Production of quarkonia at RHIC

Róbert Vértesi

robert.vertesi@ujf.cas.cz

Hungarian Academy of Sciences

Nuclear Physics Institute Academy of Sciences of the Czech Republic

Probing the sQGP with quarkonia

Debye screening of heavy quark potential

 Quarkonia are expected to dissociate

T. Matsui, H. Satz, Phys.Lett. B178, 416 (1986)


```
Charmonia (\overline{cc}):
J/\Psi, \Psi', \chi_c
```

Bottomonia (bb): Υ(1S), Υ(2S), Υ(3S), χ_B

T_C<T Illustration: A. Rothkopf

Probing the sQGP with quarkonia

Debye screening of heavy quark potential

 Quarkonia are expected to dissociate

T. Matsui, H. Satz, Phys.Lett. B178, 416 (1986)

Illustration: A. Rothkopf

Charmonia (\overline{cc}): J/ Ψ , Ψ ', χ_c

Bottomonia (bb): Υ(1S), Υ(2S), Υ(3S), χ _B

 Sequential melting: Different states dissociate at different temperatures

Á. Mócsy, P. Petreczky, Phys. Rev. D77, 014501 (2008)

Quarkonia may serve as sQGP thermometer

Complications...

Cold nuclear matter effects

- Nuclear snauowing (PDF modification in the nucleus) Nuclear shadowing
- Initial state energy loss
- Co-mover absorption
- Hot/dense medium effects
 - Coalescence of uncorrelated charm and bottom pairs
- Feed-down
 - χ_c , ψ ', B-meson decay to J/ ψ
 - $\chi_{\rm b}$, Y(2S), Y(2S) to Y(1S) ...

Complications...

Cold nuclear matter effects

- Nuclear snauowing (PDF modification in the nucleus) Nuclear shadowing
- Initial state energy loss
- Co-mover absorption
- Hot/dense medium effects
 - Coalescence of uncorrelated charm and bottom pairs
- Feed-down
 - χ_c , ψ ', B-meson decay to J/ ψ
 - $\chi_{\rm b}, \Upsilon(2S), \Upsilon(2S)$ to $\Upsilon(1S) \dots$

Contribution of different effects is not well understood

Experimental approach: R_{AA}

- p+p collisions: Reference system and pQCD benchmark
- d+A, p+A: Understand cold nuclear matter effects
- A+A: Hot medium effects on top of those

Experimental approach: R_{AA}

- p+p collisions: Reference system and pQCD benchmark
- d+A, p+A: Understand cold nuclear matter effects
- A+A: Hot medium effects on top of those

Measuring the nuclear modification factor

$$R_{AA} = \frac{1}{\left\langle N_{coll} \right\rangle} \frac{dN_{AA} / dy}{dN_{pp} / dy}$$

Some other measurements and observables (not covered)

- Collectivity (azimuthal anisothropy v₂, radial flow)
- Polarization measurements
- Production in ultraperipheral collisions

Turning the knobs

- Collision energy: 39, 62.4, 200 GeV
 → Change relative contributions of dissociation and recombination
- System size/asymmetry: Au+Au, U+U; d+Au, Cu+Au ...
 - → Change relative contributions of hot/cold effects
 - \rightarrow Test sequential melting at different energy densities

Centrality

 \rightarrow Tune hot matter effects via path length

- Rapidity and momentum
 - \rightarrow Tune CNM and regeneration effects
- Charmonium vs. Bottomonium states
 - \rightarrow Test sequential melting
 - J/ψ is abundant but prone to various "disturbing" effects
 - Y is much less affected by regeneration and co-mover absorption

RHIC: Broad physics program

- Heavy ions: Au+Au, Cu+Cu, U+U, $\sqrt{s_{NN}}$ =7.7–200 GeV
- Polarized protons up to $\sqrt{s} = 510 \text{ GeV}$
- Asymmetric systems (d+Au, Cu+Au)

RHIC/PHENIX

RHIC/STAR

RHIC: Broad physics program

- Heavy ions: Au+Au, Cu+Cu, U+U, √s_{NN}=7.7–200 GeV
- Polarized protons up to $\sqrt{s} = 510 \text{ GeV}$
- Asymmetric systems (d+Au, Cu+Au)

The Solenoidal Tracker at RHIC

Time Projection Chamber

- ID via energy loss (dE/dx)
- Momentum (p)

Barrel Electromagnetic Calorimeter

- Electron ID and energy
- → Full azimuth coverage
- → Uniform acceptance

 $\begin{aligned} |y| < 1 \\ J/\psi, \Upsilon \rightarrow e^+ e^- \end{aligned}$

RHIC

RHIC: Broad physics program

- Heavy ions: Au+Au, Cu+Cu, U+U, √s_{NN}=7.7–200 GeV
- Polarized protons up to $\sqrt{s} = 510 \text{ GeV}$
- Asymmetric systems (d+Au, Cu+Au)

The Solenoidal Tracker at RHIC

Time Projection Chamber

- ID via energy loss (dE/dx)
- Momentum (p)

Barrel Electromagnetic Calorimeter

- Electron ID and energy
- → Full azimuth coverage
- → Uniform acceptance

Both experiments: continuous improvements

to meet evolving physics goals New subsystems for enhanced PID, rates, coverage...

Do we understand J/ψ in p+p?

RHIC Data at 200 GeV:

- 0<p_T<14 GeV/c in year 2009
- Good agreement with PHENIX

STAR 2009 EMC : Phys. Lett. B 722 (2013) 55 STAR 2009 MB: Acta Phys. Polonica B Vol.5, No 2 (2012), 543 STAR 2005 & 2006: Phys. Rev. C80, 041902(R) (2009) PHENIX 2006: Phys. Rev. D 85, 092004 (2012)

Inclusive J/ ψ spectra

Do we understand J/ψ in p+p?

RHIC Data at 200 GeV:

- 0<p_T<14 GeV/c in year 2009
- Good agreement with PHENIX

STAR 2009 EMC : Phys. Lett. B 722 (2013) 55 STAR 2009 MB: Acta Phys. Polonica B Vol.5, No 2 (2012), 543 STAR 2005 & 2006: Phys. Rev. C80, 041902(R) (2009) PHENIX 2006: Phys. Rev. D 85, 092004 (2012)

Model comparison:

- prompt NLO CS+CO: describes the data for p_T > 4 GeV/c
- direct NNLO*CS:
 misses high- p_T part
- Prompt CEM: reasonable description of spectra, but overpredicts the data at p_T~3 GeV/c

direct NNLO CS: P.Artoisenet et al., Phys. Rev. Lett. 101, 152001 (2008) and J.P.Lansberg private communication NLO CS+CO: Y.-Q.Ma, K.Wang, and K.T.Chao, Phys. Rev. D 84, 51 114001 (2011) and priv. con CEM: A.D. Frawley, T Ullrich, R. Vogt, Pys. Rept. 462 (2008) 125, and R.Vogt priv. comm.

Inclusive J/ψ spectra

d+Au: J/ψ yields vs. rapidity

- d+Au: Cold Nuclear Matter effects PHENIX: PRL 107, 142301 (2011)
- Forward-backward asymmetry

d+Au: J/ ψ R_{dAu} vs. rapidity

- d+Au: Cold Nuclear Matter effects PHENIX: PRL 107, 142301 (2011)
- Forward-backward asymmetry
 - More suppression in "forward" (dgoing) than in "backward" (Au-going) direction
- CNM Model: Nuclear shadowing + final state ccbar break-up:

Eskola, Paukkunen, Salgado, JHEP 04065 (2009)

- Reasonably describes minimum bias R_{AA} vs. y
- Note: does not model centrality dependence very well

Cu+Au: hot and cold matter effects

Asymmetric suppression

PHENIX: PRC 90, 064908 (2014)

- Suppression in "backward" (Au-going) direction comparable to Au+Au
- Even stronger suppression in "forward" (Cu-going) direction

Cu+Au: hot and cold matter effects

Asymmetric suppression

PHENIX: PRC 90, 064908 (2014)

- Suppression in "backward" (Au-going) direction comparable to Au+Au
- Even stronger suppression in "forward" (Cu-going) direction
- CNM model: Nuclear shadowing
 - + final state ccbar break-up

Nagle, Frawley, Levy, Wysocki, PRC 84, 044911 (2011)

- Qualitatively describes data
- No hot effects included

Consistent with stronger low-x gluon suppression in Au than Cu

Au+Au J/ ψ R_{AA} vs. beam energy

- Similar suppression in Au+Au at 200, 62.4 and 39 GeV
 - Both at mid- and forward rapidity
 - p+p reference is based on CEM calculations → Large uncertainty
 - Consistent with theoretical calculations

Au+Au J/ ψ R_{AA} vs. beam energy

- Similar suppression in Au+Au at 200, 62.4 and 39 GeV
 - Both at mid- and forward rapidity
 - p+p reference is based on CEM calculations → Large uncertainty
 - Consistent with theoretical calculations

Does coalescence compensate for melting?

Motivation for high-p_T J/ ψ

- d+Au → study of cold nuclear matter effects
- $R_{dAu} \approx 1$ for high p_T

 \rightarrow CNM effects are small at high-p_T

Motivation for high-p_T J/ ψ

- d+Au → study of cold nuclear matter effects
- $R_{dAu} \approx 1$ for high p_T

 \rightarrow CNM effects are small at high-p_T

Model: X. Zhao, R.Rapp, PRC82, 064905 (2010)

Much less regeneration

High-p_T J/ ψ in Au+Au

High-p_T J/ ψ in Au+Au

U+U: Higher energy densities

$J/\psi R_{AA}$ in 193 GeV U+U

U+U trend generally similar to Au+Au

$J/\psi R_{AA}$ in 193 GeV U+U

- U+U trend generally similar to Au+Au
- Indication of weaker suppression in central U+U

More coalescence in U+U than in Au+Au?

Υ in p+p – baseline

 p+p Y cross section vs. y, compared to pQCD predictions

R. Vogt, Phys. Rep. 462125, 2008

Υ in p+p – baseline and pQCD test

 p+p Y cross section, compared to world data trend

p+p Y cross section vs. y, compared to pQCD predictions

R. Vogt, Phys. Rep. 462125, 2008

- Models include
 - Gluon nPDF (Anti)shadowing
 - Initial parton energy loss
- Indication of suppression at mid-rapidity beyond models

 $R_{dAu} = 0.48 \pm 0.14$ (stat) ± 0.07 (syst) ± 0.02 (pp stat) ± 0.06 (pp syst)

Υ R_{dAu} – CNM effects

 STAR data consistent with E772 despite difference in energy

- Models include
 - Gluon nPDF (Anti)shadowing
 - Initial parton energy loss
- Indication of suppression at mid-rapidity beyond models

R_{AA} of Υ states in Au+Au

STAR: Phys.Lett. B735 (2014) 127

- Peripheral Y consistent with no suppression
- Central Y shows significant suppression
- Central Y(1S): indication of a suppression
- Excited states Y(2S) and Y(3S) consistent with complete melting

Y suppression pattern supports sequential melting

R_{AA} of Y states: Au+Au vs. U+U

- Peripheral Y consistent with no suppression
- Central Y shows significant suppression
- Central Y(1S): significant suppression
- Excited states Y(2S) and Y(3S) consistent with complete melting
- Hint of their presence in U+U collisions

New U+U data extends Au+Au trend – is U+U different?

R_{AA} of Υ states: data vs. models

- No CNM effects, 428<T<443 MeV
- Potential model 'B' based on heavy quark internal energy
- Potential model 'A' based on heavy quark free energy (disfavored)

- Potential model, no CNM effects
- T=340 MeV, only excited states dissociate

Emerick, Zhao, Rapp, Eur.Phys.J A48, 72 (2012)

- CNM effects included
- Strong binding scenario

Suppression indicates Υ melting in a deconfined medium

However: CNM effects to be understood → RHIC 2015 p+Au run

Summary

Hot medium effects: Significant suppression of high- p_T J/ ψ , and similar Y(1S) suppression in central A+A collisions

- Y(2S) and Y(3S) suppression is stronger than Y(1S)
 → clear signal of melting in a deconfined medium
- Y suppression in most central collisions similar to LHC

J/ψ regeneration:

- Larger suppression at RHIC than LHC
- Similar suppression in central 39, 62.4 and 200 GeV data

CNM effects:

- Important role played for J/ψ and may be important for Υ
- Forward-Backward difference in asymmetric systems: nuclear shadowing

U+U measurements: similar suppression patterns to Au+Au

- May be more J/ψ coalescence in central collisions
- Indication of Y(2S+3S). Confirmed central Y(1S) suppression

Outlook: STAR MTD

Muon Telescope Detector

- Outermost, gas detector
- Precision measurement of heavy quarkonia through the muon channel
- Acceptance: 45% in azimuth, |y|<0.5</p>

Outlook: STAR MTD

Muon Telescope Detector

- Outermost, gas detector
- Precision measurement of heavy quarkonia through the muon channel
- Acceptance: 45% in azimuth, |y|<0.5

~13.8 nb⁻¹ Au+Au data from 2014 – first results out!

Outlook: STAR HFT, PHENIX FVTX

- Innermost, silicon detector subsystems
- STAR HFT (2014) and PHENIX VTX (2011) at midrapidity
- PHENIX FVTX (2012) at forward rapidity
- Highly improved tracking with secondary vertex reconstruction
- \rightarrow Separation of prompt J/ ψ production and B \rightarrow J/ ψ

STAR Heavy Flavor Tracker

PHENIX VTX and FVTX

Thank you!

Special acknowledgements to Aneta lordanova Barbara Trzeciak Petr Chaloupka

<<< Talk

Sunrise over the Keszthely bay

٨٨٨

Backup >>>

J/ψ in p+p – polarization

- 2<pT<6 GeV/c</p>
- STAR+PHENIX consistent with NLO +CSM
 - Higher statistics needed to discriminate
- p+p 500 GeV results will improve precision for future CNM calculations

J/ψ spectra, p+p at 500 GeV

$J/\psi x_T$ -scaling

$$\frac{d^2\sigma}{2\pi p_T \, dp_T \, dy} = g(x_T)/(\sqrt{s})^n$$

200 GeV:

• high- $p_T x_T$ -scaling with n = 5.6 ± 0.2 Phys. Rev. C 80, 041902 (2009)

 Breaking of scaling: transition to soft processes

500 GeV:

 x_T-scaling present down to lower p_T

Experimental approaches

- p+p collisions: Reference system and pQCD benchmark
- d+A, p+A: Understand cold nuclear matter effects
- A+A: Hot medium effects

$$R_{AA} = \frac{1}{N_{coll}} \frac{dN_{AA} / dy}{dN_{pp} / dy}$$

Participation in collectivity

$$\frac{dN}{d\phi} \sim 1 + \sum_{n} 2v_n \cos\left(n\left(\phi - \phi_{RP}\right)\right)$$

PHENIX dilepton invariant mass

J/ψ spectra in Au+Au at 200 GeV

- J/ψ spectrum softer than
 Tsallis Blast-Wave prediction
 - Small radial flow?
 - Recombination at low p_T?

Tsallis Blast-Wave:

Hydro-inspired freezeout

Particles produced according to a Lévydistribution

J/ψ spectra, Au+Au at 200 GeV

- J/ψ spectrum softer than
 Tsallis Blast-Wave prediction
 - Small radial flow?
 - Recombination at low p_T?
- Viscous hydrodynamics
 - J/ψ decouples at 120..165 MeV
 - fails at low-p_T

• Y. Liu et al.

- Includes J/ψ suppression due to color screening
- Includes statistical regeneration
- peripheral: initial production dominates. central: regeneration becomes more significant at low p_T.

Y. Liu et al., Phys. Lett. B 678, 72 (2009) U. W. Heinz and C. Shen (2011), private communication.

Coalescence of charm quarks is needed

J/ψ azimuthal anisotropy (v₂)

$J/\psi v_2$ consistent with non-flow at $p_T>2$ GeV/c

- Unique among hadrons!
- Regardless of centrality
- Thermalized charm quark coalescence does not dominate production

Cu+Au CNM effects

Forward (Cu-going):

- J/psi probes Cu gluons at high-x, Au gluons at low-x
- Short proper crossing time in Au probes Eloss
- Long crossing proper time in Cu → ccbar breakup

Backward (Au-going) The other way round

Direct vs. regenerated J/psi vs. $\sqrt{s_{NN}}$

L. Grandchamp and R. Rapp, Nucl. Phys. A709, 415 (2002)

STAR Y measurements – summary

- p+p @ 200 GeV
- p+p @ 500 GeV
 - pQCD benchmark
 - Reference for A+A
- d+Au @ 200 GeV
 - CNM effects

Au+Au

- Hot nuclear matter effects
- Sequential suppression

U+U

- Further tests of sequential melting
- N_{part} dependence

Upsilons in p+p 500 GeV

- Precise measurements
- Uncorrected spectra so far

R_{AA} : RHIC & LHC comparison

- LHC and RHIC suppressions are comparable at high N_{part}
- N_{part} dependence of Υ suppression appears weaker at the LHC

Is suppression driven by energy density?

 \rightarrow Note the uncertainties, however

Excited Y states – LHC comparison

■ RHIC $\sqrt{s_{NN}}$ =200 GeV Au+Au and LHC $\sqrt{s_{NN}}$ =2.76 TeV Pb+Pb collisions: Similar suppression of central Y(1S)

RHIC/STAR

- **Reconstruction:** $J/\psi \rightarrow e^+e^- (B_{ee} \sim 6\%)$ Υ → e⁺e⁻ (B_{ee} ~ 2.4%)
- TPC
 - dE/dx PID
 - Large acceptance, uniform in a wide energy range
- TOF
 - PID using flight time
- BEMC
 - High-p_⊤ trigger
 - JE/dx (keV/cm) PID using E/p and shower shape
- VPD
 - Minimum bias events

