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Representations of compact groups and compact Lie algebras

e The representation theory of compact groups is a well-understood subject

into which one can embed another classic field, the representations of
compact Lie algebras.
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e all the questions concerning the representation theory of semi-simple (and
compact) Lie algebras are already solved.
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Representations of compact groups and compact Lie algebras

e The representation theory of compact groups is a well-understood subject

into which one can embed another classic field, the representations of
compact Lie algebras. One hears usually the following statements:

e all the questions concerning the representation theory of semi-simple (and

compact) Lie algebras are already solved.

e There are no interesting and 'natural’ properties of the representation
theory of compact Lie algebras that makes it very distinct from that of
compact groups.

e All the group theory needed for physics have been already worked out.
Group theory has no more practical importance for physics.
Revival of the Gruppenpest argument of Slater. (interview with E. Wigner by Lillian
Hoddeson, Gordon Baym and Frederick Seitz at the New Yorker Hotel January 24, 1981)
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e Any continuous representation of a compact group is equivalent to a
unitary representation.
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e Any continuous representation of a compact group is equivalent to a
unitary representation.

e Any continuous irreducible representation (irrep) of a compact group is
finite dimensional.
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Representations of compact groups - basic properties

e Any continuous representation of a compact group is equivalent to a
unitary representation.

e Any continuous irreducible representation (irrep) of a compact group is
finite dimensional.

e Any continuous representation of a compact group is completely
reducible.

e For any two irreps can define through the Clebsch-Gordan series (or the
direct-product fusion rules)

i X )\j = @szkj)\k

The representation ring of the compact group. (More precisely it is a
ring with a basis/ordered ring/rig/semi-ring.)
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e For any two irreps can define through the Clebsch-Gordan series (or the
direct-product fusion rules)

i X )\j = @szkj)\k
The representation ring of the compact group. (More precisely it is a

ring with a basis/ordered ring/rig/semi-ring.)

e Given H < G (H is a closed subgroup of the compact group G), and an
irrep A\ of G,
X = @k NiAY,
where N are called restriction fusion rules.
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Dynkin solved all representation theoretic problems

concerning semi-simple Lie algebras...
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Dynkin solved all representation theoretic problems

concerning semi-simple Lie algebras...

A baby version of the famous P # NP conjecture is Valiant's conjecture
VP # VNP.

Consider h = su(d1) @ su(dz) and g = su(di1dz) with the canonical
embedding b < g, and the restriction fusion rules

Al = @ N A

Solving VP # VNP is equivalent to deciding whether there exists a
polynomial algorithm (in d1, d2, and the dimension of \?) for obtaining
the above Nj.

This question gave rise to a whole field of modern mathematics called
Geometric Complexity Theory, with many subquestions, e.g., is there a
polynomial algorithm for deciding Ny # 0.
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The representation rings of compact Lie algebras

have no distinct features...

e Consider the dihedral and quaternion groups, D4 and Qs

D, Qg

Dyl1 1 2 2 2 Q1 1 2

1z r s t 1 -1 i
111 1 1 1 111 1
Al 1 1 -1 -1 N1 o1o1
A1 1 -1 1 -1 Ajfr1 -1
M1 1 -1 -1 1 Ml 1 -1
5|2 -2 0 0 0 €2 -2 0
p|/8 0 0 0 O p|8 0 O

e Dy and Qs are not isomorphic, but isomorphic
rings.

2 2
ik
11
-1 -1
1 -1
-1 1
o o
0o o

isomorphic representation
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The representation rings of compact Lie algebras

have no distinct features...

e Consider the dihedral and quaternion groups, D4 and Qs

D,

Qs

Dyl 1 2 2

1 2 r s
111 1 1
M1 11 -1
Al 1 -1 1
M1 1 -1 -1
52 -2 0 0
p|8 0 0 0

-1

-1
1
0
0

2
i
1
1
-1
-1

0
0

e Dy and Qs are not isomorphic, but isomorphic

rings.

isomorphic representation

¢ Handelman's theorem: the representation ring (A\; x \; = ©,N/5\x)
uniquely determines a semi-simple Lie algebra/simply connected compact

Lie group. (J. R. McMullen, Math. Z. 185 539 (1984); D. Handelman, Int. J., 4 59 (1993); D. Kazdhan, M. Larsen,

Y. Varshavski, Algebra & Number Theory 8 243 (2014).).
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The representation rings of compact Lie algebras

have no distinct features...

e Consider the dihedral and quaternion groups, D4 and Qs

D, Qg

Dyl1 1 2 2 2 Qlr 1 2 2 2

1z r s t 1 -1 i j k&
111 1 1 1 111 1 1 1
Al 1 1 -1 -1 Ml 11 -1 -1
A1 1 -1 1 -1 At 1 -1 1 -1
M1 1 -1 -1 1 Ml 1 -1 -1 1
5|2 -2 0 0 0 €l2 -2 0 0 0
p|/8 0 0 0 O pl8 0 0 0 O

e Dy and Qs are not isomorphic, but isomorphic isomorphic representation
rings.

¢ Handelman's theorem: the representation ring (A\; x \; = ©,N/5\x)
uniquely determines a semi-simple Lie algebra/simply connected compact
Lie grou p (J. R. McMullen, Math. Z. 185 539 (1984); D. Handelman, Int. J., 4 59 (1993); D. Kazdhan, M. Larsen,
Y. Varshavski, Algebra & Number Theory 8 243 (2014).). | he theorem was proved using the

classification of semi-simple Lie algebras and their representations.
5/21
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Square Consider two irreps A, u of a compact group G, then

Reprosen- IA % ell2 = ||A x 7|2 holds. Furthermore, [|A x uls = || x 71

e holds if G is simply connected and compact. (r. Coquereaux, J-B. Zuber J. Phys. A 44
gebras

Or: 295208 (2011); Sigma 9 039 (2013); J. Phys. A: Math. Theor. 47 455202 (2014) )
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Decides
Simulability

On sums of tensor and fusion multiplicities

Robert Coquereaux
Centre de Physique Théorique (CPT),
CNRS UMR 6207
Zoltsn Luminy, Marseille, France
Zimboras Jean-Bernard Zuber
Laboratoire de Physique Théorique et Hautes Energies,
CNRS UMR 7589 and Université Pierre et Marie Curic - Paris 6,
4 place Jussieu, 75252 Paris cedex 05, France

Abstract

The total multiplicity in the decomposition into irreducibles of the tensor product A ® u of
two irreducible representations of a simple Lie algebra is invariant under conjugation of one of
them 32, N,,* = 33, Ny,*. This also applies to the fusion multiplicities of affine algebras in
conformal WZW theories. In that context, the statement is equivalent to a prope
modular S matrix, viz B(x) := 3, Sys = 0 if & is & complex representation. Curiously, this
vanishing of £(x) also holds when  is a quaternionic representation. We provide proofs of
all these statements. These proofs rely on a case-by-case analysis, maybe overlooking some
hidden symmetry principle. We also give various illustrations of these properties in the contexts
of boundary conformal field theories, integrable quantum field theories and topological field
theories,

Of course the Theorem is non-trivial only in cases where g has complox representations, i.c. § =
Dizes or Es. Although this looks like a classroom excrcise in group theory, we couldn’tfind either
a reforence in the literature or & simple and compact argument and wo had to resort to a case by
case analysis, see Sect 2] below. Note also that this property is not a trivial consequence of the
gencral representation theory of groups; in particular, it docs not hold in gencral in finite groups,
see Sect 7] below for counterexamples based on finite subgroups of SU(3).
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The representation rings of compact Lie algebras

have no distinct features...

e Consider two irreps \;, A; of a compact group GG, and the Clebsch-Gordan
series \; X \; = @, N/ \,. The relation NJ £ f; fi > 0 holds if G is

Slmp|y connected. (Ev P. Wigner, On representations of certain finite groups, Amer. J. Math., 63 (1941), 57-63.)
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The representation rings of compact Lie algebras

have no distinct features...

e Consider two irreps \;, A; of a compact group GG, and the Clebsch-Gordan
series \; X \; = @, N/ \,. The relation NJ £ f; fi > 0 holds if G is

Slmp|y connected. (Ev P. Wigner, On representations of certain finite groups, Amer. J. Math., 63 (1941), 57-63.)

o Consider the irreps A1, A2,..., A, and p1, p2,. .., vy of a simply
connected compact group G. If A\j X A2 X ... X Ay 2 v XV X ... X Upp,
then n = m and there exists a permutation m € S, such that Ay = v ().
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The representation rings of compact Lie algebras

have no distinct features...

e Consider two irreps \;, A; of a compact group GG, and the Clebsch-Gordan
series \; X \; = @, N/ \,. The relation NJ £ f; fi > 0 holds if G is

Slmp|y connected. (Ev P. Wigner, On representations of certain finite groups, Amer. J. Math., 63 (1941), 57-63.)

o Consider the irreps A1, A2,..., A, and p1, p2,. .., vy of a simply
connected compact group G. If A\j X A2 X ... X Ay 2 v XV X ... X Upp,
then n = m and there exists a permutation m € S, such that Ay = v ().

o All of these theorems have classification dependent proofs.

7/21
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Elementary unitary quantum control theory |

e Assume that we can implement interactions from a given set
T ={iH,,iHs, ...} of Hamiltonians with tunable control parameters:
H(t) =3, a;(t)H;. This generates a unitary of the form

1 m
U= T/ exp Ziozj(t)Hj
t=0 =
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Elementary unitary quantum control theory |

e Assume that we can implement interactions from a given set
T ={iH,,iHs, ...} of Hamiltonians with tunable control parameters:
H(t) =3, a;(t)H;. This generates a unitary of the form

1 m
U= T/ exp Ziozj(t)Hj
t=0 =

e Two basic questions:

e Which are the gates (unitaries) that we can generate?
e How can we achieve a given gate in the most efficient way?

8/21
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Elementary unitary quantum control theory I

e Using the Lie -Trotter formulas, we have
[iHy,iH,)

e —  lim (ein/\/ﬁeiﬂl/\/ﬁe*’iﬂk/\/ﬁeﬂ'Hz/\/ﬁ)n7
n— o0
e HaHHBH) (e—uaHk/n)e—i(ﬂHz/n) "
n— oo

shows that one can obtain exponential of all commutators
[iHy,iH,), [[¢Hk,iH],iHm], .. .(and their linear combinations)

9/21
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Elementary unitary quantum control theory I

e Using the Lie -Trotter formulas, we have

ltHi i il (ein/\/ﬁeiHl/\/ﬁe*in/\/ﬁe*iHl/\/ﬁ) ,
n— o0
eTiOHRABH) i (gmieHR/m) g—i(BH/m) )"
n— oo

shows that one can obtain exponential of all commutators
[iHy,iH,), [[¢Hk,iH)],iHm], .. .(and their linear combinations),
i.e., we end up with the full Lie algebra generated by 7:

iH € (iHy,iHa,...,iHn) ;..

we can obtain U = ¢,

9/21
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o Pure-state controllability:

(tH1,iHo,...) = su(d) when d is odd,
(tH1,iHo,...) D usp(d) when d is even.
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e Is there an efficient way to determine whether
i1H e <iH1, ’iHQ, .. ‘7iHn>Lie (OI’ U e G)7
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e Is there an efficient way to determine whether
i1H e <iH1, ’iHQ, .. ‘7iHn>Lie (OI’ U e G)7
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e Discrete case: {U1,Us,...U,} set of unitaries; G is the discrete (finite or
infinite) group generated by this set. Is there an efficient way of
determining whether U € G?
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Analogous question in associative

e Given a set of operators {O1, O2,
algebra (C*-algebra) A.

T-matrix algebras (C* algebras)

... Oy}, consider the generated matrix
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Analogous question in associative f-matrix algebras (C* algebras)

e Given a set of operators {O1,Oa,...0Oy}, consider the generated matrix

algebra (C*-algebra) A. Is there an efficient way to determine whether
OeA?
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Analogous question in associative f-matrix algebras (C* algebras)

e Given a set of operators {O1,Oa,...0Oy}, consider the generated matrix

algebra (C*-algebra) A. Is there an efficient way to determine whether
O e A?
e O € Aiff {O1,04,...0,,0} also generates only A.
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Analogous question in associative f-matrix algebras (C* algebras)

e Given a set of operators {O1,Oa,...0Oy}, consider the generated matrix

algebra (C*-algebra) A. Is there an efficient way to determine whether
O e A?
e O € Aiff {O1,04,...0,,0} also generates only A.

o {01401,01-0],0.+0},0,-0},...0,+0},0,-0%} = &
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Analogous question in associative f-matrix algebras (C* algebras)

e Given a set of operators {O1,Oa,...0Oy}, consider the generated matrix
algebra (C*-algebra) A. Is there an efficient way to determine whether
OeA?

e O € Aiff {O1,04,...0,,0} also generates only A.
o {01401,01-0],0.+0},0,-0},...0,+0},0,-0%} = &

e Hence O € A iff
a {01+0],01-01,0540},0,-0},...0,+0},,0,—-0}} c
{0+01,0-01Y
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Sy e O ¢c Aiff {O1,02,...0y,0} also generates only A.

{01401,0,-0},0,+0},0,-0},...0,+0},,0,—0}} = A’
Hence O € A iff

a {01+0],01-01,0540},0,-0},...0,+0},,0,—-0}} c
{0+01,0-01y"

Proof: a baby version of von Neumann's double commutant theorem.
There are efficient ways to find the commutant!
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e For Lie algebras: ~ ~
{iH1,iH>,...iH,} ¢ {iH} = iH ¢ (iHy,iHz, ... iHy), ;.
However, the converse doesn’t hold.
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Analogous question in associative f-matrix algebras (C* algebras)

e Given a set of operators {O1,Oa,...0Oy}, consider the generated matrix
algebra (C*-algebra) A. Is there an efficient way to determine whether

O e A?

O € Aiff {01,04,...0,,0} also generates only A.
{01+0],01-0},0,+0},0,-0},...0,+0},0,-0%} = &

Hence O € A iff

a {01+0],01-01,0540},0,-0},...0,+0},,0,—-0}} c
{O+01,0-01y

Proof: a baby version of von Neumann's double commutant theorem.
There are efficient ways to find the commutant!

e For Lie algebras: ~ ~
{iH1,iH>,...iH,} ¢ {iH} = iH ¢ (iHy,iHz, ... iHy), ;.
However, the converse doesn’t hold.

e Is there some hope for some other easy algorithm?
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e For Hamiltonians:

o |f there exists a non-trivial symmetry S, such that [S, H;] = 0 for all
{iH1,iH2,...,iHyn}, but [S,iH] # 0, then :H cannot be generated.

e However, this is only a necessary, but not sufficient, condition.
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A simple example

e The pair interaction iH .. := iZ1 Z> cannot be simulated by the local

interactions P = {iX1,1Y1,iX2,:1Y2} of a two-qubit system in spite of

coinciding (trivial) commutants P’ = (P U {iH..}) = Cla.

1

SYRTYYY;

e However, we know that if we consider a 'doubled Hilbert space’, then
there are entanglement (or LU) invariants.

W (| PY )|y =
WU @ Uf) ® (U] @ U P (Ur @ Uz) ® (Ur @ U2)|[9)|4)
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A simple example

e The pair interaction iH .. := iZ1 Z> cannot be simulated by the local

interactions P = {iX1,1Y1,iX2,:1Y2} of a two-qubit system in spite of

coinciding (trivial) commutants P’ = (P U {iH..}) = Cla.

”””” 1

SYRTYYY;

e However, we know that if we consider a 'doubled Hilbert space’, then
there are entanglement (or LU) invariants.

W (| PY )|y =
WU @ Uf) ® (U] @ U P (Ur @ Uz) ® (Ur @ U2)|[9)|4)

e Hence we should study higher order symmetries.

14/21
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Lie
Rgate e For Unitary Gates:

Sg:;?:etsyy o A non-trivial second-order symmetry S(2) on H®2 or a third-order
Shnuabiity symmetry S®) on H®3 are operators that satisfy [S(2), U; ® U;] = 0 and
[S®)U; @ U; @ U;] = 0 for all {U1,Us,...,Un}.

P e If for some n-th order symmetry [S(") U®"] +£ 0, then U cannot be

Zimboras generated.

e This cannot be a sufficient an necessary condition for any finite n - e.g.
group designs provide counter examples.
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Sg:;?:etsyy o A non-trivial second-order symmetry S(2) on H®2 or a third-order
Shnuabiity symmetry S®) on H®3 are operators that satisfy [S(2), U; ® U;] = 0 and
[S®)U; @ U; @ U;] = 0 for all {U1,Us,...,Un}.

P e If for some n-th order symmetry [S(") U®"] +£ 0, then U cannot be

Zimboras generated.
e This cannot be a sufficient an necessary condition for any finite n - e.g.
group designs provide counter examples.
e For Hamiltonians:

e Second-order and third-order symmetries: [S(2),iH, @ 1+ 1 ® iH,] =0
and [S®)iH, ®1®1+1®:iH,®1+1® LiH,] = 0 for all
{iHy,iHs,... iHp}.

e If [S® iH®1+1®iH]#0 then iH ¢ (iH1,iHa,...,iHm)Lie.
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Our main theorem

Theorem

Given a subalgebra ) of a compact semisimple Lie algebra g and a faithful
representation ¢ of g, then the following statements are equivalent:
(1)h=g,

(2) dim(com[(¢ ® @)[y]) = dim(com[¢ & 4]),

(3) dim(com[(¢ @ @)[5]) = dim(com[¢ & ¢]),

(4) I(@® P)lvll2 = [l ® ¢||2,

(5) I ® D)|sllr = Il ® ||,

(6) I(6 ® D)|vll2 = [l ® |2

(7) (2@ B)lsllr = llp @ ¢l
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Let o be a simple and self-dual representation of a compact simple Lie algebra
Zoltén g, and let by be a subalgebra of g, then

Zimbords (1) ||[(a@® a)lp]l1 = bla) + [ja ® a1,

) l(a®@a)lyll2 > b(@)* + ||a ® |2, and

(3) dim(com[(a ® @)[5]) > b(a)? + dim(com[a ® a]) hold,

where b(cw) denotes the number of non-vanishing components in the highest
weight (a1, ..., aq¢) corresponding to a.
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Our final main result for control theory

Consider two sets P := {iH1,...,iH,} and Q := {iHp41,...,1Hq} of
(skew-hermitian) interactions, and let C,, denote elements of a linear basis
spanning the ce

nter C of the commutant (PUQ)’. For the central projections, define the
matrix 1" by its entries Thp := Tr[CliHg] for 1 < a < dim(C) and 1 < 8 < ¢
as well as T by T := Tr[CliHp] for 1 < 8 < p. Then P simulates Q in the
sense (P) = (PUQ), if and only if both conditions

(A) dim[P®] = dim[(PUQ)?] and (B) rank(T) = rank(T") are fulfilled.
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Central spin model

Consider a central spin interacting with n—1 surrounding spins via a
star-shaped coupling graph (where the surrounding spins may be taken as
uncontrolled spin bath) The interactions amount to a drift term (tunneling
plus coupling) and just a local Z-control on the central spin, P := {iX;
+id gy Je(Xi Xp+Y1Ye+Z1Z1k), iZ1}. We ask whether the central spin
can be fully controlled, i.e., if @ := {iX:} can be simulated.
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Central spin model

Tensor

st,";f,., Table : Central spin model. number n of spins, Lie dimensions

latif,": of dim((P)) = dim((PUQ)), the isomorphy type, dimensions of second- and first-order
Algebras symmetries (i.e. dim[P(®)] = dim[(PUQ)®] and dim[P’] = dim[(PUQ)’]), and

Or:

Symmetry ranks of the central projections (i.e. rank(T) = rank(T)).

Simtabity
n Lie- Isomorphy No. of symmetries Rank of

dim. type 2nd 1st proj.

RZoiny case (a): Jpy =1
2 15 su(4) 2 1 0
3 38 su(2)@su(6) 8 2 0
4 78 su(4)Psu(8) 50 5 0
5 137 su(2)®su(6)Psu(10) 392 14 0
6 221 su(4)®su(8)Psu(12) 3528 42 0
case (b): Jk = 2 for even k and Ji = 1 otherwise
2 15 su(4) 2 1 0
3 63 (8) 2 1 0
4 158 su(4)Psu(12) 8 2 0
5 396 su(2)Psu(6)Psu(6)Psu(18) 32 4 0
6 796 su(4)@su(8)@su(12)@su(24) 200 10 0
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e We have proved a theorem, which is

Z_Z'J:t"" e provides new additional results on the representation theory of compact Lie
imborés
algebras;

e shows the distinctness of the representation rings of compact Lie algebras;

e has practical relevance in physics.
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