in the ratios of magnetic quantities,
higher than the overall accuracy of our scheme (see Section 2.3). A
partial investigation of the strong field regime, for purely poloidal
cases, is presented in Appendix B.

2.3 The numerical set-up

In all our models we assume that the NS is described by a poly-
tropic EoS p = Kaρ

γa (a special case of the general barotropic EoS
p = p(ρ)), with an adiabatic index γ a = 2. Unless otherwise stated,
the polytropic constant is chosen to be Ka = 110 (in geometrized
units).1 Given that we are here interested in studying different distri-
butions of currents, in the limit of weak magnetic fields, we assume
a fiducial model for the NS that is unaffected by the magnetic field
itself, unless otherwise stated. The role of a strong field has been
already investigated in a previous paper (Pili et al. 2014a).

The fiducial NS model used for computing, on top of it, the
various magnetic field configurations, has a central rest mass den-
sity ρc = 6.354 × 1014 g cm−3, a baryonic mass M0 = 1.500 M⊙,
a gravitational mass M = 1.400 M⊙, and a circumferential ra-
dius Rcirc = 15.22 km (corresponding to an isotropic radius
RNS = 13.06 km). This fiducial model is computed in isotropic co-
ordinates using the algorithms and the numerical scheme described
in Bucciantini & Del Zanna (2011).

On top of this fiducial model we then solve the GS equation,
equation (9), as described in Pili et al. (2014a). Let us briefly recall
here the main features of the algorithm employed. The GS equation
is a non-linear vector Poisson equation for the azimuthal component
of the regularized potential Ãφ . The solution is searched in the form
of a series of vector spherical harmonics:

Ãφ(r, θ ) :=
lmax∑

l=0

[Cl(r)Y ′
l (θ )], (15)

where Yl(θ ) are the standard scalar spherical harmonics, the ′ indi-
cates derivation with respect to θ , and we have used the axisymmet-
ric assumption to exclude terms with m ̸= 0. We want to stress here
again that in the low magnetization limit one can safely assume
that the metric and the matter distribution are unaffected by the
magnetic field, then in the present approximation we only need to
solve the GS equation, for any given fluid structure and associated
space–time metric.

Our algorithm allows us to solve the GS equation over the entire
numerical domain including both the interior of the star and the
surrounding magnetosphere where the rest mass density is numer-
ically set to a fiducial small value (∼10−6 times the value of the
rest mass density at the centre of the star), without the need of a
matching procedure between the exterior solution with the interior
one. The threshold value for the rest mass density is chosen such
that lowering it further produces negligible changes (much smaller
than the overall accuracy of our scheme). We want also to point
here that typical rest mass densities in the atmospheres of proto-NS
are ∼106–108 g cm−3 (Thompson, Burrows & Meyer 2001). This
also guarantees smoothness of the solutions at the stellar surface,
avoiding surface currents. Moreover, the harmonic decomposition
ensures the correct behaviour of the solution on the axis of symme-
try, and the asymptotic trend of the radial coefficients Cl(r) can be
correctly imposed such that they go to 0 with parity ( − 1)l at the
centre, and as Cl(r) ∝ r−(l + 1) at the outer boundary.

The decomposition in equation (15) reduces the GS equation to
a system of radial second-order elliptical non-linear partial differ-
ential equations (PDEs) for the various coefficients Cl(r). These are
solved, using a direct tridiagonal matrix inversion (Bucciantini &
Del Zanna 2011; Pili et al. 2014a). The entire procedure is repeated
until the solution converges with accuracy ∼10−8.

1 This corresponds to Ka = 1.6 × 105 cm5 g−1 s−2.

MNRAS 447, 3278–3290 (2015)

 at IN
A

F A
rcetri Firenze (O

sservatorio A
strofisico di A

rcetri Firenze) on June 8, 2015
http://m

nras.oxfordjournals.org/
D

ow
nloaded from

 

Stability criterion for  
twisted torus magnetic field:

0.2  Ht

H . 0.99

(Braithwaite et al. 2009, Duez et al. 2010)

Investigating GR equilibria of magnetized NSs 7

Figure 3. Purely poloidal field case. Magnetic field at the surface normalized to the value at the pole, for various values of ⇠. Left column represents cases
with ⌫ = 1, central column cases with ⌫ = 4 and right column cases with ⌫ = 10. Upper panels display the total strentgh of the poloidal magnetic field, middle
panles the strength of the parallel ✓ component, and lower panels the radial one.

acterized by a torus-like region, in the interior of the star, just under
the stellar surface, where the toroidal field is confined. This geom-
etry can be obtained if one chooses for the current function I the
form of Eq. (13). In Fig.4 we show the magnetic field distribution
for a typical TT solution.

Particular attention has been recently devoted to the study
of this kind of systems, because there is evidence that magnetic
field, in a fluid star, tends to relax toward a twisted torus geom-
etry, and that only mixed configurations can be dynamically sta-
ble (Braithwaite 2009; Braithwaite & Nordlund 2006; Braithwaite
& Spruit 2006). Motivated by these dynamical studies, e↵orts in
the past have gone toward modelling systems where the equilib-
rium magnetic geometry was such that the magnetic energy was
dominated by the toroidal component. Despite several attempts in
various regimes (Ciolfi et al. 2009; Lander & Jones 2009; Pili, Buc-
ciantini & Del Zanna 2014a), only configurations where the ener-
getics was dominated by the poloidal component could be found.
Recently Ciolfi & Rezzolla (2013) have shown that a very peculiar
current distribution might be required in order to obtain toroidally
dominated systems. This raises questions about the importance of
the specific choice in the form of currents I and M. More pre-
cisely one would like to know if previous failure to get toroidally
dominated geometries is due to a limited sample of the parameter
space, or if only very ad hoc choices for the current distribution
satisfy this requirement. Moreover most of the e↵orts have concen-
trated onto understanding how this magnetic field acts on the star,
and the amount of deformation that it induces. This is mostly mo-
tivated by searches for possible gravitational waves from neutron
stars. Attention has focused on a limited set of models, and current
distributions. In particular a deep investigation has been carried out
only for the case ⇣ = 0 and ⇣ = 0.1 (Lander & Jones 2009; Pili,
Bucciantini & Del Zanna 2014a).

Here we present a full investigation of TT configurations for
various values of the parameter ⇣. This parameter regulates the
shape of the current distribution inside the torus. For ⇣ ! �0.5 the
current becomes uniformly distributed within the torus, while for
⇣ > 0 it concentrates in the vicinity of the neutral line, where the
poloidal field vanishes. It was shown that it is the integrated current
associated with the current function I that prevents TT configura-
tions to reach the toroidal dominated regime. As the strength of this

Figure 4. Magnetic field for a twisted torus (TT) configuration with ⇣ = 0
and a = 1.5 (corresponding to the maximum of the ratioHtor/H). Strength
of the toroidal magnetic field (left), and poloidal magnetic field (right) nor-
malized to the surface value at the pole. White contours represent magnetic
field surfaces (isocontours of A�). The thick green line is the stellar surface.

current increases, the toroidal field rises, but the torus-like region
shrinks toward the surface of the star and its volume diminish.

In Fig. 5 we show how the ratio of magnetic energy associated
to the toroidal fieldHtor over the total magnetic energyH changes
with the parameter a and ⇣. The maximum value of this ratio is al-
ways of the order of 0.06, slightly higher for smaller values of ⇣.
In all cases we verified that at high values of a the volume of the
region containing the toroidal magnetic field is strongly reduced.
For ⇣ = 1 we could not find equilibrium models (solution of the
GS equation) all the way to the maximum (the algorithm failed

c� 0000 RAS, MNRAS 000, 000–000
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The introduction oppositely flowing  
currents might allow toroidal dominated 
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Figure 5. Value of the ratio Htor/H for TT sequences characterized
by di↵erent values for ⇣ as a function of a. The dashed lines corre-
spond to configurations where the ratio between the maximum strength
of the toroidal magnetic field Bmax

tor , and the maximum strength of the
poloidal component Bmax

pol is constant. From bottom to top Bmax
tor /B

max
pol =

0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.8, 1.0, 1.25.

to converge). Given that, for Eq. (13), both the energy of toroidal
magnetic field and the associated current scale with I, one can-
not increase one without increasing the other. The systems seems
always to self-regulates, with a maximum allowed current, imply-
ing a maximum allowed toroidal magnetic energy. The value of ⇣
a↵ects the local value and distribution of the magnetic field, but
does not play a relevant role for integrated quantities, like currents
and magnetic energy. Indeed by looking at Fig. 5, and Fig. 6, it
is evident that, for ⇣ < 0 it is not possible to have configurations
where the maximum strength of the toroidal field exceeds the one
of the poloidal field. For smaller ⇣ the same toroidal magnetic field
energy, corresponds in general to weaker toroidal magnetic fields.
For ⇣ > 0 instead we could reach configurations with a toroidal
field stronger than the poloidal one. Interestingly the volume of the
torus, for configurations where the ratio Htor/H is maximal, does
not depend on ⇣.

One can also look at the magnetic field distribution on the
surface of the star. Given our previous results for purely poloidal
configurations with nonlinear current terms, we expect strong devi-
ations from the standard dipole, where the strength of the magnetic
field at the pole is twice the one at the equator. In Fig. 6 we show the
total strength of the magnetic field at the surface (where the field is
purely poloidal), for configurations where the ratioHtor/H is max-
imal. The presence of a current torus, just underneath the surface, is
evident in the peak of the field strength at the equator. The peak is
even narrower than what was found for purely poloidal cases with
⇠ = 10, and the strength of the equatorial field can be more than
twice the polar one. Again, there is little di↵erence among cases
with di↵erent ⇣. Higher values of ⇣ correspond to currents that are
more concentrated around the neutral line, located at ⇠ 0.85Rns,
and as such buried deeper within the star. Indeed the strength of the
magnetic field at the equator with respect to the value at the pole,
is higher for smaller ⇣.

Figure 7. Magnetic field for a twisted ring configuration with ⇣ = 0 and
a = 12.6 (corresponding to a ratio Bmax

tor /B
max
pol = 0.15 close to the maxi-

mum). Strentgh of the toroidal magnetic field (left) multplied times a factor
6 for convenience, and poloidal magnetic field (right) normalized to the
surface value at the pole. White contours represent magnetic field surfaces
(isocontours of A�). The thick green line is the stellar surface.

3.3 Twisted Ring Configurations

In the previous section we have shown that in the case of TT geom-
etry it is not possible to reach toroidally dominated configurations.
This result is also independent on the particular shape of the current
distribution I. The system always self-regulates. As was pointed
out by Ciolfi & Rezzolla (2013) this is due to the one to one cor-
respondence between integrated quantities, like the net current and
magnetic field energy. Motivated by this, we can look for di↵erent
forms for the equation I that allow a larger toroidal field, with a
smaller net integrated current. The current given by Eq. (13) has
always the same sign, and as shown, acts as an additive term. On
the other hand, the current associated to Eq. (14) changes its sign
within the toroidal region where it is defined. The field in this case
has a geometry reminiscent of a Twisted Ring (TR): its strength van-
ishes on the neutral line, where also the poloidal field goes to zero,
and reaches a maximum in a shell around it. This can be clearly
seen in Fig. 7. The net integrated currents in this case, is much less
than in the case of Eq. (13), and it is globally subtractive.

In Fig. 8 we show how the ratio of magnetic energy associated
to the toroidal fieldHtor over the total magnetic energyH changes
with the parameter a and ⇣. Again we find that it is not possible to
build models that are toroidally dominated. The maximum value of
the ratio Htor/H never exceeds 0.03 for all the values of ⇣ that we
have investigated. The reason now is exactly the opposite of the one
for TT configurations. The current of TR geometry, as anticipated,
is subtractive. It acts like the nonlinear terms in the purely poloidal
configurations with ⇠ < 0. Its e↵ect is to remove current from the
interior of the star. This means that in the region where I , 0,
the vector potential A� becomes shallower: the quantity [Amax

� �
Asur
� ] diminishes. However, the strength of the toroidal magnetic
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Figure 7. Magnetic field for a TR configuration with ζ = 0 and a = 12.6
(corresponding to a ratio Bmax

tor /Bmax
pol = 0.15 close to the maximum).

Strength of the toroidal magnetic field (left) multiplied times a factor of
6 for convenience, and poloidal magnetic field (right) normalized to the
surface value at the pole. White contours represent magnetic field surfaces
(isocontours of Aφ ). The thick green line is the stellar surface. Axes refer
to distances in a Cartesian frame centred on the origin and with the z-axis
corresponding to the symmetry axis.

Figure 8. Value of the ratio Htor/H for TR sequences characterized
by different values for ζ as a function of a. The dashed lines corre-
spond to configurations where the ratio between the maximum strength
of the toroidal magnetic field Bmax

tor and the maximum strength of the
poloidal component Bmax

pol is constant. From bottom to top Bmax
tor /Bmax

pol =
0.05, 0.075, 0.10, 0.125, 0.150. The dotted line corresponds to configura-
tions where Bmax

tor /Bmax
pol = 0.14, indicating that the ratio of the magnetic

field component is not monotonic.

geometry reminiscent of a TR: its strength vanishes on the neutral
line, where also the poloidal field goes to zero, and reaches a max-
imum in a shell around it. This can be clearly seen in Fig. 7. The
net integrated currents in this case is much less than in the case of
equation (13), and it is globally subtractive.

In Fig. 8 we show how the ratio of magnetic energy associated
with the toroidal fieldHtor over the total magnetic energyH changes
with the parameter a and ζ . Again we find that it is not possible to

build models that are toroidally dominated. The maximum value of
the ratio Htor/H never exceeds 0.03 for all the values of ζ that we
have investigated. The reason now is exactly the opposite of the one
for TT configurations. The current of TR geometry, as anticipated,
is subtractive. It acts like the non-linear terms in the purely poloidal
configurations with ξ < 0. Its effect is to remove current from the
interior of the star. This means that in the region where I ̸= 0,
the vector potential Aφ becomes shallower: the quantity [Amax

φ −
Asur

φ ] diminishes. However, the strength of the toroidal magnetic
field itself scales as [Amax

φ − Asur
φ ]. The non-linearity of the problem

manifests itself again as a self-regulating mechanism. Increasing a,
in principle, implies a higher subtractive current, but this reduces the
value of [Amax

φ − Asur
φ ], and the net result is that subtractive current

saturates, and the same holds for the toroidal magnetic field. This
saturation is reached at small values of Htor/H. Indeed, in Fig. 8,
a clear maximum is only visible for ζ < 0, while for ζ ≥ 0 the
curves seem to saturate to an asymptotic value. Again we find that
the value of ζ leads to small variations, with higher values of ζ

leading to configurations with slightly higher value of Htor/H.
In all the parameter space we have investigated the strength of

the toroidal magnetic field never exceeds the one of the poloidal
component. At most, the toroidal magnetic field reaches values that
are ∼0.15 times the maximum value of the poloidal field. This is in
sharp contrast with what was found for TT cases. Moreover, while
in the TT cases the maximum strength of the toroidal field Bmax

tor
was found to be a monotonically increasing function of the param-
eter a, along sequences at fixed ζ , now Bmax

tor reaches a maximum
∼0.15Bmax

pol , and then slowly diminishes, as can be seen from Fig. 8.
This is again a manifestation of the effect of subtractive currents. In-
terestingly, the region occupied by the toroidal magnetic field does
not shrink as a increases. The saturation of the toroidal magnetic
energy is not due to a reduction of the volume filled by the toroidal
field, but to a depletion of the currents.

As was done for the TT cases, we can also look at the distribution
of magnetic field inside the star. In Fig. 9, we show the strength of
the poloidal and toroidal components of the magnetic field along
an equatorial cut. The effect of subtractive currents is evident in the
suppression of the poloidal field in the TR region that extends from
about half the star radius to its outer edge. It is also evident that the
value of ζ plays only a minor role, and that differences are stronger
at saturation than for intermediate values. Interestingly, there are
very marginal effects concerning the strength of the magnetic field
at the surface, which is essentially the same as the standard dipole.
Again this can be partially understood recalling the behaviour of
purely poloidal configurations with ξ < 0. In those cases, substantial
deviations from the dipolar case were achieved only in the limit ξ

→ 1, when a large part of the star was unmagnetized. Here the
size of the unmagnetized ring region remains more or less constant,
and it does not affect the structure of the field at the surface. The
global effect of the subtractive currents is small, and this reflects in
the trend of the magnetic dipole moment, which diminishes only
slightly by about 30–40 per cent.

3.4 Dependence on the stellar model

In the previous sections we have investigated in detail the role of two
families of currents I that can be considered quite representative
of a large class of current configurations. Our results show that in
neither case we could obtain magnetic field distributions where the
energetics was dominated by the toroidal component.

In this section we try to investigate the importance of the
underlying stellar model. In general, previous studies have mainly
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term proportional to the rest mass density. In this case one recovers
the force-free regime (Pili, Bucciantini & Del Zanna 2014c).

2.2 The currents distribution

As anticipated, the purpose of this paper is to study the properties
of various distributions of induction currents, and related magnetic
field configurations, in order to derive general trends and to under-
stand what parameter governs the key aspects of the magnetic field
geometry. For this reason we have adopted functional forms for
the free M(Aφ) and I(Aφ) functions allowing us to sample a large
parameter space, and to investigate configurations with important
morphological properties.

The magnetization function M has been chosen in order to in-
clude non-linear terms in the form

M(Aφ) = kpolAφ

[
1 + ξ

ν + 1

(
Aφ

Amax
φ

)ν]
, (12)

where kpol is the poloidal magnetization constant, ν is the poloidal
magnetization index of the non-linear term, which is normalized to
the maximum value of the vector potential itself Amax

φ . This normal-
ization prevents the non-linear term from diverging, and it allows
the system to remain within the weak field limit. The magnetization
function M vanishes outside the surface of the NS.

For the current function I, we adopted either the form

I(Aφ) = a

ζ + 1
%[Aφ − Asur

φ ]
(Aφ − Asur

φ )ζ+1

(Asur
φ )ζ

, (13)

or

I(Aφ) = a

ζ + 1
%[Aφ − Asur

φ ]
(Aφ − Asur

φ )ζ+1(Amax
φ − Aφ)ζ+1

(Asur
φ Amax

φ )ζ+1/2 ,

(14)

where %[ · ] is the Heaviside function, Asur
φ is the maximum value

that the φ component of the vector potential reaches on the stellar
surface, a is the toroidal magnetization constant and ζ is the toroidal
magnetization index. In both cases the toroidal magnetic field is
fully confined within the star. However, the first case corresponds
to a twisted torus (TT) configuration, where the azimuthal current
has the same sign over its domain and the toroidal field reaches
its maximum where the poloidal field vanishes. On the other hand,
the second case corresponds to a twisted ring (TR) configuration,
where the current changes its sign, and the toroidal field vanishes
in the same place where the poloidal field goes to zero.

With our normalization choices in equations (12)–(14), the so-
lution of the GS equation does not depend on the strength of the
magnetic field. In the limit of a weak field, the metric and fluid
quantities ρ, h, ψ , and α can be assumed as fixed, such that, if Aφ

is a solution of the GS equation for given values of kpol, ξ , ν, a, ζ ,
then ηAφ will be a solution of the GS equation for ηkpol, ξ , ν, a, ζ ,
for both TT and TR cases. Our solution can be thus renormalized
to any value of the magnetic field strength. In particular we have
chosen to display our solution by normalizing the strength of the
magnetic field at the pole to 1014 G. We verified that the limit of
a weak field holds to a high level of accuracy up to a maximum
strength ∼1016 G, corresponding to a typical surface magnetic field
∼a few × 1015 G (Pili et al. 2014, in preparation). For higher fields,
we observe non-linear variations in the ratios of magnetic quantities,
higher than the overall accuracy of our scheme (see Section 2.3). A
partial investigation of the strong field regime, for purely poloidal
cases, is presented in Appendix B.

2.3 The numerical set-up

In all our models we assume that the NS is described by a poly-
tropic EoS p = Kaρ

γa (a special case of the general barotropic EoS
p = p(ρ)), with an adiabatic index γ a = 2. Unless otherwise stated,
the polytropic constant is chosen to be Ka = 110 (in geometrized
units).1 Given that we are here interested in studying different distri-
butions of currents, in the limit of weak magnetic fields, we assume
a fiducial model for the NS that is unaffected by the magnetic field
itself, unless otherwise stated. The role of a strong field has been
already investigated in a previous paper (Pili et al. 2014a).

The fiducial NS model used for computing, on top of it, the
various magnetic field configurations, has a central rest mass den-
sity ρc = 6.354 × 1014 g cm−3, a baryonic mass M0 = 1.500 M⊙,
a gravitational mass M = 1.400 M⊙, and a circumferential ra-
dius Rcirc = 15.22 km (corresponding to an isotropic radius
RNS = 13.06 km). This fiducial model is computed in isotropic co-
ordinates using the algorithms and the numerical scheme described
in Bucciantini & Del Zanna (2011).

On top of this fiducial model we then solve the GS equation,
equation (9), as described in Pili et al. (2014a). Let us briefly recall
here the main features of the algorithm employed. The GS equation
is a non-linear vector Poisson equation for the azimuthal component
of the regularized potential Ãφ . The solution is searched in the form
of a series of vector spherical harmonics:

Ãφ(r, θ ) :=
lmax∑

l=0

[Cl(r)Y ′
l (θ )], (15)

where Yl(θ ) are the standard scalar spherical harmonics, the ′ indi-
cates derivation with respect to θ , and we have used the axisymmet-
ric assumption to exclude terms with m ̸= 0. We want to stress here
again that in the low magnetization limit one can safely assume
that the metric and the matter distribution are unaffected by the
magnetic field, then in the present approximation we only need to
solve the GS equation, for any given fluid structure and associated
space–time metric.

Our algorithm allows us to solve the GS equation over the entire
numerical domain including both the interior of the star and the
surrounding magnetosphere where the rest mass density is numer-
ically set to a fiducial small value (∼10−6 times the value of the
rest mass density at the centre of the star), without the need of a
matching procedure between the exterior solution with the interior
one. The threshold value for the rest mass density is chosen such
that lowering it further produces negligible changes (much smaller
than the overall accuracy of our scheme). We want also to point
here that typical rest mass densities in the atmospheres of proto-NS
are ∼106–108 g cm−3 (Thompson, Burrows & Meyer 2001). This
also guarantees smoothness of the solutions at the stellar surface,
avoiding surface currents. Moreover, the harmonic decomposition
ensures the correct behaviour of the solution on the axis of symme-
try, and the asymptotic trend of the radial coefficients Cl(r) can be
correctly imposed such that they go to 0 with parity ( − 1)l at the
centre, and as Cl(r) ∝ r−(l + 1) at the outer boundary.

The decomposition in equation (15) reduces the GS equation to
a system of radial second-order elliptical non-linear partial differ-
ential equations (PDEs) for the various coefficients Cl(r). These are
solved, using a direct tridiagonal matrix inversion (Bucciantini &
Del Zanna 2011; Pili et al. 2014a). The entire procedure is repeated
until the solution converges with accuracy ∼10−8.

1 This corresponds to Ka = 1.6 × 105 cm5 g−1 s−2.
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term proportional to the rest mass density. In this case one recovers
the force-free regime (Pili, Bucciantini & Del Zanna 2014c).

2.2 The currents distribution

As anticipated, the purpose of this paper is to study the properties
of various distributions of induction currents, and related magnetic
field configurations, in order to derive general trends and to under-
stand what parameter governs the key aspects of the magnetic field
geometry. For this reason we have adopted functional forms for
the free M(Aφ) and I(Aφ) functions allowing us to sample a large
parameter space, and to investigate configurations with important
morphological properties.

The magnetization function M has been chosen in order to in-
clude non-linear terms in the form

M(Aφ) = kpolAφ

[
1 + ξ

ν + 1

(
Aφ

Amax
φ

)ν]
, (12)

where kpol is the poloidal magnetization constant, ν is the poloidal
magnetization index of the non-linear term, which is normalized to
the maximum value of the vector potential itself Amax

φ . This normal-
ization prevents the non-linear term from diverging, and it allows
the system to remain within the weak field limit. The magnetization
function M vanishes outside the surface of the NS.

For the current function I, we adopted either the form

I(Aφ) = a

ζ + 1
%[Aφ − Asur

φ ]
(Aφ − Asur

φ )ζ+1

(Asur
φ )ζ

, (13)

or

I(Aφ) = a

ζ + 1
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φ ]
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φ )ζ+1(Amax
φ − Aφ)ζ+1

(Asur
φ Amax

φ )ζ+1/2 ,

(14)

where %[ · ] is the Heaviside function, Asur
φ is the maximum value

that the φ component of the vector potential reaches on the stellar
surface, a is the toroidal magnetization constant and ζ is the toroidal
magnetization index. In both cases the toroidal magnetic field is
fully confined within the star. However, the first case corresponds
to a twisted torus (TT) configuration, where the azimuthal current
has the same sign over its domain and the toroidal field reaches
its maximum where the poloidal field vanishes. On the other hand,
the second case corresponds to a twisted ring (TR) configuration,
where the current changes its sign, and the toroidal field vanishes
in the same place where the poloidal field goes to zero.

With our normalization choices in equations (12)–(14), the so-
lution of the GS equation does not depend on the strength of the
magnetic field. In the limit of a weak field, the metric and fluid
quantities ρ, h, ψ , and α can be assumed as fixed, such that, if Aφ

is a solution of the GS equation for given values of kpol, ξ , ν, a, ζ ,
then ηAφ will be a solution of the GS equation for ηkpol, ξ , ν, a, ζ ,
for both TT and TR cases. Our solution can be thus renormalized
to any value of the magnetic field strength. In particular we have
chosen to display our solution by normalizing the strength of the
magnetic field at the pole to 1014 G. We verified that the limit of
a weak field holds to a high level of accuracy up to a maximum
strength ∼1016 G, corresponding to a typical surface magnetic field
∼a few × 1015 G (Pili et al. 2014, in preparation). For higher fields,
we observe non-linear variations in the ratios of magnetic quantities,
higher than the overall accuracy of our scheme (see Section 2.3). A
partial investigation of the strong field regime, for purely poloidal
cases, is presented in Appendix B.

2.3 The numerical set-up

In all our models we assume that the NS is described by a poly-
tropic EoS p = Kaρ

γa (a special case of the general barotropic EoS
p = p(ρ)), with an adiabatic index γ a = 2. Unless otherwise stated,
the polytropic constant is chosen to be Ka = 110 (in geometrized
units).1 Given that we are here interested in studying different distri-
butions of currents, in the limit of weak magnetic fields, we assume
a fiducial model for the NS that is unaffected by the magnetic field
itself, unless otherwise stated. The role of a strong field has been
already investigated in a previous paper (Pili et al. 2014a).

The fiducial NS model used for computing, on top of it, the
various magnetic field configurations, has a central rest mass den-
sity ρc = 6.354 × 1014 g cm−3, a baryonic mass M0 = 1.500 M⊙,
a gravitational mass M = 1.400 M⊙, and a circumferential ra-
dius Rcirc = 15.22 km (corresponding to an isotropic radius
RNS = 13.06 km). This fiducial model is computed in isotropic co-
ordinates using the algorithms and the numerical scheme described
in Bucciantini & Del Zanna (2011).

On top of this fiducial model we then solve the GS equation,
equation (9), as described in Pili et al. (2014a). Let us briefly recall
here the main features of the algorithm employed. The GS equation
is a non-linear vector Poisson equation for the azimuthal component
of the regularized potential Ãφ . The solution is searched in the form
of a series of vector spherical harmonics:

Ãφ(r, θ ) :=
lmax∑

l=0

[Cl(r)Y ′
l (θ )], (15)

where Yl(θ ) are the standard scalar spherical harmonics, the ′ indi-
cates derivation with respect to θ , and we have used the axisymmet-
ric assumption to exclude terms with m ̸= 0. We want to stress here
again that in the low magnetization limit one can safely assume
that the metric and the matter distribution are unaffected by the
magnetic field, then in the present approximation we only need to
solve the GS equation, for any given fluid structure and associated
space–time metric.

Our algorithm allows us to solve the GS equation over the entire
numerical domain including both the interior of the star and the
surrounding magnetosphere where the rest mass density is numer-
ically set to a fiducial small value (∼10−6 times the value of the
rest mass density at the centre of the star), without the need of a
matching procedure between the exterior solution with the interior
one. The threshold value for the rest mass density is chosen such
that lowering it further produces negligible changes (much smaller
than the overall accuracy of our scheme). We want also to point
here that typical rest mass densities in the atmospheres of proto-NS
are ∼106–108 g cm−3 (Thompson, Burrows & Meyer 2001). This
also guarantees smoothness of the solutions at the stellar surface,
avoiding surface currents. Moreover, the harmonic decomposition
ensures the correct behaviour of the solution on the axis of symme-
try, and the asymptotic trend of the radial coefficients Cl(r) can be
correctly imposed such that they go to 0 with parity ( − 1)l at the
centre, and as Cl(r) ∝ r−(l + 1) at the outer boundary.

The decomposition in equation (15) reduces the GS equation to
a system of radial second-order elliptical non-linear partial differ-
ential equations (PDEs) for the various coefficients Cl(r). These are
solved, using a direct tridiagonal matrix inversion (Bucciantini &
Del Zanna 2011; Pili et al. 2014a). The entire procedure is repeated
until the solution converges with accuracy ∼10−8.

1 This corresponds to Ka = 1.6 × 105 cm5 g−1 s−2.
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term proportional to the rest mass density. In this case one recovers
the force-free regime (Pili, Bucciantini & Del Zanna 2014c).

2.2 The currents distribution

As anticipated, the purpose of this paper is to study the properties
of various distributions of induction currents, and related magnetic
field configurations, in order to derive general trends and to under-
stand what parameter governs the key aspects of the magnetic field
geometry. For this reason we have adopted functional forms for
the free M(Aφ) and I(Aφ) functions allowing us to sample a large
parameter space, and to investigate configurations with important
morphological properties.

The magnetization function M has been chosen in order to in-
clude non-linear terms in the form

M(Aφ) = kpolAφ

[
1 + ξ

ν + 1

(
Aφ

Amax
φ

)ν]
, (12)

where kpol is the poloidal magnetization constant, ν is the poloidal
magnetization index of the non-linear term, which is normalized to
the maximum value of the vector potential itself Amax

φ . This normal-
ization prevents the non-linear term from diverging, and it allows
the system to remain within the weak field limit. The magnetization
function M vanishes outside the surface of the NS.

For the current function I, we adopted either the form

I(Aφ) = a

ζ + 1
%[Aφ − Asur

φ ]
(Aφ − Asur

φ )ζ+1

(Asur
φ )ζ

, (13)

or

I(Aφ) = a

ζ + 1
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φ ]
(Aφ − Asur

φ )ζ+1(Amax
φ − Aφ)ζ+1

(Asur
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φ )ζ+1/2 ,

(14)

where %[ · ] is the Heaviside function, Asur
φ is the maximum value

that the φ component of the vector potential reaches on the stellar
surface, a is the toroidal magnetization constant and ζ is the toroidal
magnetization index. In both cases the toroidal magnetic field is
fully confined within the star. However, the first case corresponds
to a twisted torus (TT) configuration, where the azimuthal current
has the same sign over its domain and the toroidal field reaches
its maximum where the poloidal field vanishes. On the other hand,
the second case corresponds to a twisted ring (TR) configuration,
where the current changes its sign, and the toroidal field vanishes
in the same place where the poloidal field goes to zero.

With our normalization choices in equations (12)–(14), the so-
lution of the GS equation does not depend on the strength of the
magnetic field. In the limit of a weak field, the metric and fluid
quantities ρ, h, ψ , and α can be assumed as fixed, such that, if Aφ

is a solution of the GS equation for given values of kpol, ξ , ν, a, ζ ,
then ηAφ will be a solution of the GS equation for ηkpol, ξ , ν, a, ζ ,
for both TT and TR cases. Our solution can be thus renormalized
to any value of the magnetic field strength. In particular we have
chosen to display our solution by normalizing the strength of the
magnetic field at the pole to 1014 G. We verified that the limit of
a weak field holds to a high level of accuracy up to a maximum
strength ∼1016 G, corresponding to a typical surface magnetic field
∼a few × 1015 G (Pili et al. 2014, in preparation). For higher fields,
we observe non-linear variations in the ratios of magnetic quantities,
higher than the overall accuracy of our scheme (see Section 2.3). A
partial investigation of the strong field regime, for purely poloidal
cases, is presented in Appendix B.

2.3 The numerical set-up

In all our models we assume that the NS is described by a poly-
tropic EoS p = Kaρ

γa (a special case of the general barotropic EoS
p = p(ρ)), with an adiabatic index γ a = 2. Unless otherwise stated,
the polytropic constant is chosen to be Ka = 110 (in geometrized
units).1 Given that we are here interested in studying different distri-
butions of currents, in the limit of weak magnetic fields, we assume
a fiducial model for the NS that is unaffected by the magnetic field
itself, unless otherwise stated. The role of a strong field has been
already investigated in a previous paper (Pili et al. 2014a).

The fiducial NS model used for computing, on top of it, the
various magnetic field configurations, has a central rest mass den-
sity ρc = 6.354 × 1014 g cm−3, a baryonic mass M0 = 1.500 M⊙,
a gravitational mass M = 1.400 M⊙, and a circumferential ra-
dius Rcirc = 15.22 km (corresponding to an isotropic radius
RNS = 13.06 km). This fiducial model is computed in isotropic co-
ordinates using the algorithms and the numerical scheme described
in Bucciantini & Del Zanna (2011).

On top of this fiducial model we then solve the GS equation,
equation (9), as described in Pili et al. (2014a). Let us briefly recall
here the main features of the algorithm employed. The GS equation
is a non-linear vector Poisson equation for the azimuthal component
of the regularized potential Ãφ . The solution is searched in the form
of a series of vector spherical harmonics:

Ãφ(r, θ ) :=
lmax∑

l=0

[Cl(r)Y ′
l (θ )], (15)

where Yl(θ ) are the standard scalar spherical harmonics, the ′ indi-
cates derivation with respect to θ , and we have used the axisymmet-
ric assumption to exclude terms with m ̸= 0. We want to stress here
again that in the low magnetization limit one can safely assume
that the metric and the matter distribution are unaffected by the
magnetic field, then in the present approximation we only need to
solve the GS equation, for any given fluid structure and associated
space–time metric.

Our algorithm allows us to solve the GS equation over the entire
numerical domain including both the interior of the star and the
surrounding magnetosphere where the rest mass density is numer-
ically set to a fiducial small value (∼10−6 times the value of the
rest mass density at the centre of the star), without the need of a
matching procedure between the exterior solution with the interior
one. The threshold value for the rest mass density is chosen such
that lowering it further produces negligible changes (much smaller
than the overall accuracy of our scheme). We want also to point
here that typical rest mass densities in the atmospheres of proto-NS
are ∼106–108 g cm−3 (Thompson, Burrows & Meyer 2001). This
also guarantees smoothness of the solutions at the stellar surface,
avoiding surface currents. Moreover, the harmonic decomposition
ensures the correct behaviour of the solution on the axis of symme-
try, and the asymptotic trend of the radial coefficients Cl(r) can be
correctly imposed such that they go to 0 with parity ( − 1)l at the
centre, and as Cl(r) ∝ r−(l + 1) at the outer boundary.

The decomposition in equation (15) reduces the GS equation to
a system of radial second-order elliptical non-linear partial differ-
ential equations (PDEs) for the various coefficients Cl(r). These are
solved, using a direct tridiagonal matrix inversion (Bucciantini &
Del Zanna 2011; Pili et al. 2014a). The entire procedure is repeated
until the solution converges with accuracy ∼10−8.

1 This corresponds to Ka = 1.6 × 105 cm5 g−1 s−2.
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Figure 11. Values of the ratio Htor/H for TT configurations with ζ = 0, in the presence of non-linear terms in the definition of M. Left-hand panel: cases
with ν = 1. Middle panel: cases with ν = 4. Right-hand panel: cases with ν = 10.

Here we investigate what happens to TT models, using for I the
form of equation (13), if we retains non-linear terms in the definition
of M, and what happens in cases where ξ ̸= 0. In Fig. 11 we show
how Htor/H changes for TT configurations with ζ = 0 for various
values of the parameter ξ and for selected values of ν = 1, 4, 10.
Naively, based on the idea that compensating currents are needed to
achieve toroidally dominated configurations, one would expect that
higher values of Htor/H should be reached for ξ < 0 (subtractive
currents). Fig. 11 shows instead that the trend is the opposite. In
general, lower values of Htor/H are found for ξ < 0 and higher
for ξ > 0, even if this is just a minor difference. The value of ν

seems not to play a major role. Interestingly the effect is maximal
for intermediate values of ν = 4, and marginal for ν = 10.

This counterintuitive trend is due to the fact that both the effects
of the current term I and the contribution of non-linear terms in M
become important only in the fully non-linear regime. For values of
ξ ∼ 0 the effect of the non-linear current term inM is negligible. For
higher values of ξ this non-linear term becomes more important. In
the case ξ < 0 they give rise to a compensating current (the net dipole
grows less) but, as discussed, they also tend to suppress the vector
potential and this effect is stronger, leading to a overall decrease of
the magnetic field. In the case ξ > 0, one would expect this additive
current to lead to an even more pronounced reduction in the torus
volume, however, this is not so. The net dipole increases but this
additive currents enhance the vector potential and the net result is a
higher Htor/H (up to 30 per cent higher for ν = 4 and ξ = 20). The
highly non-trivial behaviour of the non-linear regime is apparent.
It is however possible that different forms for the compensating
current might lead to different results.

Interestingly, again we are not able to construct equilibrium
model with current inversion. It is possible, for higher values of
ν, to build models with ξ < −1, but only as long as the current in
the domain is always of the same sign. Indeed, cases with ξ < −1
are allowed by the presence of a current due to I, given by equa-
tion (13), that is always additive. There appears to be a threshold
value for a below which cases with ξ < −1 are not realized. This
is consistent with the argument about local uniqueness we discuss
in the purely poloidal case. Solutions with subtractive currents can
be built only as long as the non-linear current term is subdominant,
and other currents enforce stability. Given the presence of an extra
current due to I, associated with the toroidal magnetic field, now it
is possible to build solutions with ξ < −1.

Similar results apply for the cases of TR configuration where I
is given by equation (14). In Fig. 12 we show these results. For
values of ξ < 0 the ratio Htor/H is essentially unchanged (it looks
like the ratio is marginally smaller). For positive values of ξ we
found a substantial increase: Htor/H can be a factor of 2 higher

Figure 12. Values of the ratio Htor/H for TR configurations with ζ = 0,
in the presence of non-linear terms in the definition of M, with ν = 4.

than in the simple TR case. In this case, the additive non-linear term
in M compensates the subtractive current due to I, and stronger
values for the magnetic field are achieved. However, in the range of
parameter investigated here, the ratio Htor/H never exceeds 0.05.
The energetics is still dominated by the poloidal magnetic field.

Given the opposite behaviour of the currents associated with I,
respectively from equation (13) and equation (14), we also inves-
tigated configurations where the current associated with I is given
by a combination of TT and TR configurations. Based on the results
discussed above, we expect that the additive term associated with
the component of I from equation (13) should lead to results similar
to what we found for TR configurations with non-linear terms in
M with ξ > 0. Indeed this is confirmed. In general we find that
the ratio Htor/H is smaller than for the TT case, but larger than for
TR case, even by a factor of 2. It seems that additive currents, at
least for the functional form adopted here, tend to dominate over
subtractive ones.

4 C O N C L U S I O N

In this work we investigated several equilibrium configurations for
magnetized NSs, carrying out a detailed study of the parameter
space. This allowed us to investigate general trends, and to sample
the role of various current distributions. Interestingly we found
that, almost insensitive of the chosen current distribution, the ratio
Htor/H never grows above 0.1.

We tried to use the same prescription for the current structure
inside the star as the one used by CR13, but we, not only could not
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Figure 9. Left-hand panel: strength of the poloidal magnetic field (top) and toroidal magnetic field (bottom) inside the star, on the equatorial plane, as a
function of r, normalized to RNS, for models corresponding to the maximum of Htor/H, for various values of ζ . Middle panel: strength of the poloidal magnetic
field (top) and toroidal magnetic field (bottom) inside the star, on the equatorial plane, as a function of r, for models corresponding to Bmax

tor /Bmax
pol = 0.5.

Right-hand panel: strength of the magnetic field at the surface for models corresponding to the maximum of Htor/H. In all cases the strength is normalized to
the surface value at the pole.

Figure 10. Value of the ratio Htor/H for TT sequences with ζ = 0, charac-
terized by different values for the gravitational mass as a function of a. The
dashed grey lines correspond to configurations where the ratio between the
maximum strength of the toroidal magnetic field Bmax

tor and the maximum
strength of the poloidal component Bmax

pol is constant. From bottom to top
Bmax

tor /Bmax
pol = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.8, 1.0, 1.25. The dotted red line

corresponds to a configuration with M = 2.0 M⊙, and the same central rest
mass density as the 1.7 M⊙ case. The dot–dashed red line corresponds to a
configuration with M = 1.7 M⊙, but a lower central rest mass density with
respect to the Ka = 110 case.

focused on the distribution of currents, assuming a reference model
for the NS: either a 1.4 M⊙ (Ciolfi et al. 2009, 2010; Lander & Jones
2009; CR13) or a 1.5 M⊙ (Pili et al. 2014a) NS. Only Glampedakis
et al. (2012) have partly investigated how the stellar structure might
affect the energetics properties of the magnetic field. In particular
they focused on the role of stable stratification, and showed that this
might change the maximum amount of magnetic energy associated
with the toroidal magnetic field, in standard TT configurations.

In Fig. 10 we show how the ratio Htor/H changes as a function
of a for standard TT models with ζ = 0, but for NSs with different
masses. For Ka = 110 the maximum mass for a NS is found to be
∼1.7 M⊙. It is clear that models with a higher mass have a higher
value of the ratio Htor/H, for the same value of a. Interestingly,
the maximum value reached by Htor/H for a 1.7 M⊙ NS is about

0.08, compared to 0.06 for a ∼1.4 M⊙ NS. This is a substantial
relative increase, even if the magnetic energy is still dominated by
the poloidal component. Moreover this increasing trend is stronger
at higher masses.

We also investigated how much of this trend is related just to
the total stellar mass (i.e. the compactness of the system) and how
much depends on the value of rest mass density in the core of the
NS. Indeed it was previously found the NSs with higher masses can
harbour in principle stronger magnetic fields (Pili et al. 2014a). On
the other hand, the current associated with M, responsible for the
structure of the poloidal field, scales as the rest mass density. For
models built by keeping constant Ka = 110, a higher mass implies
a higher central rest mass density, so that it is hard to disentangle
them. In Fig. 10 we show also two models with different EoS:
one that has the same central rest mass density as the 1.7 M⊙
NS, but different values of the adiabatic constant Ka, such that is
total gravitational mass is 2.0 M⊙; the other has the same mass of
1.7 M⊙, but a lower central rest mass density (about one third). It is
evident that models with a smaller total mass, given the same central
rest mass density, correspond to lower maximum value for Htor/H.
On the other hand, given the same central rest mass density, the
ratio Htor/H clearly increases with total mass. It appears that the
rest mass density stratification (how much concentrated is the rest
mass density distribution in the core and how much shallow is it in
the outer layers) regulates the relative importance of I and M, and
the net outcome in terms of energetics of the toroidal and poloidal
components.

3.5 Mixed non-linear currents

It was suggested by CR13 that a possible reason why TT configura-
tions, computed using ξ = 0 in M, could not achieve the toroidally
dominated regime was due to the fact that the contribution to the
azimuthal current from I soon dominates. As a consequence, the re-
sulting poloidal configuration enters the non-linear regime in which
the size of the torus region, where the toroidal field is confined,
shrinks. They show that, by introducing a current term in M to
compensate for I, it was possible to avoid this behaviour. However,
they also stressed the fact that a very peculiar form for M was
needed to achieve significative results.
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In the case of mixed field configurations, another important global
topological quantity is the magnetic helicity. Following Ciolfi et al.
(2009) the total magnetic helicity Hm can be defined as

Hm :=
∫

H 0
mαψ6r2 sin θ dr dθ dφ, (B10)

where H 0
m is the time component of the helicity four-current

H α
m := −1

2
ϵαβµνAβFµν . (B11)

In our case the definition reduces simply to

Hm =
∫

(BiAi)ψ6r2 sin θ dr dθ dφ, (B12)

where, using the gauge freedom of the vector potential, we can
impose Ar = 0 and express Aθ in function of Aφ as

Aθ = −1
sin θ

∫ r

∞

ψ2

α
I(Aφ) dr ′. (B13)

Finally there are global quantities related exclusively to the shape
and deformation of the star. These are the equatorial radius re, the
polar radius rp, the circumferential radius

Rcirc := ψ2(re, π/2)re, (B14)

and the mean deformation that, following KY08, is defined by

ē := Izz − Ixx

Izz

, (B15)

where Izz and Ixx are the moment of inertia, respectively, in the
parallel and orthogonal direction to the axis of symmetry

Izz :=
∫

er4 sin3 θdr dθ dφ (B16)

Ixx := 1
2

∫
er4 sin θ (1 + cos2 θ ) dr dθ dφ. (B17)

As was just pointed out in FR12 this definition of ē is strictly
Newtonian and may be not suitable for estimating the gravitational-
wave emission of a rotating distorted star.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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Figure A1. Antisymmetric solution, with ν = 1. Left-hand panel: azimuthal
current density normalized to 0.2 times its maximum. Right-hand panel:
magnetic field strength normalized to the value at the pole. White contours
represent magnetic field surfaces (isocontours of Aφ ). The thick green line
is the stellar surface. Axes refer to a Cartesian frame centred on the origin
and with the z-axis corresponding to the symmetry axis.

and add to the current Jφ (see equation 8) that enters the GS equation
(9), a singular current term,

kpol cos θδ(r − RNS), (A2)

by rising the value of ξ one can find solutions that are independent of
the strength of the surface current. We show in Fig. A1 the result in
the case ν = 1, ξ = 50. The jump at the surface is much smaller than
the value of the magnetic field, and the solution can be assumed to
be smooth. The result is dominated by the quadrupolar component.

Note that the symmetry of the current term only fixes the sym-
metry of the final solution. Every symmetric current will lead to
the same symmetric field, which depends only on ν, while every
antisymmetric function will lead to the same antisymmetric field,
which again depends on ν alone. With this approach it is not pos-
sible to produce for example octupolar models (where the dipole
and quadrupole components are absent). Even the use of an oc-
tupolar surface current leads to dipolar configurations, in the fully
saturated non-linear regime. In the presence of non-linear current
term, multipoles are not eigenfunctions of the GS, and mode mix-
ing is introduced. For the values of ν that we investigated, there is
always a leading dipole component in the symmetric case, and a
leading quadrupole component in the antisymmetric case, even if
the strength of higher order multipoles at the surface can be relevant.

A P P E N D I X B : ST RO N G F I E L D R E G I M E

Our formalism allows us to extend the solutions computed in the
weak field regime to the strong field regime to evaluate, for example,
the related deformation induced by the magnetic field. In the strong
field regime, however, the solution depends on the strength of the
field. A detailed study of the induced deformation in the case of
a purely poloidal field with ξ = 0, and of TT configurations with
ζ = 0, has already been presented by Pili et al. (2014a). In that
work there was also an investigation of the role of non-linear current
terms in M, but only for ν = 1 and for small values of ξ far from
the fully non-linear saturated regime. The present results, about

Figure B1. Upper panel: relative variation of the circularization radius as
a function of the maximum strength of the magnetic field inside the star, for
various values of ν and ξ . Lower panel: deformation rate as a function of
the maximum strength of the magnetic field inside the star. These sequences
are done for a constant gravitational mass M = 1.4 M⊙.

TT configurations with various values of ζ , show that Htor/H has
similar trends to the ζ = 0 case, and is always smaller than 0.1. We
expect the deformation to be similar to what was found in Pili et al.
(2014a). On the other hand we have shown that, for purely poloidal
fields, the non-linear current term can substantially modify the field
structure.

In Fig. B1 we plot the deformation rate e, and the relative vari-
ation of the circularization radius 'Rcirc, as defined by Pili et al.
(2014a), for purely poloidal configuration with various values of ν,
and with values of ξ chosen such that the fully non-linear regime is
reached, both for subtractive and additive terms. Note that, for sub-
tractive currents, the deformation rate is insensitive to the values of
ν, because, as we have shown, in the subtractive case, the resulting
magnetic field is only very weakly dependent on ν. On the other
hand, substantial differences are observed in the case of additive
currents.

Subtractive currents tend to concentrate the field towards the
centre. This leads to significative changes of the rest mass density
distribution limited to the core (structures with two rest mass density
peaks can be reached) without affecting the rest of the star. As a
consequence, the deformation rate, being related to the moment
of inertia, changes less than in the case ξ = 0, where a more
uniformly distributed magnetic field affects also the outer layers.
On the contrary, additive non-linear currents tend to concentrate the
field towards the edge of the star, and thus to produce a stronger
deformation. This trend is evident in the circularization radius. This
radius is almost unchanged for ξ = −1, while for ξ > 0 the field
causes a larger expansion of the outer layers of the star. Note that
for ξ = 0, −1 and for ν = 1 the maximum magnetic field strength
is reached at the centre. For ν = 4 and ξ ≫ 1 it is reached half way
through the star (see Fig. 2).
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TT configurations with various values of ζ , show that Htor/H has
similar trends to the ζ = 0 case, and is always smaller than 0.1. We
expect the deformation to be similar to what was found in Pili et al.
(2014a). On the other hand we have shown that, for purely poloidal
fields, the non-linear current term can substantially modify the field
structure.

In Fig. B1 we plot the deformation rate e, and the relative vari-
ation of the circularization radius 'Rcirc, as defined by Pili et al.
(2014a), for purely poloidal configuration with various values of ν,
and with values of ξ chosen such that the fully non-linear regime is
reached, both for subtractive and additive terms. Note that, for sub-
tractive currents, the deformation rate is insensitive to the values of
ν, because, as we have shown, in the subtractive case, the resulting
magnetic field is only very weakly dependent on ν. On the other
hand, substantial differences are observed in the case of additive
currents.

Subtractive currents tend to concentrate the field towards the
centre. This leads to significative changes of the rest mass density
distribution limited to the core (structures with two rest mass density
peaks can be reached) without affecting the rest of the star. As a
consequence, the deformation rate, being related to the moment
of inertia, changes less than in the case ξ = 0, where a more
uniformly distributed magnetic field affects also the outer layers.
On the contrary, additive non-linear currents tend to concentrate the
field towards the edge of the star, and thus to produce a stronger
deformation. This trend is evident in the circularization radius. This
radius is almost unchanged for ξ = −1, while for ξ > 0 the field
causes a larger expansion of the outer layers of the star. Note that
for ξ = 0, −1 and for ν = 1 the maximum magnetic field strength
is reached at the centre. For ν = 4 and ξ ≫ 1 it is reached half way
through the star (see Fig. 2).
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ē ⇠ �0.1

-20 -10 0 10 20

-20

-10

0

10

20

-20 -10 0 10 20
R(km)

-20

-10

0

10

20

R
(k

m
)

B (1.e18 G)

0.0 0.1 0.2 0.3 0.4 0.5
  

Oblate deformation ➜ GW emission is quenched 
                                  ➜ GRB-like events  
                                      (Bucciantini et al. 2009, 2012 

                   Metzger et al 2011) 
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Equilibrium models for magnetized NSs in GR 3549

Figure 2. Variation, with respect to the unmagnetized equilibrium model, of the central baryon density ρc, of the gravitational mass M, of the circumferential
radius Rcirc and of the mean deformation rate ē along the equilibrium sequence of magnetized configuration with constant M0 = 1.68 M⊙ and m = 1. Lines
represent the results by KY08 and FR12; points are our results.

Figure 3. Same comparison as the one shown in Fig. 2 but for the m = 2 case.

MNRAS 439, 3541–3563 (2014)

 at IN
A

F A
rcetri Firenze (O

sservatorio A
strofisico di A

rcetri Firenze) on June 8, 2015
http://m

nras.oxfordjournals.org/
D

ow
nloaded from

 

Equilibrium models for magnetized NSs in GR 3549

Figure 2. Variation, with respect to the unmagnetized equilibrium model, of the central baryon density ρc, of the gravitational mass M, of the circumferential
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Twisted Magnetosphere

2824 A. G. Pili, N. Bucciantini and L. Del Zanna

2.2 Choice of the free functions

The current and magnetization free functions entering the GS equa-
tion can be easily modified, with respect to the choice made in
PBD14, in order to allow the currents to flow also outside the
star. We can actually retain the same form for the magnetization
function M

M(Aφ) = kpolAφ, (10)

where kpol is the poloidal magnetization constant, while we adopt
here a different functional form for I, namely

I(Aφ) = a

ζ + 1
#

[
Aφ − Aext

φ

]
(
Aφ − Aext

φ

)ζ+1

(
Amax

φ

)ζ+1/2 , (11)

where #[.] is the Heaviside function, Amax
φ is the maximum value

that the φ component of the vector potential reaches over the entire
domain, while Aext

φ is the maximum value it reaches at a distance
r = λre from the star (being re the equatorial radius). We further
define a as the toroidal magnetization constant, whereas ζ is the
toroidal magnetization index. Note that these choices are analogous
to the ones made in Glampedakis et al. (2014). The new parameter
λ, that enters in the definition of Aext

φ , allows us to control the size of
the twisted magnetosphere outside the star. The results of PBD14 are
recovered assuming λ = 1. On the other hand, for λ > 1 the toroidal
magnetic field is not confined within the star but extends smoothly
outside the stellar surface, just like the poloidal component.

From the relations (5), given our choice for the free functions M
and I, the components of the conduction currents become

J r = α−1Br a#
[
Aφ − Aext

φ

]
(
Aφ − Aext

φ

)ζ

(
Amax

φ

)ζ+1/2 , (12)

J θ = α−1Bθ a#
[
Aφ − Amax

φ

]
(
Aφ − Aext

φ

)ζ

(
Amax

φ

)ζ+1/2 , (13)

J φ = ρh kpol + a2

(ζ + 1)ϖ 2
#

[
Aφ − Aext

φ

]
(
Aφ − Aext

φ

)2ζ+1

(
Amax

φ

)2ζ+1 . (14)

Note that, thanks to the renormalization by Amax
φ , the φ component

of the conduction current is independent from the absolute value of
the magnetic flux function (it does not depend on the field strength),
while it is directly controlled only by the magnetization parameter
kpol and a.

In the low-magnetization limit, when the magnetic energy H is
smaller than the gravitational mass M (H ≪ M), the metric func-
tions α and ψ depend weakly on the magnetic field strength, and
one can safely assume for them the same values of the unmagne-
tized case. We have verified that the low-magnetization limit applies
as long as the magnetic field at the centre is weaker than 1016 G
(corresponding to a magnetic field at the surface smaller than a
few 1015 G). For smaller values, non-linear variations are absent
(changes in the results are well within the overall accuracy of the
scheme), while they become evident at higher values. The reader is
referred to Appendix A for a more detailed discussion on the strong
field regime.

Interestingly, in this limit, it is possible to recast the current
function I in a self-similar way, such that the resulting magnetic
field configuration remains unchanged, modulo its strength. If Jφ

is rescaled with a numerical factor η sending kpol #→ηkpol and a #→√
ηa, the solution of the GS equation itself is rescaled by the same

numerical factor. The self-similar parameter can be thus defined in
terms of the strength of the magnetic field as

â = a

(
Bpole

1014G

)−1/2

, (15)

where Bpole is the magnetic field at the pole, that we have decided to
always normalize against 1014 G. Then the quantity â parametrizes
the magnetic configurations, independently from the strength of the
magnetic field. Notice that in PBD14, since the choice for the current
function I in the TT case had a slightly different normalization, the
role of self-similar parameter was assumed by a. Here, the new
normalization improves the convergence of our scheme preventing
the non-linear term from diverging at the highest value for a and λ.
Moreover, it allows us to obtain also configurations with a complex
magnetospheric field geometry (see Section 4). In this work, we
will focus exclusively on the low-magnetization limit, considering
for simplicity cases with ζ = 0 or ζ = 1.

3 N U M E R I C A L S E T U P

The numerical scheme used to compute our models is fully de-
scribed in Bucciantini & Del Zanna (2013) and in PBD14, to which
the reader is referred for a more complete discussion. Here, we
quickly summarize for convenience the main features and the few
modifications introduced in this work.

The basic idea of the algorithm is to use an expansion in spher-
ical harmonics to solve the non-linear Poisson-like equations, and
reduce them to a set of ordinary second-order PDEs for each coeffi-
cient, that can be solved using a direct tridiagonal matrix inversion.
In the weak-field limit, the metric and matter distributions are as-
sumed to be the same as in the unmagnetized case, so that the we do
not need to solve Einstein equations in the conformally flat condi-
tion (CFC) scheme and the problem is reduced to find the solution
of the GS equation (7) alone, a non-linear vector Poisson equation
for Aφ . Its solution is searched expanding Ãφ by means of vector
spherical harmonics (Barrera, Estevez & Giraldo 1985), that is

Ãφ(r, θ ) :=
∞∑

l=0

[Cl(r)Y ′
l (θ )]. (16)

As already done in PBD14 the solution to the GS equation is
searched over the entire numerical domain, which includes both
the interior of the star and the surrounding magnetosphere, where
the density, for numerical reasons, is set to a very small value (in
principle it could be set to 0). With this approach, there is no need
to match the exterior solution with the interior one (as it is usually
done when the solution of the GS equation is separately computed
over disconnected domains) and the smoothness of the solutions
at the stellar surface is here automatically guaranteed avoiding the
onset of spurious surface currents. The harmonic decomposition
ensures the correct behaviour of the solution on the symmetry axis.
At the centre of the star the radial coefficients Cl(r) go to 0 with
parity ( − 1)l, while a correct asymptotic trend at larger radii (the
outer boundary condition) is achieved by imposing Cl(r) ∝ r−(l + 1).

Being interested only in the study of the properties and geom-
etry of the magnetic field, in all our models we assume the NS
to be described by a simple polytropic EoS p = Kaρ

γa with an
adiabatic index γ a = 2 and a polytropic constant, expressed in ge-
ometrized units, Ka = 110. This is done in analogy with PBD14
and according to common choices in literature (Kiuchi & Yoshida
2008; Lander & Jones 2009). Our fiducial model has a central den-
sity ρc = 8.576 × 1014 g cm−3 a baryonic mass M0 = 1.680 M⊙,
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here a different functional form for I, namely

I(Aφ) = a

ζ + 1
#

[
Aφ − Aext

φ

]
(
Aφ − Aext

φ

)ζ+1

(
Amax

φ

)ζ+1/2 , (11)

where #[.] is the Heaviside function, Amax
φ is the maximum value

that the φ component of the vector potential reaches over the entire
domain, while Aext

φ is the maximum value it reaches at a distance
r = λre from the star (being re the equatorial radius). We further
define a as the toroidal magnetization constant, whereas ζ is the
toroidal magnetization index. Note that these choices are analogous
to the ones made in Glampedakis et al. (2014). The new parameter
λ, that enters in the definition of Aext

φ , allows us to control the size of
the twisted magnetosphere outside the star. The results of PBD14 are
recovered assuming λ = 1. On the other hand, for λ > 1 the toroidal
magnetic field is not confined within the star but extends smoothly
outside the stellar surface, just like the poloidal component.

From the relations (5), given our choice for the free functions M
and I, the components of the conduction currents become

J r = α−1Br a#
[
Aφ − Aext

φ

]
(
Aφ − Aext

φ

)ζ

(
Amax

φ

)ζ+1/2 , (12)

J θ = α−1Bθ a#
[
Aφ − Amax
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]
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J φ = ρh kpol + a2

(ζ + 1)ϖ 2
#
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φ

]
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φ
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(
Amax

φ
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Note that, thanks to the renormalization by Amax
φ , the φ component

of the conduction current is independent from the absolute value of
the magnetic flux function (it does not depend on the field strength),
while it is directly controlled only by the magnetization parameter
kpol and a.

In the low-magnetization limit, when the magnetic energy H is
smaller than the gravitational mass M (H ≪ M), the metric func-
tions α and ψ depend weakly on the magnetic field strength, and
one can safely assume for them the same values of the unmagne-
tized case. We have verified that the low-magnetization limit applies
as long as the magnetic field at the centre is weaker than 1016 G
(corresponding to a magnetic field at the surface smaller than a
few 1015 G). For smaller values, non-linear variations are absent
(changes in the results are well within the overall accuracy of the
scheme), while they become evident at higher values. The reader is
referred to Appendix A for a more detailed discussion on the strong
field regime.

Interestingly, in this limit, it is possible to recast the current
function I in a self-similar way, such that the resulting magnetic
field configuration remains unchanged, modulo its strength. If Jφ

is rescaled with a numerical factor η sending kpol #→ηkpol and a #→√
ηa, the solution of the GS equation itself is rescaled by the same

numerical factor. The self-similar parameter can be thus defined in
terms of the strength of the magnetic field as

â = a

(
Bpole

1014G

)−1/2

, (15)

where Bpole is the magnetic field at the pole, that we have decided to
always normalize against 1014 G. Then the quantity â parametrizes
the magnetic configurations, independently from the strength of the
magnetic field. Notice that in PBD14, since the choice for the current
function I in the TT case had a slightly different normalization, the
role of self-similar parameter was assumed by a. Here, the new
normalization improves the convergence of our scheme preventing
the non-linear term from diverging at the highest value for a and λ.
Moreover, it allows us to obtain also configurations with a complex
magnetospheric field geometry (see Section 4). In this work, we
will focus exclusively on the low-magnetization limit, considering
for simplicity cases with ζ = 0 or ζ = 1.

3 N U M E R I C A L S E T U P

The numerical scheme used to compute our models is fully de-
scribed in Bucciantini & Del Zanna (2013) and in PBD14, to which
the reader is referred for a more complete discussion. Here, we
quickly summarize for convenience the main features and the few
modifications introduced in this work.

The basic idea of the algorithm is to use an expansion in spher-
ical harmonics to solve the non-linear Poisson-like equations, and
reduce them to a set of ordinary second-order PDEs for each coeffi-
cient, that can be solved using a direct tridiagonal matrix inversion.
In the weak-field limit, the metric and matter distributions are as-
sumed to be the same as in the unmagnetized case, so that the we do
not need to solve Einstein equations in the conformally flat condi-
tion (CFC) scheme and the problem is reduced to find the solution
of the GS equation (7) alone, a non-linear vector Poisson equation
for Aφ . Its solution is searched expanding Ãφ by means of vector
spherical harmonics (Barrera, Estevez & Giraldo 1985), that is

Ãφ(r, θ ) :=
∞∑

l=0

[Cl(r)Y ′
l (θ )]. (16)

As already done in PBD14 the solution to the GS equation is
searched over the entire numerical domain, which includes both
the interior of the star and the surrounding magnetosphere, where
the density, for numerical reasons, is set to a very small value (in
principle it could be set to 0). With this approach, there is no need
to match the exterior solution with the interior one (as it is usually
done when the solution of the GS equation is separately computed
over disconnected domains) and the smoothness of the solutions
at the stellar surface is here automatically guaranteed avoiding the
onset of spurious surface currents. The harmonic decomposition
ensures the correct behaviour of the solution on the symmetry axis.
At the centre of the star the radial coefficients Cl(r) go to 0 with
parity ( − 1)l, while a correct asymptotic trend at larger radii (the
outer boundary condition) is achieved by imposing Cl(r) ∝ r−(l + 1).

Being interested only in the study of the properties and geom-
etry of the magnetic field, in all our models we assume the NS
to be described by a simple polytropic EoS p = Kaρ

γa with an
adiabatic index γ a = 2 and a polytropic constant, expressed in ge-
ometrized units, Ka = 110. This is done in analogy with PBD14
and according to common choices in literature (Kiuchi & Yoshida
2008; Lander & Jones 2009). Our fiducial model has a central den-
sity ρc = 8.576 × 1014 g cm−3 a baryonic mass M0 = 1.680 M⊙,
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Figure 1. Left: strength of the toroidal (left half) and poloidal (right half) magnetic field in units of Bpole. Contours represent magnetic field surfaces. Right:
same as the left-hand panel for the toroidal (left half) and poloidal (right half) current density. The toroidal current density is expressed in units of 1018 G s−1,
the poloidal one in units of 1013 G s−1. In both panels, the blue curves represent the surface of the star. This configuration has λ = 2 and â = 2.5, corresponding
the highest value for the magnetic energy ratio Htor/H = 11.29 × 10−2.

a gravitational mass M = 1.551 M⊙, and a circumferential radius
Rcirc = 14.19 km. For convenience the magnetic field at the pole is
rescaled to Bpole = 1014 G (recall that results in the weak-field limit
are actually independent from the field strength).

To explore the parameter space, we computed several equilibrium
models for different values of the parameter λ (from λ = 1 to λ = 8)
and for different values of the parameter â.

The numerical solutions we present here are computed using 60
harmonics. Models with λ < 4 are computed over a uniform grid in
spherical coordinates covering the range r = [0, 40] and θ = [0,π]
with 600 grid points in the radial direction and 400 points in the
angular one. Models with λ ≥ 4 have a twisted magnetosphere
extending to larger radii. In order to retain the same accuracy in
the inner region, and to reduce the computational time, we adopt a
geometrically stretched grid in the range r = [40, 150] defined on
200 grid points. The grid spacing #r is chosen such that

#ri = (1 + 5.962 × 10−3)#ri−1. (17)

This permits to capture the entire twisted magnetosphere and to
resolve the star always with the same accuracy, without resorting to
huge numerical grids. The convergence tolerance for the iterative
solution of GS equation has been fixed to ∼10−8, however, we have
verified that the overall accuracy of our solution is ! 10−3 because
of the discretizations errors.

4 R ESULTS

In this section, we present the results of the GRMHD calculations.
Since we focus on the low-magnetization limit, as discussed previ-
ously, global physical quantities such as the gravitational mass, the
baryonic mass, and the circumferential radius do not change for the
various sequences but remain equal to those of the fiducial model.
Our discussion will concentrate only on the magnetic properties of
the equilibrium configurations. All models are thus parametrized
just in terms of â, defining the magnetic field geometry, and λ,
defining the extent of the magnetosphere. For convenience, mag-
netic field strengths are expressed in terms of their value at the pole
Bpole, that we arbitrarily assume to be Bpole = 1014 G.

In the following subsections, we will consider only configurations
with ζ = 0 and ζ = 1. However, a detailed investigation about the

effects of more different and general current distribution for both I
and M can be found in Bucciantini et al. 2014.

4.1 Models with ζ = 0

In Fig. 1, we show a typical example of an equilibrium model
with a twisted magnetosphere. This specific configuration corre-
sponds to λ = 2 and â = 2.5. The poloidal magnetic field ex-
tends through the whole domain and reaches its maximum strength
Bmax

pol = 4.422 Bpole at the centre of the star. The toroidal component
of the magnetic field is, by construction, confined inside a closed
region that extends in the radial direction from the interior of the star
up to twice the stellar radius, and in latitude it is contained within a
wedge about ±π/6 around the equator. The maximum value of the
toroidal magnetic field Bmax

pol = 1.256 Bpole is reached inside the star
in correspondence to the neutral line where the poloidal magnetic
field vanishes. The right-hand panel of Fig. 1 shows that the poloidal
current density peaks inside the star, and extends smoothly outside
the stellar surface along the magnetic field surfaces. The toroidal
current, on the other hand, results from the sum of the linear current
term in M, Jφ = ρhkpol, fully confined within the star, and of the
non-linear term in I, that extends outside the star over the same
region where the poloidal currents are confined.

The magnetospheric equilibria of the type shown in Fig. 1, and
discussed above, are qualitatively similar to previous results (Mikic
& Linker 1994; Viganò et al. 2011; Parfrey et al. 2013). However,
in those cases the equilibria were obtained by the relaxation of
an initially sheared dipolar configuration, while here we directly
solve the GS equation. Such configurations, for a moderate shear
of the magnetic footpoints, are expected to be stable. On the other
hand, our approach based on the GS equation allows us to derive
equilibrium models but, of course, it does not provide any hint
about their stability. A more direct comparison can be made with
Glampedakis et al. (2014), in spite of a different value ζ = 0.5
employed, our solutions qualitatively agree with the one presented
in more detail in the cited work.

In Fig. 2, we present sequences of models computed for various
values of the parameters λ and â. The main characteristics of those
configurations are stated in Table 1. The results presented illustrate
the key features and trends of the equilibrium configurations that we
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2.2 Choice of the free functions

The current and magnetization free functions entering the GS equa-
tion can be easily modified, with respect to the choice made in
PBD14, in order to allow the currents to flow also outside the
star. We can actually retain the same form for the magnetization
function M

M(Aφ) = kpolAφ, (10)

where kpol is the poloidal magnetization constant, while we adopt
here a different functional form for I, namely

I(Aφ) = a

ζ + 1
#

[
Aφ − Aext

φ

]
(
Aφ − Aext

φ

)ζ+1

(
Amax

φ

)ζ+1/2 , (11)

where #[.] is the Heaviside function, Amax
φ is the maximum value

that the φ component of the vector potential reaches over the entire
domain, while Aext

φ is the maximum value it reaches at a distance
r = λre from the star (being re the equatorial radius). We further
define a as the toroidal magnetization constant, whereas ζ is the
toroidal magnetization index. Note that these choices are analogous
to the ones made in Glampedakis et al. (2014). The new parameter
λ, that enters in the definition of Aext

φ , allows us to control the size of
the twisted magnetosphere outside the star. The results of PBD14 are
recovered assuming λ = 1. On the other hand, for λ > 1 the toroidal
magnetic field is not confined within the star but extends smoothly
outside the stellar surface, just like the poloidal component.

From the relations (5), given our choice for the free functions M
and I, the components of the conduction currents become

J r = α−1Br a#
[
Aφ − Aext

φ

]
(
Aφ − Aext

φ

)ζ

(
Amax

φ

)ζ+1/2 , (12)

J θ = α−1Bθ a#
[
Aφ − Amax

φ

]
(
Aφ − Aext

φ

)ζ

(
Amax

φ

)ζ+1/2 , (13)

J φ = ρh kpol + a2

(ζ + 1)ϖ 2
#

[
Aφ − Aext

φ

]
(
Aφ − Aext

φ

)2ζ+1

(
Amax

φ

)2ζ+1 . (14)

Note that, thanks to the renormalization by Amax
φ , the φ component

of the conduction current is independent from the absolute value of
the magnetic flux function (it does not depend on the field strength),
while it is directly controlled only by the magnetization parameter
kpol and a.

In the low-magnetization limit, when the magnetic energy H is
smaller than the gravitational mass M (H ≪ M), the metric func-
tions α and ψ depend weakly on the magnetic field strength, and
one can safely assume for them the same values of the unmagne-
tized case. We have verified that the low-magnetization limit applies
as long as the magnetic field at the centre is weaker than 1016 G
(corresponding to a magnetic field at the surface smaller than a
few 1015 G). For smaller values, non-linear variations are absent
(changes in the results are well within the overall accuracy of the
scheme), while they become evident at higher values. The reader is
referred to Appendix A for a more detailed discussion on the strong
field regime.

Interestingly, in this limit, it is possible to recast the current
function I in a self-similar way, such that the resulting magnetic
field configuration remains unchanged, modulo its strength. If Jφ

is rescaled with a numerical factor η sending kpol #→ηkpol and a #→√
ηa, the solution of the GS equation itself is rescaled by the same

numerical factor. The self-similar parameter can be thus defined in
terms of the strength of the magnetic field as

â = a

(
Bpole

1014G

)−1/2

, (15)

where Bpole is the magnetic field at the pole, that we have decided to
always normalize against 1014 G. Then the quantity â parametrizes
the magnetic configurations, independently from the strength of the
magnetic field. Notice that in PBD14, since the choice for the current
function I in the TT case had a slightly different normalization, the
role of self-similar parameter was assumed by a. Here, the new
normalization improves the convergence of our scheme preventing
the non-linear term from diverging at the highest value for a and λ.
Moreover, it allows us to obtain also configurations with a complex
magnetospheric field geometry (see Section 4). In this work, we
will focus exclusively on the low-magnetization limit, considering
for simplicity cases with ζ = 0 or ζ = 1.

3 N U M E R I C A L S E T U P

The numerical scheme used to compute our models is fully de-
scribed in Bucciantini & Del Zanna (2013) and in PBD14, to which
the reader is referred for a more complete discussion. Here, we
quickly summarize for convenience the main features and the few
modifications introduced in this work.

The basic idea of the algorithm is to use an expansion in spher-
ical harmonics to solve the non-linear Poisson-like equations, and
reduce them to a set of ordinary second-order PDEs for each coeffi-
cient, that can be solved using a direct tridiagonal matrix inversion.
In the weak-field limit, the metric and matter distributions are as-
sumed to be the same as in the unmagnetized case, so that the we do
not need to solve Einstein equations in the conformally flat condi-
tion (CFC) scheme and the problem is reduced to find the solution
of the GS equation (7) alone, a non-linear vector Poisson equation
for Aφ . Its solution is searched expanding Ãφ by means of vector
spherical harmonics (Barrera, Estevez & Giraldo 1985), that is

Ãφ(r, θ ) :=
∞∑

l=0

[Cl(r)Y ′
l (θ )]. (16)

As already done in PBD14 the solution to the GS equation is
searched over the entire numerical domain, which includes both
the interior of the star and the surrounding magnetosphere, where
the density, for numerical reasons, is set to a very small value (in
principle it could be set to 0). With this approach, there is no need
to match the exterior solution with the interior one (as it is usually
done when the solution of the GS equation is separately computed
over disconnected domains) and the smoothness of the solutions
at the stellar surface is here automatically guaranteed avoiding the
onset of spurious surface currents. The harmonic decomposition
ensures the correct behaviour of the solution on the symmetry axis.
At the centre of the star the radial coefficients Cl(r) go to 0 with
parity ( − 1)l, while a correct asymptotic trend at larger radii (the
outer boundary condition) is achieved by imposing Cl(r) ∝ r−(l + 1).

Being interested only in the study of the properties and geom-
etry of the magnetic field, in all our models we assume the NS
to be described by a simple polytropic EoS p = Kaρ

γa with an
adiabatic index γ a = 2 and a polytropic constant, expressed in ge-
ometrized units, Ka = 110. This is done in analogy with PBD14
and according to common choices in literature (Kiuchi & Yoshida
2008; Lander & Jones 2009). Our fiducial model has a central den-
sity ρc = 8.576 × 1014 g cm−3 a baryonic mass M0 = 1.680 M⊙,
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2.2 Choice of the free functions

The current and magnetization free functions entering the GS equa-
tion can be easily modified, with respect to the choice made in
PBD14, in order to allow the currents to flow also outside the
star. We can actually retain the same form for the magnetization
function M

M(Aφ) = kpolAφ, (10)

where kpol is the poloidal magnetization constant, while we adopt
here a different functional form for I, namely

I(Aφ) = a

ζ + 1
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where #[.] is the Heaviside function, Amax
φ is the maximum value

that the φ component of the vector potential reaches over the entire
domain, while Aext

φ is the maximum value it reaches at a distance
r = λre from the star (being re the equatorial radius). We further
define a as the toroidal magnetization constant, whereas ζ is the
toroidal magnetization index. Note that these choices are analogous
to the ones made in Glampedakis et al. (2014). The new parameter
λ, that enters in the definition of Aext

φ , allows us to control the size of
the twisted magnetosphere outside the star. The results of PBD14 are
recovered assuming λ = 1. On the other hand, for λ > 1 the toroidal
magnetic field is not confined within the star but extends smoothly
outside the stellar surface, just like the poloidal component.

From the relations (5), given our choice for the free functions M
and I, the components of the conduction currents become

J r = α−1Br a#
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Note that, thanks to the renormalization by Amax
φ , the φ component

of the conduction current is independent from the absolute value of
the magnetic flux function (it does not depend on the field strength),
while it is directly controlled only by the magnetization parameter
kpol and a.

In the low-magnetization limit, when the magnetic energy H is
smaller than the gravitational mass M (H ≪ M), the metric func-
tions α and ψ depend weakly on the magnetic field strength, and
one can safely assume for them the same values of the unmagne-
tized case. We have verified that the low-magnetization limit applies
as long as the magnetic field at the centre is weaker than 1016 G
(corresponding to a magnetic field at the surface smaller than a
few 1015 G). For smaller values, non-linear variations are absent
(changes in the results are well within the overall accuracy of the
scheme), while they become evident at higher values. The reader is
referred to Appendix A for a more detailed discussion on the strong
field regime.

Interestingly, in this limit, it is possible to recast the current
function I in a self-similar way, such that the resulting magnetic
field configuration remains unchanged, modulo its strength. If Jφ

is rescaled with a numerical factor η sending kpol #→ηkpol and a #→√
ηa, the solution of the GS equation itself is rescaled by the same

numerical factor. The self-similar parameter can be thus defined in
terms of the strength of the magnetic field as

â = a

(
Bpole

1014G

)−1/2

, (15)

where Bpole is the magnetic field at the pole, that we have decided to
always normalize against 1014 G. Then the quantity â parametrizes
the magnetic configurations, independently from the strength of the
magnetic field. Notice that in PBD14, since the choice for the current
function I in the TT case had a slightly different normalization, the
role of self-similar parameter was assumed by a. Here, the new
normalization improves the convergence of our scheme preventing
the non-linear term from diverging at the highest value for a and λ.
Moreover, it allows us to obtain also configurations with a complex
magnetospheric field geometry (see Section 4). In this work, we
will focus exclusively on the low-magnetization limit, considering
for simplicity cases with ζ = 0 or ζ = 1.

3 N U M E R I C A L S E T U P

The numerical scheme used to compute our models is fully de-
scribed in Bucciantini & Del Zanna (2013) and in PBD14, to which
the reader is referred for a more complete discussion. Here, we
quickly summarize for convenience the main features and the few
modifications introduced in this work.

The basic idea of the algorithm is to use an expansion in spher-
ical harmonics to solve the non-linear Poisson-like equations, and
reduce them to a set of ordinary second-order PDEs for each coeffi-
cient, that can be solved using a direct tridiagonal matrix inversion.
In the weak-field limit, the metric and matter distributions are as-
sumed to be the same as in the unmagnetized case, so that the we do
not need to solve Einstein equations in the conformally flat condi-
tion (CFC) scheme and the problem is reduced to find the solution
of the GS equation (7) alone, a non-linear vector Poisson equation
for Aφ . Its solution is searched expanding Ãφ by means of vector
spherical harmonics (Barrera, Estevez & Giraldo 1985), that is

Ãφ(r, θ ) :=
∞∑

l=0

[Cl(r)Y ′
l (θ )]. (16)

As already done in PBD14 the solution to the GS equation is
searched over the entire numerical domain, which includes both
the interior of the star and the surrounding magnetosphere, where
the density, for numerical reasons, is set to a very small value (in
principle it could be set to 0). With this approach, there is no need
to match the exterior solution with the interior one (as it is usually
done when the solution of the GS equation is separately computed
over disconnected domains) and the smoothness of the solutions
at the stellar surface is here automatically guaranteed avoiding the
onset of spurious surface currents. The harmonic decomposition
ensures the correct behaviour of the solution on the symmetry axis.
At the centre of the star the radial coefficients Cl(r) go to 0 with
parity ( − 1)l, while a correct asymptotic trend at larger radii (the
outer boundary condition) is achieved by imposing Cl(r) ∝ r−(l + 1).

Being interested only in the study of the properties and geom-
etry of the magnetic field, in all our models we assume the NS
to be described by a simple polytropic EoS p = Kaρ

γa with an
adiabatic index γ a = 2 and a polytropic constant, expressed in ge-
ometrized units, Ka = 110. This is done in analogy with PBD14
and according to common choices in literature (Kiuchi & Yoshida
2008; Lander & Jones 2009). Our fiducial model has a central den-
sity ρc = 8.576 × 1014 g cm−3 a baryonic mass M0 = 1.680 M⊙,
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2.2 Choice of the free functions

The current and magnetization free functions entering the GS equa-
tion can be easily modified, with respect to the choice made in
PBD14, in order to allow the currents to flow also outside the
star. We can actually retain the same form for the magnetization
function M

M(Aφ) = kpolAφ, (10)

where kpol is the poloidal magnetization constant, while we adopt
here a different functional form for I, namely

I(Aφ) = a

ζ + 1
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where #[.] is the Heaviside function, Amax
φ is the maximum value

that the φ component of the vector potential reaches over the entire
domain, while Aext

φ is the maximum value it reaches at a distance
r = λre from the star (being re the equatorial radius). We further
define a as the toroidal magnetization constant, whereas ζ is the
toroidal magnetization index. Note that these choices are analogous
to the ones made in Glampedakis et al. (2014). The new parameter
λ, that enters in the definition of Aext

φ , allows us to control the size of
the twisted magnetosphere outside the star. The results of PBD14 are
recovered assuming λ = 1. On the other hand, for λ > 1 the toroidal
magnetic field is not confined within the star but extends smoothly
outside the stellar surface, just like the poloidal component.

From the relations (5), given our choice for the free functions M
and I, the components of the conduction currents become

J r = α−1Br a#
[
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Note that, thanks to the renormalization by Amax
φ , the φ component

of the conduction current is independent from the absolute value of
the magnetic flux function (it does not depend on the field strength),
while it is directly controlled only by the magnetization parameter
kpol and a.

In the low-magnetization limit, when the magnetic energy H is
smaller than the gravitational mass M (H ≪ M), the metric func-
tions α and ψ depend weakly on the magnetic field strength, and
one can safely assume for them the same values of the unmagne-
tized case. We have verified that the low-magnetization limit applies
as long as the magnetic field at the centre is weaker than 1016 G
(corresponding to a magnetic field at the surface smaller than a
few 1015 G). For smaller values, non-linear variations are absent
(changes in the results are well within the overall accuracy of the
scheme), while they become evident at higher values. The reader is
referred to Appendix A for a more detailed discussion on the strong
field regime.

Interestingly, in this limit, it is possible to recast the current
function I in a self-similar way, such that the resulting magnetic
field configuration remains unchanged, modulo its strength. If Jφ

is rescaled with a numerical factor η sending kpol #→ηkpol and a #→√
ηa, the solution of the GS equation itself is rescaled by the same

numerical factor. The self-similar parameter can be thus defined in
terms of the strength of the magnetic field as

â = a

(
Bpole

1014G

)−1/2

, (15)

where Bpole is the magnetic field at the pole, that we have decided to
always normalize against 1014 G. Then the quantity â parametrizes
the magnetic configurations, independently from the strength of the
magnetic field. Notice that in PBD14, since the choice for the current
function I in the TT case had a slightly different normalization, the
role of self-similar parameter was assumed by a. Here, the new
normalization improves the convergence of our scheme preventing
the non-linear term from diverging at the highest value for a and λ.
Moreover, it allows us to obtain also configurations with a complex
magnetospheric field geometry (see Section 4). In this work, we
will focus exclusively on the low-magnetization limit, considering
for simplicity cases with ζ = 0 or ζ = 1.

3 N U M E R I C A L S E T U P

The numerical scheme used to compute our models is fully de-
scribed in Bucciantini & Del Zanna (2013) and in PBD14, to which
the reader is referred for a more complete discussion. Here, we
quickly summarize for convenience the main features and the few
modifications introduced in this work.

The basic idea of the algorithm is to use an expansion in spher-
ical harmonics to solve the non-linear Poisson-like equations, and
reduce them to a set of ordinary second-order PDEs for each coeffi-
cient, that can be solved using a direct tridiagonal matrix inversion.
In the weak-field limit, the metric and matter distributions are as-
sumed to be the same as in the unmagnetized case, so that the we do
not need to solve Einstein equations in the conformally flat condi-
tion (CFC) scheme and the problem is reduced to find the solution
of the GS equation (7) alone, a non-linear vector Poisson equation
for Aφ . Its solution is searched expanding Ãφ by means of vector
spherical harmonics (Barrera, Estevez & Giraldo 1985), that is

Ãφ(r, θ ) :=
∞∑

l=0

[Cl(r)Y ′
l (θ )]. (16)

As already done in PBD14 the solution to the GS equation is
searched over the entire numerical domain, which includes both
the interior of the star and the surrounding magnetosphere, where
the density, for numerical reasons, is set to a very small value (in
principle it could be set to 0). With this approach, there is no need
to match the exterior solution with the interior one (as it is usually
done when the solution of the GS equation is separately computed
over disconnected domains) and the smoothness of the solutions
at the stellar surface is here automatically guaranteed avoiding the
onset of spurious surface currents. The harmonic decomposition
ensures the correct behaviour of the solution on the symmetry axis.
At the centre of the star the radial coefficients Cl(r) go to 0 with
parity ( − 1)l, while a correct asymptotic trend at larger radii (the
outer boundary condition) is achieved by imposing Cl(r) ∝ r−(l + 1).

Being interested only in the study of the properties and geom-
etry of the magnetic field, in all our models we assume the NS
to be described by a simple polytropic EoS p = Kaρ

γa with an
adiabatic index γ a = 2 and a polytropic constant, expressed in ge-
ometrized units, Ka = 110. This is done in analogy with PBD14
and according to common choices in literature (Kiuchi & Yoshida
2008; Lander & Jones 2009). Our fiducial model has a central den-
sity ρc = 8.576 × 1014 g cm−3 a baryonic mass M0 = 1.680 M⊙,
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2.2 Choice of the free functions

The current and magnetization free functions entering the GS equa-
tion can be easily modified, with respect to the choice made in
PBD14, in order to allow the currents to flow also outside the
star. We can actually retain the same form for the magnetization
function M

M(Aφ) = kpolAφ, (10)

where kpol is the poloidal magnetization constant, while we adopt
here a different functional form for I, namely

I(Aφ) = a

ζ + 1
#

[
Aφ − Aext

φ

]
(
Aφ − Aext

φ

)ζ+1

(
Amax

φ

)ζ+1/2 , (11)

where #[.] is the Heaviside function, Amax
φ is the maximum value

that the φ component of the vector potential reaches over the entire
domain, while Aext

φ is the maximum value it reaches at a distance
r = λre from the star (being re the equatorial radius). We further
define a as the toroidal magnetization constant, whereas ζ is the
toroidal magnetization index. Note that these choices are analogous
to the ones made in Glampedakis et al. (2014). The new parameter
λ, that enters in the definition of Aext

φ , allows us to control the size of
the twisted magnetosphere outside the star. The results of PBD14 are
recovered assuming λ = 1. On the other hand, for λ > 1 the toroidal
magnetic field is not confined within the star but extends smoothly
outside the stellar surface, just like the poloidal component.

From the relations (5), given our choice for the free functions M
and I, the components of the conduction currents become
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)2ζ+1 . (14)

Note that, thanks to the renormalization by Amax
φ , the φ component

of the conduction current is independent from the absolute value of
the magnetic flux function (it does not depend on the field strength),
while it is directly controlled only by the magnetization parameter
kpol and a.

In the low-magnetization limit, when the magnetic energy H is
smaller than the gravitational mass M (H ≪ M), the metric func-
tions α and ψ depend weakly on the magnetic field strength, and
one can safely assume for them the same values of the unmagne-
tized case. We have verified that the low-magnetization limit applies
as long as the magnetic field at the centre is weaker than 1016 G
(corresponding to a magnetic field at the surface smaller than a
few 1015 G). For smaller values, non-linear variations are absent
(changes in the results are well within the overall accuracy of the
scheme), while they become evident at higher values. The reader is
referred to Appendix A for a more detailed discussion on the strong
field regime.

Interestingly, in this limit, it is possible to recast the current
function I in a self-similar way, such that the resulting magnetic
field configuration remains unchanged, modulo its strength. If Jφ

is rescaled with a numerical factor η sending kpol #→ηkpol and a #→√
ηa, the solution of the GS equation itself is rescaled by the same

numerical factor. The self-similar parameter can be thus defined in
terms of the strength of the magnetic field as

â = a

(
Bpole

1014G

)−1/2

, (15)

where Bpole is the magnetic field at the pole, that we have decided to
always normalize against 1014 G. Then the quantity â parametrizes
the magnetic configurations, independently from the strength of the
magnetic field. Notice that in PBD14, since the choice for the current
function I in the TT case had a slightly different normalization, the
role of self-similar parameter was assumed by a. Here, the new
normalization improves the convergence of our scheme preventing
the non-linear term from diverging at the highest value for a and λ.
Moreover, it allows us to obtain also configurations with a complex
magnetospheric field geometry (see Section 4). In this work, we
will focus exclusively on the low-magnetization limit, considering
for simplicity cases with ζ = 0 or ζ = 1.

3 N U M E R I C A L S E T U P

The numerical scheme used to compute our models is fully de-
scribed in Bucciantini & Del Zanna (2013) and in PBD14, to which
the reader is referred for a more complete discussion. Here, we
quickly summarize for convenience the main features and the few
modifications introduced in this work.

The basic idea of the algorithm is to use an expansion in spher-
ical harmonics to solve the non-linear Poisson-like equations, and
reduce them to a set of ordinary second-order PDEs for each coeffi-
cient, that can be solved using a direct tridiagonal matrix inversion.
In the weak-field limit, the metric and matter distributions are as-
sumed to be the same as in the unmagnetized case, so that the we do
not need to solve Einstein equations in the conformally flat condi-
tion (CFC) scheme and the problem is reduced to find the solution
of the GS equation (7) alone, a non-linear vector Poisson equation
for Aφ . Its solution is searched expanding Ãφ by means of vector
spherical harmonics (Barrera, Estevez & Giraldo 1985), that is

Ãφ(r, θ ) :=
∞∑

l=0

[Cl(r)Y ′
l (θ )]. (16)

As already done in PBD14 the solution to the GS equation is
searched over the entire numerical domain, which includes both
the interior of the star and the surrounding magnetosphere, where
the density, for numerical reasons, is set to a very small value (in
principle it could be set to 0). With this approach, there is no need
to match the exterior solution with the interior one (as it is usually
done when the solution of the GS equation is separately computed
over disconnected domains) and the smoothness of the solutions
at the stellar surface is here automatically guaranteed avoiding the
onset of spurious surface currents. The harmonic decomposition
ensures the correct behaviour of the solution on the symmetry axis.
At the centre of the star the radial coefficients Cl(r) go to 0 with
parity ( − 1)l, while a correct asymptotic trend at larger radii (the
outer boundary condition) is achieved by imposing Cl(r) ∝ r−(l + 1).

Being interested only in the study of the properties and geom-
etry of the magnetic field, in all our models we assume the NS
to be described by a simple polytropic EoS p = Kaρ

γa with an
adiabatic index γ a = 2 and a polytropic constant, expressed in ge-
ometrized units, Ka = 110. This is done in analogy with PBD14
and according to common choices in literature (Kiuchi & Yoshida
2008; Lander & Jones 2009). Our fiducial model has a central den-
sity ρc = 8.576 × 1014 g cm−3 a baryonic mass M0 = 1.680 M⊙,
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2.2 Choice of the free functions

The current and magnetization free functions entering the GS equa-
tion can be easily modified, with respect to the choice made in
PBD14, in order to allow the currents to flow also outside the
star. We can actually retain the same form for the magnetization
function M

M(Aφ) = kpolAφ, (10)

where kpol is the poloidal magnetization constant, while we adopt
here a different functional form for I, namely

I(Aφ) = a

ζ + 1
#

[
Aφ − Aext

φ

]
(
Aφ − Aext

φ

)ζ+1

(
Amax

φ

)ζ+1/2 , (11)

where #[.] is the Heaviside function, Amax
φ is the maximum value

that the φ component of the vector potential reaches over the entire
domain, while Aext

φ is the maximum value it reaches at a distance
r = λre from the star (being re the equatorial radius). We further
define a as the toroidal magnetization constant, whereas ζ is the
toroidal magnetization index. Note that these choices are analogous
to the ones made in Glampedakis et al. (2014). The new parameter
λ, that enters in the definition of Aext

φ , allows us to control the size of
the twisted magnetosphere outside the star. The results of PBD14 are
recovered assuming λ = 1. On the other hand, for λ > 1 the toroidal
magnetic field is not confined within the star but extends smoothly
outside the stellar surface, just like the poloidal component.

From the relations (5), given our choice for the free functions M
and I, the components of the conduction currents become

J r = α−1Br a#
[
Aφ − Aext
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J φ = ρh kpol + a2
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Note that, thanks to the renormalization by Amax
φ , the φ component

of the conduction current is independent from the absolute value of
the magnetic flux function (it does not depend on the field strength),
while it is directly controlled only by the magnetization parameter
kpol and a.

In the low-magnetization limit, when the magnetic energy H is
smaller than the gravitational mass M (H ≪ M), the metric func-
tions α and ψ depend weakly on the magnetic field strength, and
one can safely assume for them the same values of the unmagne-
tized case. We have verified that the low-magnetization limit applies
as long as the magnetic field at the centre is weaker than 1016 G
(corresponding to a magnetic field at the surface smaller than a
few 1015 G). For smaller values, non-linear variations are absent
(changes in the results are well within the overall accuracy of the
scheme), while they become evident at higher values. The reader is
referred to Appendix A for a more detailed discussion on the strong
field regime.

Interestingly, in this limit, it is possible to recast the current
function I in a self-similar way, such that the resulting magnetic
field configuration remains unchanged, modulo its strength. If Jφ

is rescaled with a numerical factor η sending kpol #→ηkpol and a #→√
ηa, the solution of the GS equation itself is rescaled by the same

numerical factor. The self-similar parameter can be thus defined in
terms of the strength of the magnetic field as

â = a

(
Bpole

1014G

)−1/2

, (15)

where Bpole is the magnetic field at the pole, that we have decided to
always normalize against 1014 G. Then the quantity â parametrizes
the magnetic configurations, independently from the strength of the
magnetic field. Notice that in PBD14, since the choice for the current
function I in the TT case had a slightly different normalization, the
role of self-similar parameter was assumed by a. Here, the new
normalization improves the convergence of our scheme preventing
the non-linear term from diverging at the highest value for a and λ.
Moreover, it allows us to obtain also configurations with a complex
magnetospheric field geometry (see Section 4). In this work, we
will focus exclusively on the low-magnetization limit, considering
for simplicity cases with ζ = 0 or ζ = 1.

3 N U M E R I C A L S E T U P

The numerical scheme used to compute our models is fully de-
scribed in Bucciantini & Del Zanna (2013) and in PBD14, to which
the reader is referred for a more complete discussion. Here, we
quickly summarize for convenience the main features and the few
modifications introduced in this work.

The basic idea of the algorithm is to use an expansion in spher-
ical harmonics to solve the non-linear Poisson-like equations, and
reduce them to a set of ordinary second-order PDEs for each coeffi-
cient, that can be solved using a direct tridiagonal matrix inversion.
In the weak-field limit, the metric and matter distributions are as-
sumed to be the same as in the unmagnetized case, so that the we do
not need to solve Einstein equations in the conformally flat condi-
tion (CFC) scheme and the problem is reduced to find the solution
of the GS equation (7) alone, a non-linear vector Poisson equation
for Aφ . Its solution is searched expanding Ãφ by means of vector
spherical harmonics (Barrera, Estevez & Giraldo 1985), that is

Ãφ(r, θ ) :=
∞∑

l=0

[Cl(r)Y ′
l (θ )]. (16)

As already done in PBD14 the solution to the GS equation is
searched over the entire numerical domain, which includes both
the interior of the star and the surrounding magnetosphere, where
the density, for numerical reasons, is set to a very small value (in
principle it could be set to 0). With this approach, there is no need
to match the exterior solution with the interior one (as it is usually
done when the solution of the GS equation is separately computed
over disconnected domains) and the smoothness of the solutions
at the stellar surface is here automatically guaranteed avoiding the
onset of spurious surface currents. The harmonic decomposition
ensures the correct behaviour of the solution on the symmetry axis.
At the centre of the star the radial coefficients Cl(r) go to 0 with
parity ( − 1)l, while a correct asymptotic trend at larger radii (the
outer boundary condition) is achieved by imposing Cl(r) ∝ r−(l + 1).

Being interested only in the study of the properties and geom-
etry of the magnetic field, in all our models we assume the NS
to be described by a simple polytropic EoS p = Kaρ

γa with an
adiabatic index γ a = 2 and a polytropic constant, expressed in ge-
ometrized units, Ka = 110. This is done in analogy with PBD14
and according to common choices in literature (Kiuchi & Yoshida
2008; Lander & Jones 2009). Our fiducial model has a central den-
sity ρc = 8.576 × 1014 g cm−3 a baryonic mass M0 = 1.680 M⊙,
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Figure 7. Maximum value of the toroidal (left) poloidal (right) magnetic field along equilibrium sequences with different values of λ. Dots indicate
configurations where the toroidal magnetic field component is completely outside the star. The squares indicate configurations which show two maxima of the
toroidal magnetic field.

Figure 8. Profiles of the ratio of total magnetic energy of the toroidal component Htor, external one Hext
tor and internal one Hin

tor, with respect to the total
magnetic energy H. The curves show sequences as a function of â for various values of λ. The dots and squares as in Fig. 7.

field strength. Indeed, the second peak in "ϕ corresponds to an
O-point and an unresolved X-point.

The bottom row of Fig. 6 displays the profile of "ϕ along the
stellar surface. As pointed out before, in the limit of small â the
twist at the surface increases. However, for higher values of â the
trend is not uniform, depending on the formation of a second peak,
and the related location of the X-point.

In Fig. 7, we plot the maximum value of the strength of the
toroidal magnetic field Bmax

tor , and the poloidal one Bmax
pol , for different

values of λ, as a function of â. In all our models, the poloidal
field reaches its maximum at the centre. Initially, in the small â

regime, Bmax
tor grows, while Bmax

pol decreases. This happens because
the strength of the magnetic field at the pole is always kept fixed in
all models. As one enhances the contribution to the total current by
increasing I, one must decrease the contribution from M, causing
a drop in the strength of the field at the centre of the star. This effect
depends also on the location of the current, as this term moves to
larger radii the poloidal field begins to grow again. Configurations
with λ ≥ 3 show several inversions of this trend, which again are a
manifestation of the change in the field topology.

All the equilibrium models we obtain are energetically domi-
nated by the poloidal magnetic field. This was found to apply also
for models where the twist is fully confined with the star (Ciolfi et al.
2009; Lander & Jones 2009; PBD14). In Fig. 8, we show the same
equilibrium sequences in terms of the ratio of magnetic energy of
the toroidal magnetic field Htor over the total magnetic energy H.
Generally, the magnetic energy ratio initially grows with â reaching

a first maximum that corresponds to a configuration still character-
ized by a single peak (see the first rows of Fig. 1). Again the trend
for higher values of â depends on the value of λ. While sequences
with λ ≤ 2 show a decreasing monotonic trend, sequences with
λ ≥ 3 reach a minimum and then the magnetic energy ratio begin to
grow again. For configurations with λ ! 6, we could reach a second
local maximum. It is possible in principle that other maxima and
minima could be reaches at higher values of â, but we could not
compute those models. The magnetic energy is an integrated quan-
tity, as such it also depends on the size of the twisted region. The
formation of an X-point, followed by the formation of two detached
magnetic twisted domains, is associated with a decrease of the net
volume taken by the toroidal field, and to the drop of Htor after the
first maximum.

In Fig. 8, we also compare the toroidal magnetic energy confined
inside Hin

tor and outside Hext
tor the star. The two are in general com-

parable except for cases with λ ≤ 2 where the interior toroidal field
vanishes at high â. Note also that the ratio Htor/H is at most 8–
10 per cent. The net poloidal and toroidal currents follow a similar
behaviour.

Finally, in Fig. 9, we show the variation of the magnetic dipole
moment µ as a function of â. We see that the magnetic dipole, for
fixed values of â, grows with λ. This is because the total integrated
toroidal current, defined as

J =
∫ √

J φJφψ6r2 sin θdrdθdφ (19)
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Figure 11. Profiles of the twist angle !ϕ in the magnetosphere (left) and at the stellar surface (right) for the same equilibrium configurations whose magnetic
field profiles have been shown in Fig. 10. The solid lines (dashed lines) refer to configurations with ζ = 1 (ζ = 0).

equilibria discussed above. While the growth of the surface !φ is
a direct consequence of the stronger toroidal field obtained for the
ζ = 1 configurations, the analysis of trends in the magnetosphere
deserve more attention. In fact, even though the toroidal field in the
new configurations is stronger in the proximity of the stellar surface,
the twist angle in the magnetosphere decreases monotonically and
it is highly suppressed with respect to that obtained in the ζ = 0
models. This is due, on the one hand, to the fact that Btor goes more
rapidly to zero in the magnetosphere but, on the other hand, also to
the presence of a stronger equatorial poloidal field in the vicinity of
the star.

The structure of the magnetic field is however only slightly af-
fected by the value of the magnetic index ζ . This is also evident
from Fig. 12, where we plot the profile of both the magnetic energy
ratio Htor/H and the current ratio J ext/J in as a function of â for
the various sequences. The trends strictly reflect those obtained in
the ζ = 0 case (see Figs 8 and 9) and it is interesting to notice that
sequences with equal λ behave, from the point of view of the field
topology, in the same way: for sequences with λ ! 2 the twisted
region moves outside the star; for sequences with λ " 2.5 the con-
figuration at higher â are characterized by a more complex topology
and part of the toroidal field remain always confined in the star. Also
a more quantitative comparison shows little differences. In the ζ = 1
case, the maximum allowed Htor/H is lower if λ ! 2.5 and higher

if λ > 2.5. The major differences regard the sequences with λ = 6
and 8 where the higher value of Btor and a more regular topology
of the solution (i.e. there is no formation of an X-point) allow us
to reach higher value for the magnetic energy ratio. Finally, in both
cases, when J ext ∼ 0.7J in, the system self-regulates inducing a
change in the topology of the distribution of the magnetic field and
the associated external current.

5 C O N C L U S I O N S

There is an ever increasing amount of evidence that magnetars have
a strongly twisted magnetosphere, and that it is this twist more than
the strength of the field itself that defines their phenomenology, and
isolate them as a separate class of NS. Investigating how this twisted
magnetosphere is arranged, and what could be its equilibrium struc-
ture, is thus an important step for a more realistic description of these
astrophysical sources.

We have computed numerically, for the first time, equilibrium
models of general relativistic magnetized NSs with twisted magne-
tospheres, allowing for electric currents extending smoothly from
the interior of the star to the exterior. Our work extends a recent
study by Glampedakis et al. (2012) in the Newtonian regime.

Our models represent a straightforward generalization of typical
TT configurations, where the twist is allowed to extend also outside

Figure 12. Profiles of the toroidal energy ratio Htor/H (left) and of the current ratio J ext/J in as a function of â along equilibrium sequences with constant
λ. The dots and squares as in Fig. 7.
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• External toroidal currents can 
not exceed the internal ones 

• The toroidal energy density in 
the exterior is comparable with 
that  in the interior
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• Models with subtractive currents are poloidal 
dominated (we can not reach inversion currents)
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Figure 5. Value of the ratio Htor/H for TT sequences characterized
by di↵erent values for ⇣ as a function of a. The dashed lines corre-
spond to configurations where the ratio between the maximum strength
of the toroidal magnetic field Bmax

tor , and the maximum strength of the
poloidal component Bmax

pol is constant. From bottom to top Bmax
tor /B

max
pol =

0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.8, 1.0, 1.25.

to converge). Given that, for Eq. (13), both the energy of toroidal
magnetic field and the associated current scale with I, one can-
not increase one without increasing the other. The systems seems
always to self-regulates, with a maximum allowed current, imply-
ing a maximum allowed toroidal magnetic energy. The value of ⇣
a↵ects the local value and distribution of the magnetic field, but
does not play a relevant role for integrated quantities, like currents
and magnetic energy. Indeed by looking at Fig. 5, and Fig. 6, it
is evident that, for ⇣ < 0 it is not possible to have configurations
where the maximum strength of the toroidal field exceeds the one
of the poloidal field. For smaller ⇣ the same toroidal magnetic field
energy, corresponds in general to weaker toroidal magnetic fields.
For ⇣ > 0 instead we could reach configurations with a toroidal
field stronger than the poloidal one. Interestingly the volume of the
torus, for configurations where the ratio Htor/H is maximal, does
not depend on ⇣.

One can also look at the magnetic field distribution on the
surface of the star. Given our previous results for purely poloidal
configurations with nonlinear current terms, we expect strong devi-
ations from the standard dipole, where the strength of the magnetic
field at the pole is twice the one at the equator. In Fig. 6 we show the
total strength of the magnetic field at the surface (where the field is
purely poloidal), for configurations where the ratioHtor/H is max-
imal. The presence of a current torus, just underneath the surface, is
evident in the peak of the field strength at the equator. The peak is
even narrower than what was found for purely poloidal cases with
⇠ = 10, and the strength of the equatorial field can be more than
twice the polar one. Again, there is little di↵erence among cases
with di↵erent ⇣. Higher values of ⇣ correspond to currents that are
more concentrated around the neutral line, located at ⇠ 0.85Rns,
and as such buried deeper within the star. Indeed the strength of the
magnetic field at the equator with respect to the value at the pole,
is higher for smaller ⇣.

Figure 7. Magnetic field for a twisted ring configuration with ⇣ = 0 and
a = 12.6 (corresponding to a ratio Bmax

tor /B
max
pol = 0.15 close to the maxi-

mum). Strentgh of the toroidal magnetic field (left) multplied times a factor
6 for convenience, and poloidal magnetic field (right) normalized to the
surface value at the pole. White contours represent magnetic field surfaces
(isocontours of A�). The thick green line is the stellar surface.

3.3 Twisted Ring Configurations

In the previous section we have shown that in the case of TT geom-
etry it is not possible to reach toroidally dominated configurations.
This result is also independent on the particular shape of the current
distribution I. The system always self-regulates. As was pointed
out by Ciolfi & Rezzolla (2013) this is due to the one to one cor-
respondence between integrated quantities, like the net current and
magnetic field energy. Motivated by this, we can look for di↵erent
forms for the equation I that allow a larger toroidal field, with a
smaller net integrated current. The current given by Eq. (13) has
always the same sign, and as shown, acts as an additive term. On
the other hand, the current associated to Eq. (14) changes its sign
within the toroidal region where it is defined. The field in this case
has a geometry reminiscent of a Twisted Ring (TR): its strength van-
ishes on the neutral line, where also the poloidal field goes to zero,
and reaches a maximum in a shell around it. This can be clearly
seen in Fig. 7. The net integrated currents in this case, is much less
than in the case of Eq. (13), and it is globally subtractive.

In Fig. 8 we show how the ratio of magnetic energy associated
to the toroidal fieldHtor over the total magnetic energyH changes
with the parameter a and ⇣. Again we find that it is not possible to
build models that are toroidally dominated. The maximum value of
the ratio Htor/H never exceeds 0.03 for all the values of ⇣ that we
have investigated. The reason now is exactly the opposite of the one
for TT configurations. The current of TR geometry, as anticipated,
is subtractive. It acts like the nonlinear terms in the purely poloidal
configurations with ⇠ < 0. Its e↵ect is to remove current from the
interior of the star. This means that in the region where I , 0,
the vector potential A� becomes shallower: the quantity [Amax

� �
Asur
� ] diminishes. However, the strength of the toroidal magnetic
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• The surface B-field is strongly influenced by the 
location and the distribution of currents 

• Limit on the magnetospheric twist: self-regulating 
mechanism between internal and external currents
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Figure 3. Purely poloidal field case. Magnetic field at the surface normalized to the value at the pole, for various values of ⇠. Left column represents cases
with ⌫ = 1, central column cases with ⌫ = 4 and right column cases with ⌫ = 10. Upper panels display the total strentgh of the poloidal magnetic field, middle
panles the strength of the parallel ✓ component, and lower panels the radial one.

acterized by a torus-like region, in the interior of the star, just under
the stellar surface, where the toroidal field is confined. This geom-
etry can be obtained if one chooses for the current function I the
form of Eq. (13). In Fig.4 we show the magnetic field distribution
for a typical TT solution.

Particular attention has been recently devoted to the study
of this kind of systems, because there is evidence that magnetic
field, in a fluid star, tends to relax toward a twisted torus geom-
etry, and that only mixed configurations can be dynamically sta-
ble (Braithwaite 2009; Braithwaite & Nordlund 2006; Braithwaite
& Spruit 2006). Motivated by these dynamical studies, e↵orts in
the past have gone toward modelling systems where the equilib-
rium magnetic geometry was such that the magnetic energy was
dominated by the toroidal component. Despite several attempts in
various regimes (Ciolfi et al. 2009; Lander & Jones 2009; Pili, Buc-
ciantini & Del Zanna 2014a), only configurations where the ener-
getics was dominated by the poloidal component could be found.
Recently Ciolfi & Rezzolla (2013) have shown that a very peculiar
current distribution might be required in order to obtain toroidally
dominated systems. This raises questions about the importance of
the specific choice in the form of currents I and M. More pre-
cisely one would like to know if previous failure to get toroidally
dominated geometries is due to a limited sample of the parameter
space, or if only very ad hoc choices for the current distribution
satisfy this requirement. Moreover most of the e↵orts have concen-
trated onto understanding how this magnetic field acts on the star,
and the amount of deformation that it induces. This is mostly mo-
tivated by searches for possible gravitational waves from neutron
stars. Attention has focused on a limited set of models, and current
distributions. In particular a deep investigation has been carried out
only for the case ⇣ = 0 and ⇣ = 0.1 (Lander & Jones 2009; Pili,
Bucciantini & Del Zanna 2014a).

Here we present a full investigation of TT configurations for
various values of the parameter ⇣. This parameter regulates the
shape of the current distribution inside the torus. For ⇣ ! �0.5 the
current becomes uniformly distributed within the torus, while for
⇣ > 0 it concentrates in the vicinity of the neutral line, where the
poloidal field vanishes. It was shown that it is the integrated current
associated with the current function I that prevents TT configura-
tions to reach the toroidal dominated regime. As the strength of this

Figure 4. Magnetic field for a twisted torus (TT) configuration with ⇣ = 0
and a = 1.5 (corresponding to the maximum of the ratioHtor/H). Strength
of the toroidal magnetic field (left), and poloidal magnetic field (right) nor-
malized to the surface value at the pole. White contours represent magnetic
field surfaces (isocontours of A�). The thick green line is the stellar surface.

current increases, the toroidal field rises, but the torus-like region
shrinks toward the surface of the star and its volume diminish.

In Fig. 5 we show how the ratio of magnetic energy associated
to the toroidal fieldHtor over the total magnetic energyH changes
with the parameter a and ⇣. The maximum value of this ratio is al-
ways of the order of 0.06, slightly higher for smaller values of ⇣.
In all cases we verified that at high values of a the volume of the
region containing the toroidal magnetic field is strongly reduced.
For ⇣ = 1 we could not find equilibrium models (solution of the
GS equation) all the way to the maximum (the algorithm failed
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