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Introduction

Goal: describe QCD equation of state

@ “measurement”: Monte Carlo
simulations

EoS from MC
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Introduction

Goal: describe QCD equation of state

@ “measurement”: Monte Carlo
simulations

HTL 3-loops @ at high T: QGP with 8 gluon + 3

o quark; valid for T > 250 — 300 MeV.
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Introduction

Goal: describe QCD equation of state

@ “measurement”: Monte Carlo
simulations

o at high T: QGP with 8 gluon + 3

HRG thermodynamics quark; valid for T > 250 — 300 MeV.

R ==y e at low T: hadrons
=ne free hadron resonance gas (HRG) with
= i real masses T < 150 — 180 MeV.
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Introduction

Goal: describe QCD equation

of state

EoS from MC
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“measurement”: Monte Carlo
simulations

at high 7: QGP with 8 gluon + 3
quark; valid for T > 250 — 300 MeV.

at low T: hadrons
free hadron resonance gas (HRG) with
real masses T < 150 — 180 MeV.

between: continuous crossover

“T.” = 156 MeV

is it a nonperturbative regime?

or just needs a proper point of view?
(cf. hadrons are pert. as hadron gas,
nonpert. as QCD states)



Introduction

What drives the the transition?

Mechanisms of the PT

deconfinement (at my 45 — o)

@ hadrons become unstable

Columbia plot
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Introduction

What drives the the transition?

Mechanisms of the PT

deconfinement (at my 45 — o)

@ hadrons become unstable

Columbia plot

Ni=2 PUre uge @ order parameter: Polyakov-loop

e deconfinek chiral phase transition (at m, 4, — 0)

g?zd)order
@ chiral condensate unstable

| M e order parameter: (W)

phys. N¢=1
point , i
m, Hagedorn's mechanism (for crossover?)

chiral
2nd order

s @ instability because of the large
number of available hadronic
resonances

(R. Hagedorn, Nuovo Cim.Suppl. 3 (1965) 147-186)

0 my, My *

@ order parameter? heuristically Np.q,
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Introduction

Hagedorn's mechanism for phase transition

experimental evidence: exponentially rising energy level density

# of hadronic resonances

non-strange mesons

0.5 1 1.5 2 2.5 3
m [GeV]

(W. Broniowski et.al., PRD 70, 117503 (2004))

Hagedorn-spectrum:
Qhadr(m) ~ (m2 + mg)ae_m/TH
several fits possible (e.g. a=0)
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Introduction

Hagedorn's mechanism for phase transition

experimental evidence: exponentially rising energy level density

# of hadronic resonances HRG fit for thermodynamics
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(W. Broniowski et.al., PRD 70, 117503 (2004)) (AJ. PRD88 (2013) 065012 [arXiv:1306.2660])
v
Hagedorn-spectrum: Instability:
Ohadr(m) ~ (m? + m3)2e=m/Tn pressure divergent at T = Ty
several fits possible (e.g. a = 0) fit: Ty = 240 MeV
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Introduction

Phase transition?
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Problem: the hadronic pressure is unavoidable there. ..
@ pprc overshoots the real pressure

@ PHRG 2, Ppert 0 = Frre < Fpert @cp, NO phase transition

4

hadronic degrees of freedom must disappear from the system!

Is it possible without an abrupt change of ground state?
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Gibbs paradox in interacting gases

The Gibbs paradox

J.W.Gibbs (1839-1903)

(J.W.Gibbs, 1875-1878; E.T.Jaynes, 1996)
take mixture of two (ideal) gases in volume V
for simplicity ny = n, = n
entropy excess of the mixture (mixing entropy):
S— { —nRlog?2 for different gases
0 for indistinguishable particles
In general S = —nRlog Nyor, Where Nyor is the num-
ber of (distinguishable particle) species.

discontinuous entropy In quantum system

S

control parameter: mass difference Am

AS

1 for Am=0
Jump in entropy as a function of Am

= first order (quantum) phase transition

2 for Am+#£0
Ndon{ o 7

Am distinguishable-indistinguishable phase tr.
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Gibbs paradox in interacting gases

Gibbs paradox in interacting systems

Observe the mixture of the two gases by a spectrometer!

For interacting gases the spectral lines broaden.

Depending on the line width and mass difference we can have
different situations:

spectrum in interacting gases . )
o in 1st plot clear 2 lines, N — 2

4th plot? one broad peak?

@ in the overlapping regime common
energy states = not possible to
divide it into two peaks

\/ @ [ width sets the resolution
we expect Nyor(Am/T)

T
JJL how can we calculate this function?
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Gibbs paradox in interacting gases

Thermodynamics from spectral function

Goal: obtain p(p) function (pressure vs spectrum)

(AJ and T.S. Biro PRDD90 (2014) 9, 094029, AJ. Phys.Rev. D86 (2012) 085007; Phys.Rev. D88 (2013) 065012)

Strategy
@ construct a model representing this p
first a quadratic approximation (cf. HRG)

@ calculate thermodynamics from this theory
energy density e = % Tre™?" Tq, use KMS relation

Scalar field case

L=39*(p)K(p)®(p), o= Discik™!

defines a consistent field theory
unitary, causal, Lorentz-invariant, E, p conserving

Balaton Workshop 2015, 12-17 July 2015
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Gibbs paradox in interacting gases

Thermodynamics from spectral function Il.

Result:

Pressure as a function of the spectral function

d*q 0K

o for free gas mixture o(p) = >, Zio(po — Ep)

we obtain P =3, PO(m;): sum of partial pressures;
no dependence on Z;, while they are nonzero!

@ generally nonlinear ¢ dependence

e.g. P does not depend on the overall normalization of o.
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Gibbs paradox in interacting gases

Gibbs paradox for interacting gases

What is going on in the language of spectral functions?
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Gibbs paradox in interacting gases

Gibbs paradox for interacting gases

What is going on in the language of spectral functions?
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Gibbs paradox in interacting gases

Gibbs paradox for interacting gases
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Hagedorn mechanism with hadron melting in QCD

QCD case

A typical spectral function

In QFT the spectrum consists of

bound states (peaks)
J\_/\—/

scattering states (continuum)
 (arbitrary units)

p (arbitrary units)

We study the effect of merging bound state and scattering states.
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Hagedorn mechanism with hadron melting in QCD

QCD case

A typical spectral function

J JL/

p (arbitrary units)

 (arbitrary units)

In QFT the spectrum consists of
bound states (peaks)
scattering states (continuum)

We study the effect of merging bound state and scattering states.
Physically: Melting of bound states!
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Hagedorn mechanism with hadron melting in QCD

lllustrative example

We can examine different realistic spectra:

Three-peak spectra

1000

0.1

0.01

v

@ Characterize the spectrum with 1st peak width ~
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Hagedorn mechanism with hadron melting in QCD

lllustrative example

We can examine different realistic spectra:

Three-peak spectra Three-peak pressure
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@ Characterize the spectrum with 1st peak width ~
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Hagedorn mechanism with hadron melting in QCD

lllustrative example

We can examine different realistic spectra:

Three-peak spectra Three-peak pressure
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@ Characterize the spectrum with 1st peak width ~
@ pressure vanishes for 7 — ool
@ Observation: P factorizes: P(T,v) = Neg(7)Po(T).
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Hagedorn mechanism with hadron melting in QCD

Effective number of degrees of freedom

Robust result: Nes vs. qp width

Effective # of dof
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@ pressure vanishes Neg(7) — 0

o fit function stretched exponential:
Nerr(7) = e~

@ treating Neg as an order parameter:
crossover transition

Balaton Workshop
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Hagedorn mechanism with hadron melting in QCD

Application to QCD

An oversimplified realization of these ideas for QCD

N
Proar(T) = NG S" Po(T,my),  InNG) = —(T/To)?,
nchadrons
Poap(T) = N > Po(T,my),  InNE™ = Go — (NG ™).
nepartons

P = Phadgr + Pocp total pressure, Py ideal gas pressure

@ hadrons: Hagedorn-sp. up to a certain mass (m < 3GeV)
@ partons quark and gluon quasiparticles

@ Npagr(v) common suppression factor for all hadrons:
stretched exponential, and v~ T

@ Npart(Npagr) partonic suppression factor grows with the # of
available hadronic resonances.
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Matter content of QCD
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Hagedorn mechanism with hadron melting in QCD
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CD EoS matter content ) i
o fit parameters: total pressure is

well reproduced

@ hadrons do not vanish at T.: they
just start to melt there.

@ hadrons dominate the pressure
until ~ 2T,

@ pure QGP only for T > 3T,

o different fits yield similar results
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Conclusions

Conclusions

QCD phase transition at the physical point may be
governed by

Hagedorn mechanism with hadron melting

@ Hagedorn-mechanism: free pressure of a large amount of
hadronic dof dominate the QCD pressure

@ melting: Gibbs mechanism for QCD

e distinguishable-indistinguishable phase transition
e melting = gp peak merges with the continuum

@ result for QCD: hadrons start to melt at T ~ T., dominate
pressure for T < 2T, and vanish at T ~ 3T,

@ not free-particle-like excitations! (cf. transport, correlations. . .)

@ perturbative crossover? QCD dof & hadrons

Balaton Workshop 2015, 12-17 July 2015 21 /21



	Introduction
	Gibbs paradox in interacting gases
	Hagedorn mechanism with hadron melting in QCD
	Conclusions

