Event-by-event anisotropies in hydro

Máté Csanád in collaboration with András Szabó, Sándor Lökös, Attila Bagoly Eötvös University, Budapest

Balaton workshop, Tihany, 14 July 2015

July 14, 2015

Hydrodynamics in high energy physics

- Strongly interacting QGP discovered at RHIC & created at LHC
- A hot, expanding, strongly interacting, perfect fluid
- Hadrons created at the "chemical" freeze-out
- Hadron distributions decouple at "kinetic" freeze-out

Known solutions of relativistic hydrodynamics

- Many solve the hydro equations numerically
- Exact, analytic solutions are important to connect initial and final state
- Famous 1+1D solutions: Landau, Hwa, Bjorken
- Many new 1+1D solutions, few 1+3D, with spherical/axial symmetry
- First truly 3D relativistic solution Csörgő, Csernai, Hama, Kodama, Heavy Ion Phys. **A21**, 73 (2004)
- Assumes ellipsoidal symmetry via scaling variable

$$s = \frac{x^2}{X^2} + \frac{y^2}{Y^2} + \frac{z^2}{Z^2}$$

- X, Y, Z: time dependent axes of expaning ellipsoid
- Thermodynamical quantities depend only on s
- Describes hadron data Csanád, Vargyas, Eur. Phys. J. A 44, 473 (2010)
 - Describes photon & lepton data
 Csanád, Májer, Central Eur. J. Phys. 10 (2012)
 Csanád, Krizsán, Central Eur.J.Phys. 12 (2014)

Higher order anisotropies?

- Elliptic-like shape \Rightarrow anisotropic particle production
- Finite number of nucleons → higher order anisotropies!

- Final state anisotropy characterized by $v_n = \langle \cos n\phi \rangle$
- Exact solutions handling this?
- Viscous effects on the time evolution of the anisotropies?
- Mixing of anisotropies in flow and in coordinate space?

Generalization of elliptic symmetry

How to generalize the ellipsoidal scaling variable of s = x²/X² + y²/Y² + z²/Z²?
Redefine it via

$$\frac{1}{R^2} = \frac{1}{X^2} + \frac{1}{Y^2} \text{ and } \epsilon = \frac{X^2 + Y^2}{X^2 - Y^2} \Rightarrow s = \frac{r^2}{R^2} \left(1 + \epsilon \cos(2\phi)\right)$$

• Generalize: *N-pole symm.* in transverse plane

$$s = rac{r^N}{R^N} \left(1 + \epsilon_N \cos(N\phi)
ight)$$

• ϵ_1 defines only a shift, $\epsilon_{2,3,\dots}$ interesting $\epsilon_2 = 0.8$ $\epsilon_3 = 0.5$

$$\epsilon_4 = 0.4$$

Multipole symmetries combined

• Multiple symmetries can be combined:

$$s = \sum_{N} rac{r^{N}}{R^{N}} \left(1 + \epsilon_{N} \cos(N(\phi - \psi_{N})) \right)$$

- Aligned by Nth order reaction planes ψ_N
- Again, $\epsilon_1 = 0$ can be assumed
- R defines time dependent scale: expansion
- Basically any shape can be described, via a "multipole expansion" $\epsilon_2 = 0.8, \epsilon_3 = 0, \epsilon_4 = 0$ $\epsilon_2 = 0.8, \epsilon_3 = 0.5, \epsilon_4 = 0$ $\epsilon_2 = 0.8, \epsilon_3 = 0.5, \epsilon_4 = 0.4$

New solutions of hydrodynamics

 New solutions with multipole symmetries Csanád, Szabó, Phys.Rev. C90 5 (2014) 054911 based on Csörgő, Csernai, Hama, Kodama, Heavy Ion Phys. A21, 73 (2004)

$$s = \sum_{N} \frac{r^{N}}{R^{N}} \left(1 + \epsilon_{N} \cos(N(\phi - \psi_{N}))\right) + \frac{z^{N}}{Z^{N}}$$
$$u^{\mu} = \gamma \left(1, \frac{\dot{R}}{R} r \cos\phi, \frac{\dot{R}}{R} r \sin\phi, \frac{\dot{R}}{R} z\right)$$
$$T = T_{f} \left(\frac{\tau_{f}}{\tau}\right)^{3/\kappa} \frac{1}{\nu(s)}$$

• Observed higher order harmonics: Maxwell-Jüttner type source function

$$S(x,p) \propto \exp\left[-rac{p_{\mu}u^{\mu}(x)}{T(x)}
ight]\delta(au- au_{f})rac{p_{\mu}u^{\mu}}{u^{0}}$$

• Momentum distribution N(p) and anisotropies $v_n(p_t)$:

$$N(p) = \int S(x,p) d^4x$$
 and $v_n(p_t) = \langle \cos(nlpha)
angle_{N(p)}$

Comparison to PHENIX anisotropy coefficients

- PHENIX measured v₂, v₃ and v₄ in various centrality classes PHENIX Coll., Phys. Rev. Lett. **107** (2011) 252301
- Fitted parameters: ϵ_N and transverse flow u_t

Balaton workshop

Multipole velocity field?

- No analytic solutions with multipole flow!
- Buda-Lund model: hydro final state parametrization
 Csanád, Csörgő, Lörstad, NPA742 (2004) 80, Csörgő, Lörstad, PRC54 (1996) 1390
- Add multipole densities (just as previously), add multipole flow! Csanád et al., arXiv:1504.07932

$$u^{\mu} = (\gamma, \partial_x \Phi, \partial_y \Phi, \partial_z \Phi) \text{ with } \Phi = \frac{r^2}{2H} \left(1 + \sum_n \chi_n \cos(n\phi) \right)$$

• *H* is Hubble-coefficient like (take N = 1 with $\dot{\chi}_1 = 0$)

Máté Csanád, Eötvös University

Anisotropy mixing in flow

- Flow- and density anizotropies mix in v_n
- Both ϵ_n (spatial anisotropy) and χ_n (flow anisotropy) determine v_n

 Measurement of v_n does not directly relate to final spatial or flow anisotropy

Azimuthally sensitive HBT

- Bose-Einstein correlation radii depend on momentum angle
- $\bullet\,$ If measured w.r.t. the second order event plane: $\cos 2\phi\,$ oscillation
- If measured w.r.t. the third order event plane: $\cos 3\phi$ oscillation PHENIX Coll., Phys.Rev.Lett. **112** (2014) 222301
- Their oscillation reveals source geometry as well

• Quantify the 2nd and 3rd order oscillations w.r.t to the given event plane:

$$R_{\text{out,side}}^{2} = R_{\text{out,side,0}}^{2} + R_{\text{out,side,2}}^{2} \cos 2\varphi$$
$$R_{\text{out,side}}^{2} = R_{\text{out,side,0}}^{2} + R_{\text{out,side,3}}^{2} \cos 3\varphi$$

Anisotropy mixing in asHBT

• $R_{\rm out}$ and $R_{\rm side}$ tell about χ and ϵ together

Mixing of 2nd and 3rd order anisotropies?

- Random relative orientation of the event planes
- Rotating to the 2nd or 3rd order event plane gives:

$$s = \frac{r^2}{R^2} \left(1 + \epsilon_2 \cos(2\phi) + \epsilon_3 \cos(3\phi - \Delta \Psi_{2,3})\right)$$
$$s = \frac{r^2}{R^2} \left(1 + \epsilon_2 \cos(2\phi + \Delta \Psi_{2,3}) + \epsilon_3 \cos(3\phi)\right)$$

• Averaging on $\Delta \Psi_{2,3}$ removes one of the oscillations? Almost. $\chi_{2=\chi_3=0, \epsilon_3=0.2}$

Time evolution of the anisotropies

- Solution described in the beinning of the talk: anisotropies constant!
- What about initial conditions with pressure gradients?
- Does the value of sound speed play a role? Note exact solution with temperature dependent EoS Csanád, Nagy, Lökös, Eur.Phys.J. **A48** (2012) 173
- What is the effect of viscosity? Does it "wash out" anisotropies?
- No exact solutions handling these questions!
- Our work: start from initial conditions "near" known solutions Csanád *et al.*, arXiv:1504.07932
- Measure anisotropies as $\varepsilon_n = \langle \cos(n\varphi) \rangle_{n,e,\nu}$ in every time-step
- Relation between input ϵ_n (in scale variable s) and resulting ε_n :

$$\varepsilon_1 = \frac{(\epsilon_2 + \epsilon_4)\epsilon_3}{2 + \sum_n \epsilon_n^2}, \qquad \varepsilon_3 = \frac{-\epsilon_3}{2 + \sum_n \epsilon_n^2},$$
$$\varepsilon_2 = \frac{-\epsilon_2 + \epsilon_2\epsilon_4}{2 + \sum_n \epsilon_n^2}, \qquad \varepsilon_4 = \frac{-\epsilon_4 + \frac{1}{2}\epsilon_2^2}{2 + \sum_n \epsilon_n^2}$$

Our numerical hydro

- Convective 1+2D form: $\partial_t Q + \partial_x F(Q) + \partial_y G(Q) = 0$
- Q values in the cells, intercell fluxes needed

Method: multistage GFORCE fluxes

E. F. Toro and V. A. Titarev, J. Comp. Phys. 216, 403 (2006)

• Iterated intercell Q and flux

$$\begin{aligned} Q_{i+\frac{1}{2}}^{(l)} &= \frac{1}{2} \left[Q_i^{(l)} + Q_{i+1}^{(l)} \right] - \frac{1}{2} \frac{\Delta t}{\Delta x} \left[F_{i+1}^{(l)} - F_i^{(l)} \right] \\ F_{i+\frac{1}{2}}^{(l)} &= \frac{1}{4} \left[F_{i+1}^{(l)} + 2F_M^{(l)} + F_i^{(l)} - \frac{\Delta x}{\Delta t} \left(Q_{i+1}^{(l)} - Q_i^{(l)} \right) \right] \end{aligned}$$

• Iterate this e.g. 8 times within one timestep

Effect of viscosity in nonrel hydro

• Pressure evolution without and with viscosity ($\mu = 10$ MeV fm):

Effect of viscosity in nonrel hydro

• Time evolution of the anisotropies:

- Pressure: viscosity keeps anisotropies there
- Flow: viscosity "washes out" anisotropies

Effect of speed of sound in relativistic hydro

• Flow evolution with $c_s^2 = 0.5$ and $c_s^2 = 0.25$

Effect of speed of sound in relativistic hydro

- Here we indicate the freeze-out time as well
- Time evolution of the anisotropies:

• Pressure: soft $EoS \Rightarrow$ slow isotropisation

• Flow: soft $EoS \Rightarrow$ smaller anisotropies

Summary

- Medium of high energy collisions: hydro expansion
- Higher order anisotropies measured
- Arise due to fluctuating initial conditions
- First analytic solutions to describe v_n's
- Anisotropy mixing in multipole Buda-Lund model
- *Time evolution of the anisotripies* in a numerical framework

Thank you for your attention!

And let me invite you to the 15th Zimanyi School in Budapest

ZIMÁNYI SCHOOL'15

Arnold Gross: Lexicon

15. Zimányi

WINTER SCHOOL ON HEAVY ION PHYSICS

> Dec. 7. - Dec. 11., Budapest, Hungary

József Zimányi (1931 - 2006)

http://zimanyischool.kfki.hu/15/

Máté Csanád, Eötvös University

Balaton workshop

Soft hadron creation in A+A via hydro

- Take first exact, analytic and truly 3D relativistic solution Csörgő, Csernai, Hama et al., Heavy Ion Phys. A21, 73 (2004), nucl-th/0306004
- Calculate observables for identified hadrons
 - Transverse momentum distribution $N_1(p_t)$
 - Azimuthal asymmetry $v_2(p_t)$
 - Bose-Einstein correlation radii $R_{out,side.long}(p_t)$
- Compared to data successfully (RHIC shown, LHC done as well)

Csanád, Vargyas, Eur. Phys. J. A 44, 473 (2010), arXiv:0909.4842

Data: PHENIX Coll., PRC69034909(2004), PRL91182301(2003), PRL93152302(2004)

Máté Csanád, Eötvös University

Penetrating probes: photons and leptons

- Photons and leptons are created throughout the evolution
- Their distribution reveals information about the EoS!
- Compared to PHENIX data (spectra and flow) successfully
- Predicted photon HBT radii

Csanád, Májer, Central Eur. J. Phys. 10 (2012), arXiv:1101.1279

Data: PHENIX Collaboration, arXiv:0804.4168 and arxiv:1105.4126

• Average EoS: $c_s = 0.36 \pm 0.02_{stat} \pm 0.04_{syst}$ (i.e. $\kappa = 7.7$)

• Compatible with soft dilepton data as well

Máté Csanád, Eötvös University

Comparison to PHENIX anisotropy coefficients

- Successful fit, see details in arXiv:1405.3877
- Transverse flow *u_t*: minor dependence on centrality
- Strongly influenced by temperature gradient
- ϵ_N increased for peripheral collisions

Effect of viscosity in nonrel hydro

x [fm]

• Flow evolution without and with viscosity ($\mu = 10$ MeV fm):

x [fm]

x [fm]

x [fm]