Hadronization via Coherent States

Superstatistics due to Quantum Properties

T.S. Biró ${ }^{1}$

Hung.Acad.Sci. Heavy Ion Research Group
Híb $e r$ Research Centre for Physics, Budapest

$$
\text { July 3, } 2015
$$

Our Goal Is

- to construct particular Coherent States
- designed to describe NB n distribution
- and non-extensive Tsallisean statistical weights

Outline

(1) Statistical Weight from n-distribution

(2) Nonlinear coherent states

(3) Examples

Statistical Weight from n-distribution
Nonlinear coherent states Examples Summary

Outline

(9) Statistical Weight from n-distribution

2) Nonlinear coherent states

(3) Examples

Summary of ideal reservoir fluctuations 1

Ideal gas formula and thermodynamical limit:

$$
\begin{equation*}
w_{E}^{\mathrm{LIM}}(\omega)=\lim _{\substack{n \rightarrow \infty \\ E \rightarrow \infty \\ E / n=T}}\left(1-\frac{\omega}{E}\right)^{n}=\mathrm{e}^{-\omega / T} \tag{1}
\end{equation*}
$$

Poisson average on n at fix E :

$$
\begin{equation*}
w_{E}^{\mathrm{POI}}(\omega)=\mathrm{e}^{-\langle n\rangle \omega / E} \tag{2}
\end{equation*}
$$

Negative binomial (NB) average:

$$
\begin{equation*}
w_{E}^{\mathrm{NBD}}(\omega)=\left(1+\frac{\langle n\rangle}{k+1} \frac{\omega}{E}\right)^{-(k+1)} \tag{3}
\end{equation*}
$$

Summary of ideal reservoir fluctuations 2

Expanding up to variance in n we obtain for general n fluctuations

Exact for Poisson, Bernoulli, Negative Binomial

$$
\begin{equation*}
T=\frac{E}{\langle n\rangle}, \quad \text { and } \quad q=\frac{\langle n(n-1)\rangle}{\langle n\rangle^{2}} \tag{4}
\end{equation*}
$$

In general T and q are related to expectation values of derivatives of the EoS $S(E)$ over reservoir fluctuations.

Outline

(9) Statistical Weight from n-distribution

(2) Nonlinear coherent states

- State labels
- Operator eigenstate

Definition

Consider a coherent state defined by

$$
\begin{equation*}
|z\rangle=\sum_{n=0}^{\infty} \sqrt{p_{n}(t)} e^{i n \Theta}|n\rangle \tag{5}
\end{equation*}
$$

with $z=\sqrt{t} e^{i \Theta}$.
("nonlinear coherent state")

It overlaps with the n-quantum state:

$$
\begin{equation*}
|\langle n \mid z\rangle|^{2}=p_{n}(t) \geq 0 \tag{6}
\end{equation*}
$$

Normalization

It is normalized,

$$
\begin{equation*}
\langle z \mid z\rangle=\sum_{n, m}\langle m| \sqrt{p_{m} p_{n}} e^{i(n-m) \Theta}|n\rangle=\sum_{n} p_{n}(t)=1 . \tag{7}
\end{equation*}
$$

The expectation value of a function of the number operator is

$$
\begin{equation*}
\langle z| \varphi(N)|z\rangle=\sum_{n} \varphi(n) p_{n}(t) \tag{8}
\end{equation*}
$$

This ensures that $p_{n}(t)$ is a probability distribution in $n!$
To what is it an eigenstate?

Nonlinear coherent states
Examples Summary

Completeness

We construct a complete set:

$$
\begin{align*}
\int \frac{d^{2} z}{\pi}|z\rangle\langle z| & =\int_{0}^{\infty} d t \int_{0}^{2 \pi} \frac{d \Theta}{2 \pi} \sum_{n, m} \sqrt{p_{n} p_{m}} e^{i(n-m) \Theta}|m\rangle\langle n| \\
& =\int_{0}^{\infty} d t \sum_{n} p_{n}(t)|n\rangle\langle n|=\sum_{n}|n\rangle\langle n|=1 \tag{9}
\end{align*}
$$

It is satisfied only if $\int_{0}^{\infty} d t p_{n}(t)=1$.

This makes $p_{n}(t)$ to a probability distribution function of t !

CS as eigenstate to some operator

Eigenstate with eigenvalue z to

$$
\begin{equation*}
F|z\rangle=a g(\hat{n})|z\rangle=z|z\rangle \tag{10}
\end{equation*}
$$

Here a is an annihilating (a^{\dagger} is a creating) operator, and $\hat{n}=a^{\dagger} a$ is the number operator. Its action on the CS:

$$
\begin{equation*}
F|z\rangle=\sum_{n=1}^{\infty} g(n) \sqrt{n p_{n}} e^{i n \Theta}|n-1\rangle \tag{11}
\end{equation*}
$$

can be re-indexed to

$$
\begin{equation*}
F|z\rangle=\sum_{n=0}^{\infty} g(n+1) \sqrt{(n+1) p_{n+1}} e^{i(n+1) \Theta}|n\rangle \tag{12}
\end{equation*}
$$

Recursion law

Compare this with

$$
\begin{equation*}
z|z\rangle=\sqrt{t} e^{i \Theta} \sum_{n=0}^{\infty} \sqrt{p_{n}} e^{i n \Theta}|n\rangle \tag{13}
\end{equation*}
$$

to conclude that

$$
\begin{equation*}
p_{n}(t)=\frac{t}{n g(n)^{2}} p_{n-1}(t) \tag{14}
\end{equation*}
$$

n-probability

The recursion is solved by

$$
\begin{equation*}
p_{n}(t)=p_{0}(t) \frac{t^{n}}{n!} \prod_{j=1}^{n} g(j)^{-2} \tag{15}
\end{equation*}
$$

Here $p_{0}(t)$ can be obtained from the normalization condition.

Also the completeness constraint, $\int_{0} d t p_{n}(t)=1$, has to be checked.

Outline

(9) Statistical Weight from n-distribution
(2) Nonlinear coherent states
(3) Examples

- Glauber states
- Phase states: negative binomial
- NB states

Traditional CS

The most known CS is defined by $\boldsymbol{g}(\boldsymbol{n})=\mathbf{1}$.

This results in a Poisson in n and Euler-Gamma in t :

$$
\begin{equation*}
p_{n}(t)=\frac{t^{n}}{n!} e^{-t}, \tag{16}
\end{equation*}
$$

and $|z\rangle$ is an eigenstate to the $F=a$ annihilator.

7 sources of NBD

(1) Phase space cell statistics (Biró)
(2) Squeeze parameter (Varró, Jackiw)
(3) Wave packet statistics (Pratt, Csörgő, Zimányi)
(3) Temperature superstatistics (Beck, Wilk)
© KNO + pQCD (Dokshitzer, Dremin, Hegyi, Carruthers)

- Tsallis/Rényi entropy canonical state (Rényi, Tsallis, ...)
© Glittering Glasma (Gelis, Lappi, McLerran)

1. Phase Space Cell Statistics

Probability to find n particles in k cells, if altogether we have thrown N particles into K cells:

Pólya distribution

$$
P_{n}=\frac{\binom{k+n}{n}\binom{K-k+N-n}{N-n}}{\binom{K+N+1}{N}}
$$

Necessary limit: $K \rightarrow \infty, N \rightarrow \infty$ while $f=N / K$ kept finite.

$$
\text { Prediction: } k+1=\langle n\rangle / f \propto N_{\text {part }} \text {, if } f \text { is universal. }
$$

Here k is the number of observed phase space cells: from which the detected n particles seem to come.

2. Negative Binomial State (NBS)

Neg.Binom. state as a nonlinear coherent state:

$$
\begin{equation*}
|z, k\rangle=\sum_{n=0}^{\infty} \sqrt{p_{n}(k)} \mathrm{e}^{i n \Theta}|n\rangle \tag{17}
\end{equation*}
$$

with

$$
\begin{equation*}
p_{n}(k)=\binom{k+n}{n} f^{n}(1+f)^{-n-k-1} . \tag{18}
\end{equation*}
$$

NBS annihilated

$$
\begin{equation*}
a|z, k\rangle=\sqrt{f(k+1)} \mathrm{e}^{i \theta}|z, k+1\rangle . \tag{19}
\end{equation*}
$$

3. Wave packet statistics

HBT with onefold filled bosonic states gives a correlation factor of 2 at zero relative momentum. With M-fold occupation of the same state it reduces to

$$
\begin{equation*}
C_{2}(0)=1+\frac{1}{M}=1+\frac{1}{k+1} . \tag{20}
\end{equation*}
$$

The logarithmic cumulants for an NBS, defined by

$$
\begin{gather*}
G(z)=\sum p_{n} z^{n} \text { and } \ln G(z)=\sum_{n=1}^{\infty} C_{n}\left(z^{n}-1\right), \text { are } \\
C_{n}=\frac{k+1}{n}\left(\frac{f}{1+f}\right)^{n} . \tag{21}
\end{gather*}
$$

This is a $(k+1)$-fold overload of the simple Bose case, given if $k=0$.

4. Superstatistics

Thermodynamical β-fluctuation and n-fluctuations are related by Poisson transform:

$$
\begin{equation*}
\int_{0}^{\infty} \gamma(\beta) e^{-\beta \omega} d \beta=\sum_{n=0}^{\infty}\left(1-\frac{\omega}{E}\right)^{n} P_{n}(E) \tag{22}
\end{equation*}
$$

In this way $\Delta \beta^{2} /\langle\beta\rangle^{2}=1 /(k+1)$.

5. pQCD

KNO scaling + GLAP give nearly NBD with constant k, related to $\Lambda_{Q C D}$ and expressed by n-variance.

NBD is in fact slightly violated.

6. Canonical

Accepting Tsallis' or Rényi entropy as a formula, the usual canonical constraint on the average energy leads to

$$
\begin{equation*}
w(\omega)=\left(1+(q-1) \frac{\omega}{T}\right)^{-\frac{1}{q-1}} \tag{23}
\end{equation*}
$$

Using further assumptions about reservoir fluctuations, further entropy formulas can be constructed, as expectation values of formal logarithms, behaving additively (ARC).

7. Glittering Glasma: k-fold ropes

$k=\kappa\left(N_{c}^{2}-1\right) Q_{s}^{2} R^{2} / 2$ is about the number of tubes, makes NBS with this parameter.

NB coherent states

The negative binomial distribution (NBD),

$$
\begin{equation*}
p_{n}(t)=\binom{n+k}{n}(t / k)^{n}(1+t / k)^{-n-k-1}, \tag{24}
\end{equation*}
$$

is well normalized in n and, as an Euler-Beta distribution, also in t. From the recursion one obtains

$$
\begin{equation*}
g(n)^{2}=\frac{t}{n} \frac{p_{n-1}}{p_{n}}=\frac{k+t}{k+n}, \tag{25}
\end{equation*}
$$

so this state satisfies

$$
\begin{equation*}
a \sqrt{\frac{k+|z|^{2}}{k+a^{\dagger} a}}|z\rangle=z|z\rangle \tag{26}
\end{equation*}
$$

su(1,1) structure in NBD

Rapidity-like notation: $t / k=\sinh ^{2} \zeta$;

$$
\begin{array}{r}
p_{n}(t)=\binom{k+n}{n} \sinh ^{2 n} \zeta \cosh ^{-2 n-2 k-2} \zeta . \\
|z\rangle=\cosh ^{-k-1}(\zeta) \sum_{n=0}^{\infty} \sqrt{\binom{k+n}{n}}\left(\tanh (\zeta) e^{i \theta}\right)^{n}|n\rangle . \tag{27}
\end{array}
$$

Using velocity $v=\tanh (\zeta)$ the overlap between two NBD Coh.States:

$$
\begin{equation*}
\left|\left\langle z_{1} \mid z_{2}\right\rangle\right|^{2}=\left[1+\gamma_{1}^{2} \gamma_{2}^{2}\left|v_{1} e^{i \Theta_{1}}-v_{2} e^{i \Theta_{2}}\right|^{2}\right]^{-k-1} . \tag{28}
\end{equation*}
$$

2+1 dim relative velocity vector separates

2+1 dim vector representation

$$
\begin{equation*}
\vec{K}=\gamma_{1} \gamma_{2}\left(\vec{v}_{1}-\vec{v}_{2}\right)=\frac{1}{\sqrt{k}}\left(\gamma_{2} z_{1}-\gamma_{1} z_{2}\right) . \tag{29}
\end{equation*}
$$

Overlap written this way

$$
\begin{equation*}
\left|\left\langle z_{1} \mid z_{2}\right\rangle\right|^{2}=\left[1+\frac{1}{k}\left|\gamma_{2} z_{1}-\gamma_{1} z_{2}\right|^{2}\right]^{-k-1} \rightarrow e^{-\left|z_{1}-z_{2}\right|^{2}} . \tag{30}
\end{equation*}
$$

with $\gamma_{i}=\sqrt{1+\left|z_{i}\right|^{2} / k}$.
Particle properties of the vector \vec{K} :

$$
\begin{equation*}
\vec{K}=\frac{1}{m_{1} m_{2}}\left(E_{2} \vec{P}_{1}-E_{1} \overrightarrow{P_{2}}\right) \tag{31}
\end{equation*}
$$

Its parallel component does not Lorentz transform: $\vec{v} \vec{K}^{\prime}=\vec{v} \vec{K}$.

Negative Binomial States

$$
\begin{equation*}
\left|z_{k}, k\right\rangle=\sum_{n=0}^{\infty} \sqrt{p_{n}(k)} e^{i n \Theta}|n\rangle \tag{32}
\end{equation*}
$$

with $z_{k}=\sqrt{k f} e^{i \Theta}$ and

$$
\begin{equation*}
p_{n}(k)=\binom{k+n}{n} f^{n}(1+f)^{-n-k-1} \tag{33}
\end{equation*}
$$

provides an average photon number $\langle n\rangle=f(k+1)$.

- excited geometric state: n over k
- intermediate number state: $f /(1+f)$
- eigenstate with complex eigenvalue

The Effect of Ladder Operator

Effect of annihilating a quantum:
$a\left|z_{k}, k\right\rangle=\sum_{n=1}^{\infty} \sqrt{p_{n}} e^{i n \Theta} \sqrt{n}|n-1\rangle=\sum_{n=0}^{\infty} \sqrt{(n+1) p_{n+1}} e^{i \Theta} e^{i n \Theta}|n\rangle$.
Consider now
$(n+1)\binom{k+n+1}{n+1} f^{n+1}(1+f)^{-(n+1)-k-1}=f(k+1)\binom{k+1+n}{k+1} f^{n}(1+f)^{-n-(k+1)-1}$.
Here we recognize $z_{k+1}=\sqrt{f(k+1)} e^{i \Theta}$ as a factor and arrive at
NBS annihilated

$$
\begin{equation*}
a\left|z_{k}, k\right\rangle=z_{k+1}\left|z_{k+1}, k+1\right\rangle . \tag{36}
\end{equation*}
$$

NBS as eigenstate of what?

The action of another operator

$$
\begin{equation*}
\sqrt{\hat{N}+k+1|z, k\rangle=\sqrt{(k+1)(1+f)}|z, k+1\rangle, ~} \tag{37}
\end{equation*}
$$

based on the relation

$$
\begin{equation*}
(k+1+n)\binom{k+n}{k}=(k+1)\binom{k+1+n}{k+1} . \tag{38}
\end{equation*}
$$

This helps to recognize:
NBS eigenvalue equation

$$
\left(\sqrt{f}(\hat{n}+k+1)-\sqrt{1+f} e^{-i \Theta} \sqrt{\hat{n}+k+1} a\right)|z, k\rangle=0 .
$$

Our NBS algebra

In the previous equation the following operator occurs:

$$
K_{-}=\sqrt{\hat{n}+k+1} a, \quad K_{+}=K_{-}^{\dagger}=a^{\dagger} \sqrt{\hat{n}+k+1} .
$$

The commutator,

$$
\left[K_{-}, K_{+}\right]=(\hat{n}+1)(\hat{n}+k+1)-\hat{n}(\hat{n}+k)=2 \hat{N}+k+1=2 K_{0}
$$

defines $K_{0}=\hat{n}+(k+1) / 2$.
With $\alpha=\sqrt{(1+f) / f} e^{-i \Theta}$ we get
OUR eigenvalue equation

$$
\begin{equation*}
\left(\alpha K_{-}-K_{0}\right)|z, k\rangle=\frac{k+1}{2} \cdot|z, k\rangle \tag{41}
\end{equation*}
$$

SU(1,1) algebra for NBS

The commutators form an $\operatorname{SU}(1,1)$ algebra:

Commutators

$$
\begin{align*}
{\left[K_{0}, K_{+}\right] } & =K_{+} \\
{\left[K_{0}, K_{-}\right] } & =-K_{-} \\
{\left[K_{-}, K_{+}\right] } & =2 K_{0} \tag{42}
\end{align*}
$$

The Casimir operator is given as: $Q=K_{0}^{2}-K_{0}-K_{+} K_{-}$.

NBS \rangle created from $|0\rangle$:

1. preliminaries

Operator identity

$$
\begin{equation*}
e^{A+B}=e^{-\lambda / 2} e^{A} e^{B} \quad \text { if } \quad[A, B]=\lambda \quad \text { (const.) } \tag{43}
\end{equation*}
$$

We choose $\quad A=\alpha z g(\hat{n}) a^{\dagger} \quad$ and $\quad B=-\beta z^{*} a \frac{1}{g(\hat{n})} \neq-A^{\dagger}$.

Commutator:

$$
\begin{equation*}
\lambda=[A, B]=-|z|^{2} \alpha \beta g(\hat{n}) a^{\dagger} a \frac{1}{g(\hat{n})}+|z|^{2} \alpha \beta a \frac{1}{g(\hat{n})} g(\hat{n}) a^{\dagger}=|z|^{2} \alpha \beta \tag{44}
\end{equation*}
$$

NBS \rangle created from $|0\rangle$:

2. evolution operator

$$
\begin{equation*}
U=e^{\Phi / 2+A+B}=e^{(\Phi-\lambda) / 2} e^{A} e^{B} \tag{45}
\end{equation*}
$$

Here $e^{B}|0\rangle=|0\rangle$ due to $B|0\rangle=0$.

$$
\begin{equation*}
U|0\rangle=e^{\left(\Phi-\alpha \beta|z|^{2}\right) / 2} \sum_{n=0}^{\infty} \frac{\alpha^{n} z^{n}}{n!}\left(g(\hat{n}) a^{\dagger}\right)^{n}|0\rangle \tag{46}
\end{equation*}
$$

NBS \rangle created from $|0\rangle$:

3. n-photon state

We have

$$
\begin{equation*}
\left(g(\hat{n}) \mathrm{a}^{\dagger}\right)^{n}|0\rangle=g(n) \cdot \ldots \cdot f(1) \sqrt{n!}|n\rangle \tag{47}
\end{equation*}
$$

Regarding the form

$$
\begin{equation*}
U|0\rangle=\sum_{n=0}^{\infty} \sqrt{u_{n}} e^{i n \Theta}|n\rangle \tag{48}
\end{equation*}
$$

with $z=\sqrt{t} e^{i \Theta}$, and using $\quad g(\hat{n})=\xi \sqrt{\hat{n}+k} \quad$ we obtain

$$
\begin{equation*}
u_{n}=e^{\Phi-\alpha \beta t}\left(\alpha^{2} \xi^{2} t\right)^{n}\binom{k+n}{n} \tag{49}
\end{equation*}
$$

NBS \rangle created from $|0\rangle$:

For $\| U|0\rangle \|^{2}=1$ one needs

$$
\begin{equation*}
\sum_{n=0}^{\infty} u_{n}=e^{\Phi-\alpha \beta t}\left(1-\alpha^{2} \xi^{2} t\right)^{-(k+1)}=1 . \tag{50}
\end{equation*}
$$

From this we express

$$
\begin{equation*}
\alpha^{2} \xi^{2} t=1-e^{\frac{1}{k+1}(\Phi-\alpha \beta t)}=1-w, \tag{51}
\end{equation*}
$$

and gain

negative binomial distribution

$$
\begin{equation*}
u_{n}=\binom{n+k}{n} w^{k+1}(1-w)^{n} . \tag{52}
\end{equation*}
$$

NBS \rangle created from $|0\rangle$:

For the superstatistics normalization, we utilize

$$
\begin{equation*}
\int_{0}^{\infty} d t u_{n}(t)=\binom{k+n}{n} \int_{0}^{\infty} d t w^{k+1}(1-w)^{n}=\binom{k+n}{n} k \int_{0}^{1} d w w^{k-1}(1-w)^{n}=1 \tag{53}
\end{equation*}
$$

This is achieved if

$$
\begin{equation*}
d t=-k \frac{d w}{w^{2}}, \quad \longrightarrow \quad t=k\left(\frac{1}{w}-1\right) \tag{54}
\end{equation*}
$$

or expressing $w(t)$ if

$$
\begin{equation*}
w=\frac{1}{1+t / k}=\frac{k}{t+k} \tag{55}
\end{equation*}
$$

NBS \rangle created from $|0\rangle$:

6. conclusion

In this way α, β and ξ remain undetermined. A purposeful choice is $\alpha=\beta=1 / \sqrt{t}=1 /|z|$ with $\xi=1 / \sqrt{t+k}$.

The log of the evolution operator becomes in this case

neither hermitic nor anti-hermitic

$$
\begin{equation*}
\ln U=-\frac{k+1}{2} \ln (1+t / k)+\frac{1}{2}+e^{i \Theta} \sqrt{\frac{\hat{n}+k}{t+k}} a^{\dagger}-e^{-i \Theta} a \sqrt{\frac{t+k}{\hat{n}+k}} \tag{57}
\end{equation*}
$$

\cup may be connected to a Hamiltonian.re

NBS \rangle created from $|0\rangle$:

7. physics behind

The anti-hermitic part gives a guess for the Hamiltonian
$\frac{i}{\hbar} \int H d \tau=\frac{1}{2}\left(\ln U-(\ln U)^{\dagger}\right)=e^{i \theta}\left(f(\hat{n})+\frac{1}{f(\hat{n})}\right) a^{\dagger}-e^{-i \theta} a\left(f(\hat{n})+\frac{1}{f(\hat{n})}\right)$.

The hermitic part means non-conserved poarticle number...

Summary

- A class of coherent states designed for a given n pdf is also a superstatistics in $t=|z|^{2}$;
- The NB coherent state is an eigenstate for the regularized phase operator.
- An su(1,1) structure is inherent in the NB coherent state.
- Hamiltonians combined from K_{-}, K_{0} and K_{+}operators are likely to produce NB distributed bosons.

