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Our Goal Is

to construct particular Coherent States

designed to describe NB n distribution

and non-extensive Tsallisean statistical weights
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Summary of ideal reservoir fluctuations 1

Ideal gas formula and thermodynamical limit:

wLIM
E (ω) = lim

n →∞
E →∞
E/n = T

(
1− ω

E

)n
= e−ω/T . (1)

Poisson average on n at fix E :

wPOI
E (ω) = e−〈 n 〉ω/E . (2)

Negative binomial (NB) average:

wNBD
E (ω) =

(
1 +

〈n 〉
k + 1

ω

E

)−(k+1)

. (3)
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Summary of ideal reservoir fluctuations 2

Expanding up to variance in n we obtain for general n
fluctuations

Exact for Poisson, Bernoulli, Negative Binomial

T =
E
〈n 〉

, and q =
〈n (n − 1) 〉
〈n 〉2

(4)

In general T and q are related to expectation values of
derivatives of the EoS S(E) over reservoir fluctuations.
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State labels
Operator eigenstate

Definition

Consider a coherent state defined by

| z 〉 =
∞∑

n=0

√
pn(t) einΘ |n 〉 (5)

with z =
√

teiΘ. (”nonlinear coherent state”)

It overlaps with the n-quantum state:

|〈n|z 〉|2 = pn(t) ≥ 0. (6)
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Normalization

It is normalized,

〈 z|z 〉 =
∑
n,m

〈m |
√

pmpn ei(n−m)Θ |n 〉 =
∑

n

pn(t) = 1. (7)

The expectation value of a function of the number operator is

〈 z |ϕ(N) | z 〉 =
∑

n

ϕ(n) pn(t). (8)

This ensures that pn(t) is a probability distribution in n!

To what is it an eigenstate?
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Completeness

We construct a complete set:

∫
d2z
π
| z 〉 〈 z | =

∞∫
0

dt

2π∫
0

dΘ

2π

∑
n,m

√
pnpm ei(n−m)Θ |m 〉 〈n |

=

∞∫
0

dt
∑

n

pn(t) |n 〉 〈n | =
∑

n

|n 〉 〈n | = 1. (9)

It is satisfied only if
∞∫
0
dt pn(t) = 1.

This makes pn(t) to a probability distribution function of t!
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CS as eigenstate to some operator

Eigenstate with eigenvalue z to

F | z 〉 = ag(n̂) | z 〉 = z | z 〉 . (10)

Here a is an annihilating (a† is a creating) operator, and n̂ = a†a
is the number operator.
Its action on the CS:

F | z 〉 =
∞∑

n=1

g(n)
√

npn einΘ |n − 1 〉 , (11)

can be re-indexed to

F | z 〉 =
∞∑

n=0

g(n + 1)
√

(n + 1)pn+1 ei(n+1)Θ |n 〉 , (12)
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Recursion law

Compare this with

z | z 〉 =
√

t eiΘ
∞∑

n=0

√
pn einΘ |n 〉 , (13)

to conclude that

pn(t) =
t

ng(n)2 pn−1(t). (14)
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n-probability Symmetric generalized binomial distributions, J.Math.Phys. 54 (2013) 123301

The recursion is solved by

pn(t) = p0(t)
tn

n!

n∏
j=1

g(j)−2. (15)

Here p0(t) can be obtained from the normalization condition.

Also the completeness constraint,
∞∫
0
dt pn(t) = 1, has to be

checked.
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Traditional CS

The most known CS is defined by g(n) = 1.

This results in a Poisson in n and Euler-Gamma in t :

pn(t) =
tn

n!
e−t , (16)

and | z 〉 is an eigenstate to the F = a annihilator.
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7 sources of NBD

1 Phase space cell statistics (Biró)
2 Squeeze parameter (Varró, Jackiw)
3 Wave packet statistics (Pratt, Csörgő, Zimányi)
4 Temperature superstatistics (Beck, Wilk)
5 KNO + pQCD (Dokshitzer, Dremin, Hegyi, Carruthers)
6 Tsallis/Rényi entropy canonical state (Rényi, Tsallis, ...)
7 Glittering Glasma (Gelis, Lappi, McLerran)
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1. Phase Space Cell Statistics

Probability to find n particles in k cells, if altogether we have
thrown N particles into K cells:

Pólya distribution

Pn =

(k+n
n

) (K−k+N−n
N−n

)(K +N+1
N

) .

Necessary limit: K →∞,N →∞ while f = N/K kept finite.
Prediction: k + 1 = 〈 n 〉/ f ∝ Npart, if f is universal.

Here k is the number of observed phase space cells: from which the
detected n particles seem to come.
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2. Negative Binomial State (NBS)

Neg.Binom. state as a nonlinear coherent state:

| z, k 〉 =
∞∑

n=0

√
pn(k) einΘ |n 〉 (17)

with

pn(k) =

(
k + n

n

)
f n (1 + f )−n−k−1. (18)

NBS annihilated

a | z, k 〉 =
√

f (k + 1) eiΘ | z, k + 1 〉 . (19)
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3. Wave packet statistics small size limit: k = 0 NBS

HBT with onefold filled bosonic states gives a correlation factor
of 2 at zero relative momentum. With M-fold occupation of the
same state it reduces to

C2(0) = 1 +
1
M

= 1 +
1

k + 1
. (20)

The logarithmic cumulants for an NBS, defined by

G(z) =
∑

pnzn and ln G(z) =
∞∑

n=1
Cn(zn − 1), are

Cn =
k + 1

n

(
f

1 + f

)n

. (21)

This is a (k + 1)-fold overload of the simple Bose case, given if k = 0.
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4. Superstatistics Beck, Wilk

Thermodynamical β-fluctuation and n-fluctuations are related
by Poisson transform:

∞∫
0

γ(β)e−βωdβ =
∞∑

n=0

(
1− ω

E

)n
Pn(E). (22)

In this way ∆β2/〈β 〉2 = 1/(k + 1).

Biró Hadronization: NBS 17 / 36



Statistical Weight from n-distribution
Nonlinear coherent states

Examples
Summary

Glauber states
Phase states: negative binomial
NB states

5. pQCD Dokshitzer, Dremin, Hegyi, Carruthers

KNO scaling + GLAP give nearly NBD with constant k , related
to ΛQCD and expressed by n-variance.

NBD is in fact slightly violated.
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6. Canonical

Accepting Tsallis’ or Rényi entropy as a formula, the usual
canonical constraint on the average energy leads to

w(ω) =
(

1 + (q − 1)
ω

T

)− 1
q−1 (23)

Using further assumptions about reservoir fluctuations, further
entropy formulas can be constructed, as expectation values of
formal logarithms, behaving additively (ARC).
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7. Glittering Glasma: k -fold ropes Gelis, Lappi, McLerran

k = κ(N2
c − 1)Q2

s R2/2 is about the number of tubes, makes
NBS with this parameter.
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NB coherent states

The negative binomial distribution (NBD),

pn(t) =

(
n + k

n

)
(t/k)n (1 + t/k)−n−k−1, (24)

is well normalized in n and, as an Euler-Beta distribution, also
in t . From the recursion one obtains

g(n)2 =
t
n

pn−1

pn
=

k + t
k + n

, (25)

so this state satisfies

a

√
k + |z|2
k + a†a

| z 〉 = z | z 〉 . (26)
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su(1,1) structure in NBD

Rapidity-like notation: t/k = sinh2 ζ;

pn(t) =

(
k + n

n

)
sinh2n ζ cosh−2n−2k−2 ζ.

| z 〉 = cosh−k−1(ζ)
∞∑

n=0

√(
k + n

n

) (
tanh(ζ)eiΘ

)n
|n 〉 . (27)

Using velocity v = tanh(ζ) the overlap between two NBD
Coh.States:

|〈 z1|z2 〉|2 =

[
1 + γ2

1γ
2
2

∣∣∣v1eiΘ1 − v2eiΘ2

∣∣∣2]−k−1

. (28)

2+1 dim relative velocity vector separates
Biró Hadronization: NBS 22 / 36
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2+1 dim vector representation

~K = γ1γ2
(
~v1 − ~v2

)
=

1√
k

(γ2z1 − γ1z2) . (29)

Overlap written this way

|〈 z1|z2 〉|2 =

[
1 +

1
k
|γ2z1 − γ1z2|2

]−k−1

→ e−|z1−z2|2 . (30)

with γi =
√

1 + |zi |2/k .
Particle properties of the vector ~K :

~K =
1

m1m2

(
E2
~P1 − E1

~P2

)
(31)

Its parallel component does not Lorentz transform: ~v ~K ′ = ~v ~K .
Biró Hadronization: NBS 23 / 36
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Negative Binomial States in our own notation

| zk , k 〉 =
∞∑

n=0

√
pn(k)einΘ |n 〉 (32)

with zk =
√

kf eiΘ and

pn(k) =

(
k + n

n

)
f n (1 + f )−n−k−1 (33)

provides an average photon number 〈n 〉 = f (k + 1).

excited geometric state: n over k

intermediate number state: f/(1 + f )

eigenstate with complex eigenvalue
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The Effect of Ladder Operator

Effect of annihilating a quantum:

a | zk , k 〉 =
∞∑

n=1

√
pneinΘ

√
n |n − 1 〉 =

∞∑
n=0

√
(n + 1)pn+1 eiΘ einΘ |n 〉 .

(34)
Consider now

(n+1)

(
k + n + 1

n + 1

)
f n+1(1+f )−(n+1)−k−1 = f (k + 1)

(
k + 1 + n

k + 1

)
f n(1+f )−n−(k+1)−1.

(35)
Here we recognize zk+1 =

√
f (k + 1)eiΘ as a factor and arrive at

NBS annihilated

a | zk , k 〉 = zk+1 | zk+1, k + 1 〉 . (36)
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NBS as eigenstate of what?

The action of another operator√
N̂ + k + 1 | z, k 〉 =

√
(k + 1)(1 + f ) | z, k + 1 〉 , (37)

based on the relation

(k + 1 + n)

(
k + n

k

)
= (k + 1)

(
k + 1 + n

k + 1

)
. (38)

This helps to recognize:
NBS eigenvalue equation

(√
f (n̂ + k + 1)−

√
1 + f e−iΘ

√
n̂ + k + 1 a

)
| z, k 〉 = 0.

(39)
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Our NBS algebra

In the previous equation the following operator occurs:

K− =
√

n̂ + k + 1 a, K+ = K †− = a†
√

n̂ + k + 1.

The commutator,

[K−,K+] = (n̂ + 1)(n̂ + k + 1)− n̂(n̂ + k) = 2N̂ + k + 1 = 2K0 (40)

defines K0 = n̂ + (k + 1)/2.

With α =
√

(1 + f )/f e−iΘ we get

OUR eigenvalue equation

(αK− − K0) | z, k 〉 =
k + 1

2
· | z, k 〉 . (41)
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SU(1,1) algebra for NBS

The commutators form an SU(1,1) algebra:

Commutators

[K0,K+] = K+

[K0,K−] = −K−
[K−,K+] = 2K0 (42)

The Casimir operator is given as: Q = K 2
0 − K0 − K+K−.
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|NBS 〉 created from |0 〉: 1. preliminaries

Operator identity

eA+B = e−λ/2 eA eB if [A,B] = λ (const.) (43)

We choose A = α zg(n̂) a† and B = −β z∗a 1
g(n̂)
6= −A†.

Commutator:

λ = [A,B] = −|z|2αβ g(n̂)a†a
1

g(n̂)
+|z|2αβ a

1
g(n̂)

g(n̂)a† = |z|2αβ.

(44)
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|NBS 〉 created from |0 〉: 2. evolution operator

U = eΦ/2+A+B = e(Φ−λ)/2 eA eB. (45)

Here eB |0 〉 = |0 〉 due to B |0 〉 = 0.

U |0 〉 = e(Φ−αβ |z|2)/2
∞∑

n=0

αnzn

n!

(
g(n̂)a†

)n
|0 〉 . (46)
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|NBS 〉 created from |0 〉: 3. n-photon state

We have (
g(n̂)a†

)n
|0 〉 = g(n) · . . . · f (1)

√
n! |n 〉 . (47)

Regarding the form

U |0 〉 =
∞∑

n=0

√
un einΘ |n 〉 , (48)

with z =
√

t eiΘ, and using g(n̂) = ξ
√

n̂ + k we obtain

un = eΦ−αβ t
(
α2ξ2t

)n
(

k + n
n

)
. (49)

Biró Hadronization: NBS 31 / 36



Statistical Weight from n-distribution
Nonlinear coherent states

Examples
Summary

Glauber states
Phase states: negative binomial
NB states

|NBS 〉 created from |0 〉: 4. normalization

For ||U |0 〉 ||2 = 1 one needs

∞∑
n=0

un = eΦ−αβt
(

1− α2ξ2t
)−(k+1)

= 1. (50)

From this we express

α2ξ2t = 1− e
1

k+1 (Φ−αβt) = 1− w , (51)

and gain

negative binomial distribution

un =

(
n + k

n

)
wk+1 (1− w)n. (52)
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|NBS 〉 created from |0 〉: 5. superstatistics

For the superstatistics normalization, we utilize

∞∫
0

dt un(t) =

(
k + n

n

) ∞∫
0

dt wk+1(1−w)n =

(
k + n

n

)
k

1∫
0

dw wk−1(1−w)n = 1.

(53)

This is achieved if

dt = −k
dw
w2 , −→ t = k

(
1
w
− 1
)
, (54)

or expressing w(t) if

w =
1

1 + t/k
=

k
t + k

. (55)

This identifies Φ as being

Φ = αβ t − (k + 1) ln (1 + t/k) (56)
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|NBS 〉 created from |0 〉: 6. conclusion

In this way α, β and ξ remain undetermined. A purposeful
choice is α = β = 1/

√
t = 1/|z| with ξ = 1/

√
t + k .

The log of the evolution operator becomes in this case

neither hermitic nor anti-hermitic

ln U = −k + 1
2

ln (1 + t/k) +
1
2

+ eiΘ

√
n̂ + k
t + k

a† − e−iΘ a
√

t + k
n̂ + k

.

(57)

U may be connected to a Hamiltonian...
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|NBS 〉 created from |0 〉: 7. physics behind

The anti-hermitic part gives a guess for the Hamiltonian

i
~

∫
Hdτ =

1
2

(
ln U − (ln U)†

)
= eiΘ

(
f (n̂) +

1
f (n̂)

)
a†−e−iΘ a

(
f (n̂) +

1
f (n̂)

)
.

(58)

The hermitic part means non-conserved poarticle number...
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Summary

A class of coherent states designed for a given n pdf is
also a superstatistics in t = |z|2;

The NB coherent state is an eigenstate for the regularized
phase operator.

An su(1,1) structure is inherent in the NB coherent state.

Hamiltonians combined from K−, K0 and K+ operators are
likely to produce NB distributed bosons.
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