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Difficulty in understanding of earthquake

earthquakes distribution (seismicity)
along plate boundaries
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Incomplete theory = elasticity

Schematic diagram of deformation

at plate boundary

trench

strain increase

e current bases of seismology:

All strain released by slip
at contact surface
contact surrace
plate boundary

It cannot explain

small earthquakes (=seismicity)

CAII strain released )

Slip only at boundary
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realistic deformation theory

is necessary (= motive)




Main theme of today’s talk

Y% How we can obtain deformation theory of medium?

(bases of the earthquakes occurrences)

fracture and deformation in the earth’s crust

Research object: friction law in rock experiments

earthquakes are compared to frictional slips
along the tectonic plate boundary

“easiness to understand: rock experiment > earthquakes

| will focus on the rate- and state-dependent friction law
(Dieterich, 1979)
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Sand particles in frictional layer between rocks

Before islocation

 Even in the small frictional layer,
sand particles are deformed,
crushed, compacted.

e These phenomena probably
causes the complexity of friction

e The mechanism of friction can be
related to that of earthquakes

(Mair & Marone,1999)



Sand particles in frictional layer between rocks
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e These phenomena probably
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Wideness of earthquakes

Cross section along the plate movement
JAPAN
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e wide distribution
along the plate boundary

WL et e Magnitude:
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" (1964-2007 & 2011, M5<, USGS)|
Magnitude-frequency diagram The mechanism can

be related to them

iutenberg-Richter law

(Power law)| &« Another model of G-R law called as
“cumulative Gompertz distribution”
can have the same entropy formula
as that in heavy ion physics
(Biro et al, 2015)
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http://pubs.usgs.gov/of/2010/1083/d/

Main theme of today’s talk

Y% How we can obtain deformation theory of medium?

(It causes the earthggakes occurrences)

fracture and deformation in the earth’s crust

Research object: friction law in rock experiments

earthquakes are compared to frictional slips
along the tectonic plate boundary

“easiness to understand: rock experiment > earthquakes

| will focus on the rate- and state-dependent friction law
(Dieterich, 1979)
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Outline of rock experiments

Load (velocity controlled)

e Static & dynamic friction
\\ are tested with various
\\\\\\\\\ condition:
"‘\t\\\\\' rock type, temperature, )

Frictional interface/) humidity, normal stress

with/without sand at the
_interface Y

TStress:.

P
¥ t
' i gl
. f
e A i e .
-
0 -, -
3 &, .'
i 0
T 1 A g
s 8 ~
i el e g
i K3 .
gy * o*
a4 1A .
r f .
.
L, s
— Ll

DISPLACEMENT TRANSDUCER

o e,
Ul
s ™ ‘
~ (Dieterich, 1981)

Servocontrolled to constant
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Static friction increases with time
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e Static friction o< log (time)

e Friction decreases
to dynamic one
with displacement
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Featurel/3: Stable dynamic friction o< log(slip velocity)

.

»

*
> $H
+ae

0.60

Dieterich 1978

Dynamic friction
F

oN I N N

Kilgore et al 1993

Scholz & Engelder 1976 ® .
Tullis & Weeks 1986

Johnson & Marone 1997

1 llllllll 1 IIIIII!I 1 I!IJ[IIII 1 Illlllll_ :

Velocity weakening

B

..t Eob

O

1077 102 10t 10° 10'10% . 10°_10*

/’ Slip velocity V (um/s)

logV dependency

(Marone, 1998)

Rock samples loaded with
constant velocity

Friction weakens or
strengthen with velocity
depending on the tested
condition

‘ex. Interface sand
without sand: weaken

with sand: strengthen
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Feature2/3: frictional jump o< log(velocity step)

ﬂ

- Velocity weakening case
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* Loading velocity step
causes instantaneous
jump of dynamic friction

* Following the jump,
the friction transitions
to the stable one

e Both jump and relaxation
depend on In(velocity step)
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Feature2/3: frictional jump o< log(velocity step)

- Velocity weakening case N ° Loading velocity step
causes instantaneous
velocity V1 V2 jump of dynamic friction
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Feature3/3: symmetric relaxation with constant displacement

] Velocity weakening case N\
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Both case of velocity increase
and decrease has frictional
jump and relaxation with
constant displacement (Dc)

vel. increase: jump up

vel. decrease: jump down
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Empirical equation of the friction law

Empirical equations of

rate- and state-dependent friction law Simulated frictional change
with displacement
- V V,0 "
L=y, +aln| — | +bIn| —— |
®ﬁ o ( Va) ( D, ) t 'F \
AN
20 _ Vo do_ Ve In(vej aln(V2/V1)| pIn(V2/V1)
- = _ or = — H .
| dt D, dt L L 0.60 1 : e
(Dieterich, 1979) (Ruina, 1983) e N T
©: Static friction Dynamic friction 058 :
(W: shear stress t: time V: slip velocity 0-98
Wo:reference friction for V, Vi=Ium/s V2.=10um./s . V1=lum/s

b 50 100 150 200 X lam]

D.: characteristic slip distance

(O: state variable a,b: positive parameters

 Neither of them can reproduce both (static & dynamic) friction.

N2

 We will reproduce the experimental result with thermodynamics.
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friction = dissipative event -> thermodynamic issue




Previous thermodynamic model (Mitsui and Van, 2014)
A

| mX
damping force / ! —
Fa : Rock sample
N :
% 2
Start point ’ N
€ > :
X-r Lo -

permanent displacement

equation of motion: mX =F, - F,
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entropy balance: TS(U) = FV —krf >0 - 2nd law of thermodynamics



Improvement of thermodynamic model

 Important feature * introduced elements
(instantaneous jump \ ﬁ partial steady state \
aln(V2/V1 U=E-mV?/2—kr?/2
2. following relaxation \J

bln(V2/V1) U=E,-mV -V, ) /2-kr?/2

3. symmetric relaxation with disp. 2. logarithmic increment
based on thermal activation theory

Dc
(chemical reaction: Eyring, 1936;
. rock friction: Nakatani, 2001)
velocity
(um/s) Au(V =Vy)— Audn(V 1V,)
= . ,
SB[ 3. factor of slip reduction
S =t : .-
ER T in elastic displacement

' dr dr 1
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(Van, Mitsui, Hatano, 2015, arXiv:1501.04608v1)




Improved constitutive equations

entropy balance: SU) =N — k1t >0
o, A
Improvements ¢

1. partial steady state

2. logarithmic increment TS (L'i\) _ ,UOVO -I—A_,u"'l(V /VO)_’“EV

-+ cf. Ruina law (1983) -

--------

3. factor of slip reduction | O
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constitutive equations: 4

dr _ dr :f
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(Van, Mitsui, Hatano, 2015, arXiv:1501.04608v1)
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Results

A=l In(V IVy) =,k
1. L, In(V /V,) =1, &t
I 1+, In(V /Vy) =1, «r)

“a->larger: asymmetric relaxation

" Dieterich law
N (a=8, k=0.85)

Ruina Iaw
(a=0, k=1)

(a=1x=0.8 )
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(Van, Mitsui, Hatano, 2015, arXiv:1501.04608v1)
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Static friction
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e |og(t)-like increase in static friction Au is reproduced

e Both dynamic & static friction are reproduced with
one set of constitutive equations

(Van, Mitsui, Hatano, 2015, arXiv:1501.04608v1)



Summary

e First motive: to understand mechanism of earthquakes

N2

e Current motive: deformation theory of medium under stress

object: static & dynamic friction of rocks
(quasi-thermostatic condition)
Results:
1. friction at reference velocity can be explained by using )
partial steady-state condition of internal energy
2. logV dependencies of friction are reproduced
by the logarithmic increments of entropy production
3. symmetric relaxation can be explained
by introducing a factor of slip reduction in elastic evolution
\_ 4. Above three elements reproduce_log-t increase of static friction
Advantage:
simple model can be applied to geophysics with upscaling
Future plan: physical bases of assumptions in this model, etc.
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