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Our Goal Is

@ to construct particular Coherent States
@ designed to describe NB n distribution

@ and non-extensive Tsallisean statistical weights
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Statistical Weight from n-distribution

Summary of ideal reservoir fluctuations 1

ldeal gas formula and thermodynamical limit:

wEMw) = tim (1-2)" = e/, (1)

n— oo
E — oo

E/n=T
Poisson average on n at fix E:
WE (w) = e~ (M /E, @

Negative binomial (NB) average:

N (kD)
w2 = (1+ 85 ) ©
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Statistical Weight from n-distribution

Summary of ideal reservoir fluctuations 2

Expanding up to variance in n we obtain for general n
fluctuations

Exact for Poisson, Bernoulli, Negative Binomial

_E _(n(n-1))
T—m, and q—w

In general T and g are related to expectation values of
derivatives of the EoS S(E) over reservoir fluctuations.
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e Nonlinear coherent states
@ State labels
@ Operator eigenstate
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Nonlinear coherent states State labels
Operator eigenstate

Definition

Consider a coherent state defined by
12) =" V/pa(t) €7 | n) (5)
n=0

with z = v/te'®. ("nonlinear coherent state”)

It overlaps with the n-quantum state:

[(nz)? = pa(t) > 0. (6)
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Nonlinear coherent states State labels
Operator eigenstate

Normalization

It is normalized,

(z|z) = > (m|VPmPa €™ n) = > pa(t)=1. (7)

n,m

The expectation value of a function of the number operator is
(z]@(N Z (1) pa(t). (8)

This ensures that p,(t) is a probability distribution in n!

To what is it an eigenstate?
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Nonlinear coherent states State labels
Operator eigenstate

Completeness

We construct a complete set:

/|z |—/dt Z Brpm €78 | m) ()
:/dthn(f)lanl = > In)(n| = 1. (9)
o " "

It is satisfied only if [df pa(t) =
0

This makes p,(t) to a probability distribution function of t!
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Nonlinear coherent states State labels
Operator eigenstate

CS as eigenstate to some operator

Eigenstate with eigenvalue z to
Flz) = ag(n)|z) = z|z). (10)

Here ais an annihilating (a' is a creating) operator, and i = a'a
is the number operator.
Its action on the CS:

Flz) =) g(n)vnp,e™|n-1), (11)
n=1

can be re-indexed to

Flz) = g(n+1)V/(n+ paer €90y, (12)
n=0
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Nonlinear coherent states State labels
Operator eigenstate

Recursion law

Compare this with
z|z) = Vte®> Vpe™|n), (13)
n=0
to conclude that

Po(t) = iz P (D). (14)
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Nonlinear coherent states State labels
Operator eigenstate

n' p rO babl | |ty Symmetric generalized binomial distributions, J.Math.Phys. 54 (2013) 123301

The recursion is solved by
pa(t) = po(t) = [T 90) 2. (15)

Here py(t) can be obtained from the normalization condition.

o
Also the completeness constraint, [df p,(t) = 1, has to be
0

checked.
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Glauber states
Phase states: negative binomial

Examples NB states

Outline

9 Examples
@ Glauber states

@ Phase states: negative binomial
@ NB states
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Glauber states
Phase states: negative binomial

Examples NB states

Traditional CS

The most known CS is defined by g(n) = 1.

This results in a Poisson in n and Euler-Gamma in ¢:

and | z) is an eigenstate to the F = a annihilator.

=]1(¢] Hadronization: NBS



Glauber states
Phase states: negative binomial

Examples NB states

7 sources of NBD

@ Phase space cell statistics (Bird)

© Squeeze parameter (Varrd, Jackiw)

© Wave packet statistics (Pratt, Csoérgd, Zimanyi)

© Temperature superstatistics (Beck, Wilk)

© KNO + pQCD (Dokshitzer, Dremin, Hegyi, Carruthers)
© Tsallis/Rényi entropy canonical state (Rényi, Tsallis, ...)
@ Glittering Glasma (Gelis, Lappi, McLerran)
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Glauber states
Phase states: negative binomial

Examples NB states

1. Phase Space Cell Statistics

Probability to find n particles in k cells, if altogether we have
thrown N particles into K cells:

Pdlya distribution

__ BnERE
n — (K+N+1>
N

Necessary limit: K — oo, N — oo while f = N/K kept finite.

Prediction: k +1 = (n)/ f o< Npan, if f is universal.

Here k is the number of observed phase space cells: from which the
detected n particles seem to come.
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Glauber states
Phase states: negative binomial

Examples NB states

2. Negative Binomial State (NBS)

Neg.Binom. state as a nonlinear coherent state:

|z,k) =Y \/pa(k) €™ | n) (17)
n=0

with "
putk) = (7 7)1y (18)

NBS annihilated
alz,k) = Vi(k+1)e® |z, k+1). (19)
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Glauber states
Phase states: negative binomial

Examples NB states

3. Wave paCket statistics small size limit: k — 0 NBS

HBT with onefold filled bosonic states gives a correlation factor
of 2 at zero relative momentum. With M-fold occupation of the
same state it reduces to

1 1
The logarithmic cumulants for an NBS, defined by

G(z) = Y prz" and N G(2) = 3" Cp(2" — 1), are
n=1

k+1 f\"
Wk ()

This is a (k + 1)-fold overload of the simple Bose case, given if k. = 0.
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Glauber states
Phase states: negative binomial

Examples NB states

4. Superstatistics Beck, Wik

Thermodynamical S-fluctuation and n-fluctuations are related
by Poisson transform:

[r(®eeds - (- 2)" Po(E). (22)
0 n=0

In this way AB2/(B)2 =1/(k + 1).
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Glauber states
Phase states: negative binomial

Examples NB states

Dokshitzer, Dremin, Hegyi, Carruthers

KNO scaling + GLAP give nearly NBD with constant k, related
to Aqcp and expressed by n-variance.

NBD is in fact slightly violated.
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Glauber states
Phase states: negative binomial

Examples NB states

6. Canonical

Accepting Tsallis’ or Rényi entropy as a formula, the usual
canonical constraint on the average energy leads to

w(w)=(1+(q- 1)#)"1‘ (23)

Using further assumptions about reservoir fluctuations, further
entropy formulas can be constructed, as expectation values of
formal logarithms, behaving additively (ARC).
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Glauber states
Phase states: negative binomial

Examples NB states

7. Glittering Glasma: k-fold ropes Gels, Lappi, MoLerran

k = k(N2 — 1)Q2R? /2 is about the number of tubes, makes
NBS with this parameter.
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Glauber states
Phase states: negative binomial

Examples NB states

NB coherent states

The negative binomial distribution (NBD),

n+k
n

pn(t)z( )(t/k)"mt/k)-"-k-t (24)

is well normalized in n and, as an Euler-Beta distribution, also
in t. From the recursion one obtains

2 _ Pt _ k+t

so this state satisfies

k + |z[?
k+ afa

|z) = z1]2). (26)
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Glauber states
Phase states: negative binomial

Examples NB states

su(1,1) structure in NBD
Rapidity-like notation: t/k = sinh?¢;

pn(t) = <k J,; n> sinh?7 ¢ cosh=2"2k=2 ¢,

|z) = cosh~%="(¢) Z <k+”> (tanh(()e’@)n In). (27)

Using velocity v = tanh(¢) the overlap between two NBD
Coh.States:
19,2

© _ e

—k—1
|<Z1|22>|2 — [1 —|—712’y§ ‘v1e ] . (28)

2+1 dim relative velocity vector separates
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Glauber states
Phase states: negative binomial

Examples NB states

2+1 dim vector representation

—

. ~ 1
K=y (V4 — %) = Np (7221 — 1122) - (29)

Overlap written this way
2 1 2 —ht 2
(alz)E = [1+§hezs—malf]| e (30)

with v; = /1 + |z 2 /k.

Particle properties of the vector K:

1
mymo

Xt
Il

(52’31 = /52) (31)

Its parallel component does not Lorentz transform: VK’ = VK.

=]1(¢] Hadronization: NBS



Glauber states
Phase states: negative binomial

Examples NB states

Negative Binomial StateS in our own notation

| 2k, k) = ime’"@m (32)
n=0
with zx = V/kf €© and
po(k) = <k ﬁ ”> (1 4 F)=n—H1 (33)
provides an average photon number (n) = f(k + 1).

@ excited geometric state: n over k
@ intermediate number state: f/(1 + f)

@ eigenstate with complex eigenvalue
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Glauber states
Phase states: negative binomial

Examples NB states

The Effect of Ladder Operator

Effect of annihilating a quantum:

alzi k) =Y v/Pe™Vn[n-1) Z\/(n+1pn+1e e |n).
n=1

(34)
Consider now

(n+1)<k +n+ 1) £ (1 4£)= D=k _ k4 1) <k+ 1+ n> F(14£) U1,

n+1 k+1
, (35)
Here we recognize zx 1 = /f(k + 1)&’® as a factor and arrive at
NBS annihilated
alzi,k) = Zk1 | Zkp1, K+ 1) (36)
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Glauber states
Phase states: negative binomial

Examples NB states

NBS as eigenstate of what?

The action of another operator

N+k+1|zk) = (k+1)A+f)|zk+1), (37)

based on the relation

(k+1+n) (k:”) — (k+1)(k:lf">. (38)

This helps to recognize:
NBS eigenvalue equation

<\/?(f7+k+1)—\/1 Y fe VAt k+1 a) |z,k) = 0.
(39)
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Glauber states
Phase states: negative binomial

Examples NB states

Our NBS algebra

In the previous equation the following operator occurs:

K. =+Vh+k+1la K. =K =aVa+k+1.

The commutator,

K. K] = (A+1)(Ah+k+1)—A(h+k) = 2N+ k+1 = 2K, (40)
+

defines Ko = h+(k+1)/2.
With a = /(1 + f)/f e~'® we get

OUR eigenvalue equation

(K- — Kp) | z,k) = |z, k). (41)
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Glauber states
Phase states: negative binomial

Examples NB states

SU(1,1) algebra for NBS

The commutators form an SU(1,1) algebra:

Commutators
[Ko,Ky] = Ki
[Ko,K.] = —-K-
KK = 2K (42)

The Casimir operator is given as: Q = K2 — Ky — Ky K_.
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Examples

Glauber states
Phase states: negative binomial
NB states

| NBS) created from |0 ):

Operator identity

1. preliminaries

eMB = g M2 A B if [A,B] = A (const.) (43)
We choose A=azg(h)a® and B=-3 z*aggﬁ) # — Al
Commutator:

1 1
A\ =[A Bl = —|zPaB g(h)a'a——+|z]2af a——g(P)a' = |z|?aB.
(A8 = ~|zPap g(R)ala s +zPas a e o(@)al = |2

=]1(¢]

(44)
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Glauber states
Phase states: negative binomial

Examples NB states

| NBS) created from |0 ): 2. evolution operator

U = e¢/2+A+B _ e((b—)\)/Z eA eB. (45)

ere e = ue to =)
H Blo)=1]0)d B|0)=0

(e 9]

n-n
U|o) = p(®—aB|z?)/2 Zanlz (g(,c,)aT>n 10). (46)
n=0
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Glauber states
Phase states: negative binomial

Examples NB states

| NBS) created from |0 ): 3. n-photon state

We have

(g(ma)" [0) = g(m)-...-f(1)Val [n).  (47)

Regarding the form

Ul0) =Y Vine™|n), (48)
n=0
with z = v/t €®, and using g(n) = £+/A+ k we obtain
_ n/k+n
up = *~7t (a%¢21) ( i ) (49)
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Glauber states
Phase states: negative binomial

Examples NB states

| NBS> created from ‘ 0] >Z 4. normalization

For ||U]0) ||?> = 1 one needs

© —(k+1
> up = e® <1 —a2§2t> ey (50)
n=0
From this we express
a2e2t =1 — ema(®=e8) — 4 _ (51)
and gain
negative binomial distribution
n+ k
up, = < : > wk+1 (1 — w)". (52)
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Glauber states
Phase states: negative binomial

Examples NB states

| NBS) created from |0 ): 5. superstatistics

For the superstatistics normalization, we utilize

[ k+n r k41 n k+n / k—1 n
dtun(t)—< ) atw ' (1—w) _< )k aww ' (1—-w)" = 1.

(53)
This is achieved if
dt:—kd—vg, — t_k(1—1>, (54)
w w
or expressing w(t) if
w = L K (55)

1+t/k  t+k
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Glauber states
Phase states: negative binomial

Examples NB states

| NBS) created from |0 ): 6. conclusion

In this way «, 8 and £ remain undetermined. A purposeful

choiceis a = 8 =1/vt =1/|z| with ¢ = 1//t + k.
The log of the evolution operator becomes in this case

neither hermitic nor anti-hermitic

_ k+1 1 i) h+k T 00 t+k
InU = — > In(1+t/k)+2+e t+ka e a’/h+k'
(57)

U may be connected to a Hamiltonian...
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Glauber states
Phase states: negative binomial

Examples NB states

| NBS) created from |0 ): 7. physics behind

The anti-hermitic part gives a guess for the Hamiltonian

%/de = % (In U—(In U)T) =e° (f(h) - ﬁ) a—-e®a (f(ﬁ) + f(1h)) .
(58)

The hermitic part means non-conserved poarticle number...
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Statis

= s
Summary

Summary

@ A class of coherent states designed for a given n pdf is
also a superstatistics in t = |z]2;

@ The NB coherent state is an eigenstate for the regularized
phase operator.

@ An su(1,1) structure is inherent in the NB coherent state.

@ Hamiltonians combined from K_, Ky and K operators are
likely to produce NB distributed bosons.
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