・ロン ・四 と ・ 回 と ・ 回 と …

Hagedorn mechanism for QCD phase transition

hadrons and quarks in the crossover regime

A. Jakovác

ELTE, Dept. of Atomic Physics

July 13 2015.

Balaton Workshop 2015, 12-17 July 2015.

Outlines

2 Gibbs paradox in interacting gases

3 Hagedorn mechanism with hadron melting in QCD

4 Conclusions

Balaton Workshop 2015, 12-17 July 2015.

(日) (四) (王) (日) (日) (日)

Outlines

② Gibbs paradox in interacting gases

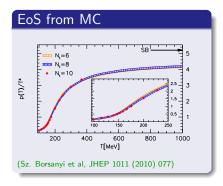
Bagedorn mechanism with hadron melting in QCD

4 Conclusions

Balaton Workshop 2015, 12-17 July 2015.

Goal: describe QCD equation of state

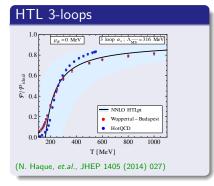
• "measurement": Monte Carlo simulations



 $\exists \rightarrow$

A - A - A

Goal: describe QCD equation of state

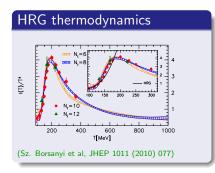


- "measurement": Monte Carlo simulations
- at high T: QGP with 8 gluon + 3 quark; valid for $T \gtrsim 250 300 \text{ MeV}$.

Image: A mathematical states and the states and

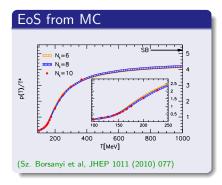
< ∃→

Goal: describe QCD equation of state



- "measurement": Monte Carlo simulations
- at high T: QGP with 8 gluon + 3 quark; valid for $T \gtrsim 250 300 \text{ MeV}$.
- at low T: hadrons

free hadron resonance gas (HRG) with real masses $\mathcal{T} \lesssim 150-180 \, \mathrm{MeV}.$

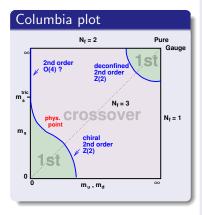


- "measurement": Monte Carlo simulations
- at high T: QGP with 8 gluon + 3 quark; valid for $T \gtrsim 250 300 \text{ MeV}$.
- at low T: hadrons free hadron resonance gas (HRG) with real masses $T \lesssim 150 - 180 \,\mathrm{MeV}$.
- between: continuous crossover
 "T_c" = 156 MeV
 is it a nonperturbative regime?
 or just needs a proper point of view?
 (cf. hadrons are pert. as hadron gas, nonpert. as QCD states)

Image: A math a math

Conclusions

What drives the the transition?



Mechanisms of the PT

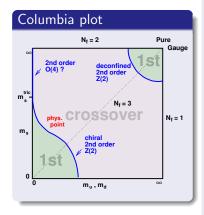
deconfinement (at $m_{u,d,s} \to \infty$)

- hadrons become unstable
- order parameter: Polyakov-loop

chiral phase transition (at $m_{u,d,s} \rightarrow 0$)

- chiral condensate unstable
- order parameter: $\langle \bar{\Psi} \Psi \rangle$

What drives the the transition?



Mechanisms of the PT

deconfinement (at $m_{u,d,s} \to \infty$)

- hadrons become unstable
- order parameter: Polyakov-loop

chiral phase transition (at $m_{u,d,s} \rightarrow 0$)

- chiral condensate unstable
- order parameter: $\langle \bar{\Psi} \Psi \rangle$

Hagedorn's mechanism (for crossover?)

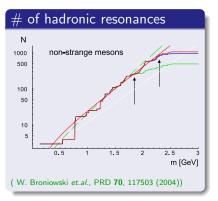
 instability because of the large number of available hadronic resonances

(R. Hagedorn, Nuovo Cim.Suppl. 3 (1965) 147-186)

• order parameter? heuristically N_{hadr}

Hagedorn's mechanism for phase transition

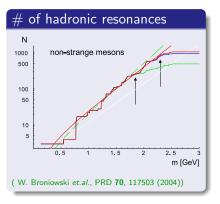
experimental evidence: exponentially rising energy level density



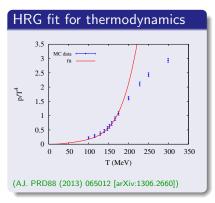
Hagedorn-spectrum: $\rho_{hadr}(m) \sim (m^2 + m_0^2)^a e^{-m/T_H}$ several fits possible (e.g. a = 0)

Hagedorn's mechanism for phase transition

experimental evidence: exponentially rising energy level density



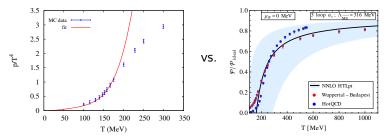
Hagedorn-spectrum: $\rho_{hadr}(m) \sim (m^2 + m_0^2)^a e^{-m/T_H}$ several fits possible (e.g. a = 0)



Instability:

pressure divergent at $T = T_H$ fit: $T_H = 240 \text{ MeV}$

Phase transition?



Problem: the hadronic pressure is unavoidable there...

- *p_{HRG}* overshoots the real pressure
- $p_{HRG} \gtrsim p_{pert QCD} \Rightarrow F_{HRG} \lesssim F_{pert QCD}$, no phase transition

hadronic degrees of freedom must disappear from the system! Is it possible without an abrupt change of ground state?

< ≣ >

Outlines

2 Gibbs paradox in interacting gases

3 Hagedorn mechanism with hadron melting in QCD

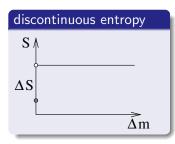
4 Conclusions

Balaton Workshop 2015, 12-17 July 2015.

The Gibbs paradox

(J.W.Gibbs, 1875-1878; E.T.Jaynes, 1996) take mixture of two (ideal) gases in volume V for simplicity $n_1 = n_2 = n$ entropy excess of the mixture (mixing entropy): $S = \begin{cases} -nR \log 2 & \text{for different gases} \\ 0 & \text{for indistinguishable particles} \end{cases}$ In general $S = -nR \log N_{dof}$, where N_{dof} is the number of (distinguishable particle) species.

J.W.Gibbs (1839-1903)

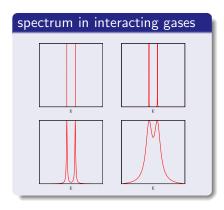


In quantum system

control parameter: mass difference Δm $N_{dof} = \begin{cases} 2 & \text{for } \Delta m \neq 0 \\ 1 & \text{for } \Delta m = 0 \end{cases}$ Jump in entropy as a function of Δm \Rightarrow first order (quantum) phase transition distinguishable-indistinguishable phase tr.

Gibbs paradox in interacting systems

Observe the mixture of the two gases by a spectrometer! For interacting gases the spectral lines broaden. Depending on the line width and mass difference we can have different situations:



- in 1st plot clear 2 lines, N_{dof} = 2 4th plot? one broad peak?
- in the overlapping regime common energy states ⇒ not possible to divide it into two peaks
- Γ width sets the resolution we expect $N_{dof}(\Delta m/\Gamma)$

how can we calculate this function?

(日)

Conclusions

Thermodynamics from spectral function

Goal: obtain $p(\varrho)$ function (pressure vs spectrum)

(AJ and T.S. Biro PRDD90 (2014) 9, 094029, AJ. Phys.Rev. D86 (2012) 085007; Phys.Rev. D88 (2013) 065012)

Strategy

- construct a model representing this *q* first a quadratic approximation (cf. HRG)
- calculate thermodynamics from this theory energy density $\varepsilon = \frac{1}{Z} \operatorname{Tr} e^{-\beta H} T_{00}$, use KMS relation

Scalar field case

$$\mathcal{L} = \frac{1}{2} \Phi^*(\boldsymbol{p}) \mathcal{K}(\boldsymbol{p}) \Phi(\boldsymbol{p}), \qquad \varrho = \operatorname{Disc} i \mathcal{K}^{-1}$$

defines a consistent field theory

unitary, causal, Lorentz-invariant, E, \vec{p} conserving

< ロ > < 同 > < 回 > < 回 >

Conclusions

(日)

Thermodynamics from spectral function II.

Result:

Pressure as a function of the spectral function

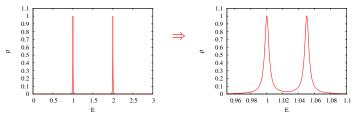
$$ho=\mp T \int rac{d^4 q}{(2\pi)^4} \, rac{\partial \mathcal{K}}{\partial q_0} \, \ln \left(1\mp e^{-eta q_0}
ight) arrho(q)$$

- for free gas mixture *ρ*(*p*) = ∑_i Z_iδ(*p*₀ − E_p) we obtain *P* = ∑_i P⁽⁰⁾(*m_i*): sum of partial pressures; no dependence on Z_i, while they are nonzero!
- generally nonlinear *ρ* dependence
 e.g. *P* does not depend on the overall normalization of *ρ*.

< ∃→

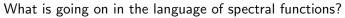
Gibbs paradox for interacting gases

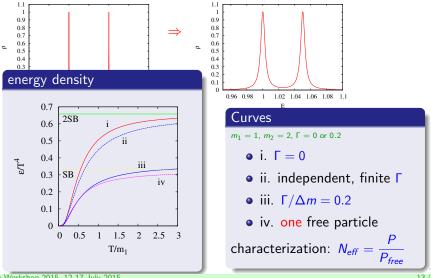
What is going on in the language of spectral functions?



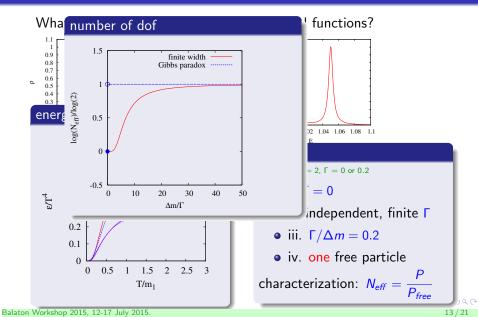
ъ

Gibbs paradox for interacting gases





Gibbs paradox for interacting gases



Outlines

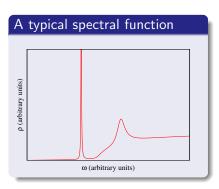
② Gibbs paradox in interacting gases

3 Hagedorn mechanism with hadron melting in QCD

4 Conclusions

Balaton Workshop 2015, 12-17 July 2015.

QCD case

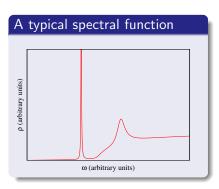


In QFT the spectrum consists of bound states (peaks) scattering states (continuum)

Image: A matrix and a matrix

We study the effect of merging bound state and scattering states.

QCD case

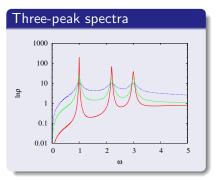


In QFT the spectrum consists of bound states (peaks) scattering states (continuum)

We study the effect of merging bound state and scattering states. Physically: Melting of bound states!

Illustrative example

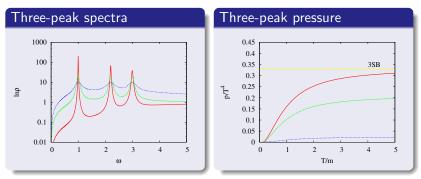
We can examine different realistic spectra:



 $\bullet\,$ Characterize the spectrum with 1st peak width $\gamma\,$

Illustrative example

We can examine different realistic spectra:

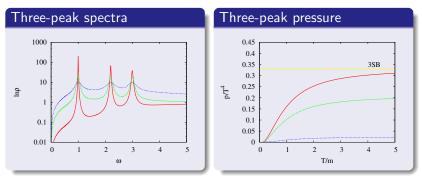


• Characterize the spectrum with 1st peak width γ

ъ

Illustrative example

We can examine different realistic spectra:

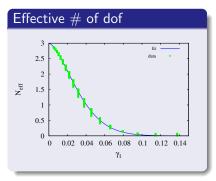


- $\bullet\,$ Characterize the spectrum with 1st peak width $\gamma\,$
- pressure vanishes for $\gamma \to \infty!$
- Observation: *P* factorizes: $P(T, \gamma) = N_{eff}(\gamma)P_0(T)$.

< 17 ▶

Effective number of degrees of freedom

Robust result: N_{eff} vs. qp width γ



- pressure vanishes $N_{eff}(\gamma) \stackrel{\gamma \to \infty}{\longrightarrow} 0$
- fit function stretched exponential: $N_{eff}(\gamma) = e^{-a\gamma^b}$ (typically $b \sim 1.5 - 2$)
- treating *N_{eff}* as an order parameter: crossover transition

Application to QCD

An oversimplified realization of these ideas for QCD

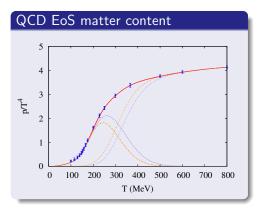
$$\begin{split} P_{hadr}(T) &= N_{eff}^{(hadr)} \sum_{n \in \text{hadrons}}^{N} P_0(T, m_n), \qquad \ln N_{eff}^{(hadr)} = -(T/T_0)^b, \\ P_{QGP}(T) &= N_{eff}^{(part)} \sum_{n \in \text{partons}} P_0(T, m_n), \qquad \ln N_{eff}^{(part)} = G_0 - c(N_{eff}^{(hadr)})^d. \end{split}$$

 $P = P_{hadr} + P_{QGP}$ total pressure, P_0 ideal gas pressure

- hadrons: Hagedorn-sp. up to a certain mass $(m \leq 3 \, \text{GeV})$
- partons quark and gluon quasiparticles
- $N_{hadr}(\gamma)$ common suppression factor for all hadrons: stretched exponential, and $\gamma \sim T$
- N_{part}(N_{hadr}) partonic suppression factor grows with the # of available hadronic resonances.

<ロ> (四) (四) (三) (三) (三) (三)

Matter content of QCD



- fit parameters: total pressure is well reproduced
- hadrons do not vanish at T_c: they just start to melt there.
- hadrons dominate the pressure until $\sim 2T_c$
- pure QGP only for $T \gtrsim 3T_c$
- different fits yield similar results

Outlines

② Gibbs paradox in interacting gases

3 Hagedorn mechanism with hadron melting in QCD

4 Conclusions

Balaton Workshop 2015, 12-17 July 2015.

Conclusions

Conclusions

QCD phase transition at the physical point may be governed by

Hagedorn mechanism with hadron melting

- Hagedorn-mechanism: free pressure of a large amount of hadronic dof dominate the QCD pressure
- melting: Gibbs mechanism for QCD
 - distinguishable-indistinguishable phase transition
 - $\bullet\,$ melting \equiv qp peak merges with the continuum
- result for QCD: hadrons start to melt at $T \sim T_c$, dominate pressure for $T \leq 2T_c$ and vanish at $T \sim 3T_c$
- not free-particle-like excitations! (cf. transport, correlations...)
- perturbative crossover? QCD dof & hadrons

 $\leftarrow \equiv \rightarrow$