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Goal: describe QCD equation of state

EoS from MC

(Sz. Borsanyi et al, JHEP 1011 (2010) 077)

“measurement”: Monte Carlo
simulations

at high T : QGP with 8 gluon + 3
quark; valid for T ∼> 250− 300 MeV.

at low T : hadrons
free hadron resonance gas (HRG) with
real masses T ∼< 150− 180 MeV.

between: continuous crossover
“Tc” = 156 MeV
is it a nonperturbative regime?
or just needs a proper point of view?
(cf. hadrons are pert. as hadron gas,

nonpert. as QCD states)
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What drives the the transition?

Columbia plot

phys.
point
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Mechanisms of the PT

deconfinement (at mu,d,s →∞)

hadrons become unstable

order parameter: Polyakov-loop

chiral phase transition (at mu,d,s → 0)

chiral condensate unstable

order parameter:
〈
Ψ̄Ψ
〉

Hagedorn’s mechanism (for crossover?)

instability because of the large
number of available hadronic
resonances
(R. Hagedorn, Nuovo Cim.Suppl. 3 (1965) 147-186)

order parameter? heuristically Nhadr
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Hagedorn’s mechanism for phase transition

experimental evidence: exponentially rising energy level density

# of hadronic resonances

( W. Broniowski et.al., PRD 70, 117503 (2004))

Hagedorn-spectrum:
%hadr (m) ∼ (m2 + m2

0)ae−m/TH

several fits possible (e.g. a = 0)

HRG fit for thermodynamics

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0  50  100  150  200  250  300  350

p
/T

4

T (MeV)

MC data

fit

(AJ. PRD88 (2013) 065012 [arXiv:1306.2660])

Instability:
pressure divergent at T = TH

fit: TH = 240 MeV
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Phase transition?
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Problem: the hadronic pressure is unavoidable there. . .

pHRG overshoots the real pressure

pHRG ∼> ppert QCD ⇒ FHRG ∼< Fpert QCD , no phase transition

⇓
hadronic degrees of freedom must disappear from the system!

Is it possible without an abrupt change of ground state?
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The Gibbs paradox

J.W.Gibbs (1839-1903)

(J.W.Gibbs, 1875-1878; E.T.Jaynes, 1996)

take mixture of two (ideal) gases in volume V

for simplicity n1 = n2 = n

entropy excess of the mixture (mixing entropy):

S =

{
−nR log 2 for different gases

0 for indistinguishable particles

In general S = −nR logNdof , where Ndof is the num-
ber of (distinguishable particle) species.

discontinuous entropy

∆S

S

m∆

In quantum system
control parameter: mass difference ∆m

Ndof =

{
2 for ∆m 6= 0
1 for ∆m = 0

Jump in entropy as a function of ∆m

⇒ first order (quantum) phase transition
distinguishable-indistinguishable phase tr.

Balaton Workshop 2015, 12-17 July 2015. 9 / 21
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Gibbs paradox in interacting systems

Observe the mixture of the two gases by a spectrometer!
For interacting gases the spectral lines broaden.
Depending on the line width and mass difference we can have
different situations:

spectrum in interacting gases

E E

E E

in 1st plot clear 2 lines, Ndof = 2
4th plot? one broad peak?

in the overlapping regime common
energy states ⇒ not possible to
divide it into two peaks

Γ width sets the resolution
we expect Ndof (∆m/Γ)

↑
how can we calculate this function?

Balaton Workshop 2015, 12-17 July 2015. 10 / 21
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Thermodynamics from spectral function

Goal: obtain p(%) function (pressure vs spectrum)
(AJ and T.S. Biro PRDD90 (2014) 9, 094029, AJ. Phys.Rev. D86 (2012) 085007; Phys.Rev. D88 (2013) 065012)

Strategy

construct a model representing this %
first a quadratic approximation (cf. HRG)

calculate thermodynamics from this theory
energy density ε = 1

Z Tr e−βHT00, use KMS relation

Scalar field case

L = 1
2 Φ∗(p)K(p)Φ(p), % = Disc iK−1

defines a consistent field theory
unitary, causal, Lorentz-invariant, E , ~p conserving

Balaton Workshop 2015, 12-17 July 2015. 11 / 21
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Thermodynamics from spectral function II.

Result:

Pressure as a function of the spectral function

p = ∓T
∫

d4q

(2π)4

∂K
∂q0

ln
(
1∓ e−βq0

)
%(q)

for free gas mixture %(p) =
∑

i Ziδ(p0 − Ep)

we obtain P =
∑

i P
(0)(mi ): sum of partial pressures;

no dependence on Zi , while they are nonzero!

generally nonlinear % dependence
e.g. P does not depend on the overall normalization of %.
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Gibbs paradox for interacting gases

What is going on in the language of spectral functions?
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QCD case

A typical spectral function

ρ
 (

ar
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ry
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ω (arbitrary units)

In QFT the spectrum consists of
bound states (peaks)
scattering states (continuum)

We study the effect of merging bound state and scattering states.

Physically: Melting of bound states!
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Illustrative example

We can examine different realistic spectra:

Three-peak spectra
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Characterize the spectrum with 1st peak width γ

pressure vanishes for γ →∞!

Observation: P factorizes: P(T , γ) = Neff (γ)P0(T ).
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Effective number of degrees of freedom

Robust result: Neff vs. qp width γ

Effective # of dof
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pressure vanishes Neff (γ)
γ→∞−→ 0

fit function stretched exponential:
Neff (γ) = e−aγb

(typically b ∼ 1.5− 2)

treating Neff as an order parameter:
crossover transition
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Application to QCD

An oversimplified realization of these ideas for QCD

Phadr (T ) = N
(hadr)
eff

N∑
n∈hadrons

P0(T ,mn), lnN
(hadr)
eff = −(T/T0)b,

PQGP (T ) = N
(part)
eff

∑
n∈partons

P0(T ,mn), lnN
(part)
eff = G0 − c(N

(hadr)
eff )d .

P = Phadr + PQGP total pressure, P0 ideal gas pressure

hadrons: Hagedorn-sp. up to a certain mass (m ∼< 3 GeV)

partons quark and gluon quasiparticles

Nhadr (γ) common suppression factor for all hadrons:
stretched exponential, and γ ∼ T

Npart(Nhadr ) partonic suppression factor grows with the # of
available hadronic resonances.
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Matter content of QCD

QCD EoS matter content
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fit parameters: total pressure is
well reproduced

hadrons do not vanish at Tc : they
just start to melt there.

hadrons dominate the pressure
until ∼ 2Tc

pure QGP only for T ∼> 3Tc

different fits yield similar results
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Conclusions

QCD phase transition at the physical point may be
governed by

Hagedorn mechanism with hadron melting

Hagedorn-mechanism: free pressure of a large amount of
hadronic dof dominate the QCD pressure

melting: Gibbs mechanism for QCD

distinguishable-indistinguishable phase transition
melting ≡ qp peak merges with the continuum

result for QCD: hadrons start to melt at T ∼ Tc , dominate
pressure for T ∼< 2Tc and vanish at T ∼ 3Tc

not free-particle-like excitations! (cf. transport, correlations. . . )

perturbative crossover? QCD dof & hadrons
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