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ABSTRACT

Based on Tsallis entropy (1988) and the corresponding deformed exponential function,
generalized distribution functions for bosons and fermions have been used since a while
Teweldeberhan et al. (2003) and Silva et al. (2010). However, aiming at a non-extensive
guantum statistics further requirements arise from the symmetric handling of particles
and holes (excitations above and below the Fermi level). Naive replacements of the expo-
nential function or “cut and paste” solutions fail to satisfy this symmetry and to be smooth
at the Fermi level at the same time. We solve this problem by a general ansatz dividing the
deformed exponential to odd and even terms and demonstrate that how earlier sugges-
tions, like the « - and g-exponential behave in this respect.

© 2015 Elsevier B.V. All rights reserved.
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- KMS Relation and quantum statistics

X

Kubo-Martin-Schwinger:

(A,By) = Tr(e~PHe™ Ae~"H B)

(
r(ePH ! pe~itHPH ~PHpR)
(

. Ei(t+iﬁ)HAE—i(f+iﬁ}HE—;‘5’HB)

R.Kubo, J.Phys.Soc.Japan 12, 570 (1957)
2015/7/16 P.C.Martin and J.Schwinger, Phys.Rev.115, 1342 (1959)



- KMS Relation and quantum statistics
p.3

Considering the case with 4, = e ®tq and B, = Al = e!®tq?

{{mT} = {aiaﬁﬁ“"

using the commutator of the two operators

[a= QT]:F =1

and the Hermitian operator n=a'a

we can derive

1
efw 1

n{w) =

The upper sign is for Boson system, while the lower sign for
2015/7/16 Fermion system



KMS Relation and quantum statistics

- X

Thermodynamically, for the Bosons,

n(w) y (o) — 1
1+n(m)_f” = nw) 1/f(w) —1

where f(w) is the statistical weight factor with energy.

In the former case, (BG Statistics),
f(w) = e B

2015/7/16



- KMS Relation and quantum statistics
p.3

Particle to hole ratio with CPT

Missing negative energy particle = positive energy hole

—n(—w) =1+ n(w)
means

- 1 . 1
1/f(~w)=1 = 1/f(w) -1

Generalized KMS relation

@ () =1
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- Tsallis puzzle and deformed distributions

X

KMS_Relation for Boltzmann case and T==100MeV
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- Tsallis puzzle and deformed distributions
X
Tsallis (1988), Daroczy (1963),
Renyi1* (1959)

Sq = k(1= [/ (170

Where k is a positive constant (from now on set equal to 1), W is the number of microstates
in the system, P; are the associated normalized probabilities and the Tsallis parameter g is a
real number. Similar to the integral form.

. is, J. . Phy. 52
2015/7/16 C. Tsallis, J. Stat. Phy. 52 (1988) 479



- Tsallis puzzle and deformed distributions
* The nonextensive entropy for fermions proposed as,
ni-nf'\ | (A-n)-(1-n)1
Sq = Zi{(;T) t—— B
* The extremization of it under the constraints imposed by

the total number of particles and the total energy of the

system leads to the distributions,
1

N+ (0 - DB — ]V 1
Similarly, for bosons,

1
[1+ (g — DB — W]/~ D-1

n’,; =

A. M. Teweldeberhan, H. G. Miller, and R. Tegen, /nt. J. Mod. Phys. E 12, 395
2015/7/16 (2003)



- Tsallis puzzle and deformed distributions
X

Tsallis puzzle

As for this g-exponential distribution, for Bosons,

fq(w)fq(_w) = eq(w)eq(_w) + 1

means

—ng(—w) # 1+ n4(w)

KMS relation breaks |

2015/7/16 Equ(:r) =[1+(1- q)j;]lm—q) .



Tsallis puzzle and deformed distributions
X

e For Fermions,

* Considering the anti-particles, for BG statistics we have

n(w,u, 7)) + n(—w,—u,T) =1

 While for Tsallis statistics we have

n(w,uw,T,q) +n(—w,—u,T,q) #1

n(w,wT,q) +n(—w,—u,T,2—q)=1"1!

7/16/2015
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- Tsallis puzzle and deformed distributions

X

Tsallis puzzle

KMS_Relation for Tsallis case and T==100MeV
A

41

so 100 10

2015/7/16 13



- Tsallis puzzle and deformed distributions
X

Cut-off prescription

Since the primary g-exponential contains Tsallis' cut-of f
condition, A.M.Teweldeberhan et al. proposed an alternative
generalization

|
[1+(g—Dx]e-', x>0,
|
[1+ (1 =¢g)x]™7, x<0.

which satisfies KMS relation obviously.

& (x) =

A.M.Teweldeberhan et al. /Physics Letters A
2015/7/16 343 (2005) 71-78 H



- Tsallis puzzle and deformed distributions

X

Cut-off prescription
KMS_Relation for Cut—off prescription and T==100MeV

A
: —_— n(x)
4t
[ n(-x)
) — ~(1+a(x))
" 1 " " " " 1 " " " " 1 " >
50 100 150
-4}
-6

2015/7/16
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- Tsallis puzzle and deformed distributions
X

Linear combination

Assume
nKMS((‘)) = A[qu ((U) + qu,(a))] + B
where q' = 2 — q satisfies e;(—w) = 1/e,(w)
Considering the KMS relation we can have the values of A and
B, then we get
Ansatz 1

ngus(w) = 5 [ng(w) + ng ()]

with
ng(w) + ng(w)

ng(—w) + ng(—w)

fxms(w) = —

2015/7/16 16



- Tsallis puzzle and deformed distributions

X

Linear combination

A

KMS_Relation for Linear combination and T==100MeV
4t

2+

50 100 150

2015/7/16



- Tsallis puzzle and deformed distributions

Fractional normalization ; {

Considering other solutions, it is seen that

CFEONT (ke
Ek{x)_(f[:-:] ) _(l—lkx)

which satisfies the generalized KMS relation obviously.

With respect to Tsallis g-exponential, k=1-q and A = 1/2
Ansatz 2

eq(_ﬁw/z)
€q (IB(‘)/Z) - eq(_ﬁw/z)

ngs(w) =

with
€q (—,Bw/Z)
eq(Bw/2)

2015/7/16 18

frs(w) = ex(w) =



- Tsallis puzzle and deformed distributions

X

Fractional normalization

KMS_Relation for Fractional normalization and T==100MeV

A

4r —_— nfx)

nf-x)
2 L
—_— —{1+n(x))
50 100 150 o

iyl
-4}
-6}
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- Tsallis puzzle and deformed distributions

Kappa Distribution X
Moreover, with the connection

. 25
1= A2(kx)?

the above fractional normalization leads to the kappa distribution

ex(X) = (\/1 + K2x2 4+ ﬁ:x)un

which automatically satisfies the KMS statistics.

leading to
Ansatz 3
1
M) =1 e (Bw) — 1
with

fr(w) = ex(Bw)

2015/7/16 G. Kaniadakis, Statistical mechanics in the context of special
relativity Il, Phys. Rev. E 72, 036108 (2005)
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- Graphs and results

Bose—Einstein_Distribution for different formulas and T==100MeV

12
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- Graphs and results

logarithm_of _distributions—energy_density

for different f and T==100MeV, q=1.2
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- Graphs and results

X

Bose—Einstein Distribution for different formulas and T=100hIeV

A
Blue: Kaniadakis (kappa),
Green: Tsallis (g = 1 + k),
Red: Boltzmann (g = 1, k = 0)

2015/7/16 23



Graphs and results
m P ?[

; i Blue: Kaniadakis (kappa),

Green: Tsallis (g =1 + k),

Red: Boltzmann (g = 1, k = 0)
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- Graphs and results

X

pressure_energy—temperature for different formulas

Blue: Kaniadakis (kappa),
Green: Tsallis (g = 1 + k),
Red: Boltzmann (g = 1, k = 0)
(for massive bosons)
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an Summary

X

* In general deformed exponentials describe particle/hole
ratio.

 Tsallis g-exponential does not satisfy this generalized KMS!
So we deform the primary g-exponential and get some
results here. From the comparison we can see the
differences among them.

* Next the properties of them will be studied further.
Moreover, developments and applications of these
deformed different distributions, and the exploration of the
relationship with problems, will be greatly welcome.






