Bound Entanglement and the Partial Transpose: Basics

Bound Entanglement and the Partial Transpose: Basics

Zoltán Zimborás

University College London

E-Day, Budapest

25 September 2015

Partial transposed states

Bound Entanglement and the Partial Transpose: Basics

- Given a bipartite Hilbert space $\mathcal{H}=\mathcal{H}_{A} \otimes \mathcal{H}_{B}$, and a density matrix ρ on it, then $\rho^{T_{B}}$ can only have negative eigenvalues if ρ is entangled:

$$
\rho^{T_{B}}=\sum_{i} p_{i}\left(\rho_{A, i} \otimes \rho_{B, i}\right)^{T_{B}}=\sum_{i} p_{i} \rho_{A, i} \otimes \rho_{B, i}^{T}
$$

- What about entangled states? Let us first consider pure states.
- Consider a pure state $\rho=|\psi\rangle\langle\psi|$ in a bipartite system $\mathcal{H}=\mathcal{H}_{A} \otimes \mathcal{H}_{B}$ with Schmidt decomposition $|\psi\rangle=\sum_{k} \sqrt{\lambda_{k}}\left|\phi_{k}^{A}\right\rangle\left|\phi_{k}^{B}\right\rangle$
the eigenvectors and eigenvalues are
- There are NPT states. All entangled pure states are NPT.

Partial transposed states

Bound Entanglement and the Partial Transpose: Basics

- Given a bipartite Hilbert space $\mathcal{H}=\mathcal{H}_{A} \otimes \mathcal{H}_{B}$, and a density matrix ρ on it, then $\rho^{T_{B}}$ can only have negative eigenvalues if ρ is entangled:

$$
\rho^{T_{B}}=\sum_{i} p_{i}\left(\rho_{A, i} \otimes \rho_{B, i}\right)^{T_{B}}=\sum_{i} p_{i} \rho_{A, i} \otimes \rho_{B, i}^{T}
$$

- What about entangled states? Let us first consider pure states.
- Consider a pure state $\rho=|\psi\rangle\langle\psi|$ in a bipartite system $\mathcal{H}=\mathcal{H}_{A} \otimes \mathcal{H}_{B}$ with Schmidt decomposition

the eigenvectors and eigenvalues are
- There are NPT states. All entangled pure states are NPT.

Partial transposed states

Bound En-

 tanglement and the Partial Transpose: Basics- Given a bipartite Hilbert space $\mathcal{H}=\mathcal{H}_{A} \otimes \mathcal{H}_{B}$, and a density matrix ρ on it, then $\rho^{T_{B}}$ can only have negative eigenvalues if ρ is entangled:

$$
\rho^{T_{B}}=\sum_{i} p_{i}\left(\rho_{A, i} \otimes \rho_{B, i}\right)^{T_{B}}=\sum_{i} p_{i} \rho_{A, i} \otimes \rho_{B, i}^{T}
$$

- What about entangled states? Let us first consider pure states.
- Consider a pure state $\rho=|\psi\rangle\langle\psi|$ in a bipartite system $\mathcal{H}=\mathcal{H}_{A} \otimes \mathcal{H}_{B}$ with Schmidt decomposition

the eigenvectors and eigenvalues are
- There are NPT states. All entangled pure states are NPT

Partial transposed states

Bound En-

 tanglement and the Partial Transpose: Basics- Given a bipartite Hilbert space $\mathcal{H}=\mathcal{H}_{A} \otimes \mathcal{H}_{B}$, and a density matrix ρ on it, then $\rho^{T_{B}}$ can only have negative eigenvalues if ρ is entangled:

$$
\rho^{T_{B}}=\sum_{i} p_{i}\left(\rho_{A, i} \otimes \rho_{B, i}\right)^{T_{B}}=\sum_{i} p_{i} \rho_{A, i} \otimes \rho_{B, i}^{T}
$$

- What about entangled states? Let us first consider pure states.
- Consider a pure state $\rho=|\psi\rangle\langle\psi|$ in a bipartite system $\mathcal{H}=\mathcal{H}_{A} \otimes \mathcal{H}_{B}$ with Schmidt decomposition $|\psi\rangle=\sum_{k} \sqrt{\lambda_{k}}\left|\phi_{k}^{A}\right\rangle\left|\phi_{k}^{B}\right\rangle$,

$$
\begin{aligned}
\rho & =\sum_{k, \ell} \sqrt{\lambda_{i} \lambda_{j}}\left|\phi_{k}^{A}\right\rangle\left|\phi_{k}^{B}\right\rangle\left\langle\phi_{\ell}^{A}\right|\left\langle\phi_{\ell}^{B}\right|, \\
\rho^{T_{B}} & =\sum_{k, \ell} \sqrt{\lambda_{i} \lambda_{j}}\left|\phi_{k}^{A}\right\rangle\left|\phi_{\ell}^{B}\right\rangle\left\langle\phi_{\ell}^{A}\right|\left\langle\phi_{k}^{B}\right|,
\end{aligned}
$$

the eigenvectors and eigenvalues are

- There are NPT states. All entangled pure states are NPT.

Partial transposed states

Bound En-

 tanglement and the Partial Transpose: Basics- Given a bipartite Hilbert space $\mathcal{H}=\mathcal{H}_{A} \otimes \mathcal{H}_{B}$, and a density matrix ρ on it, then $\rho^{T_{B}}$ can only have negative eigenvalues if ρ is entangled:

$$
\rho^{T_{B}}=\sum_{i} p_{i}\left(\rho_{A, i} \otimes \rho_{B, i}\right)^{T_{B}}=\sum_{i} p_{i} \rho_{A, i} \otimes \rho_{B, i}^{T}
$$

- What about entangled states? Let us first consider pure states.
- Consider a pure state $\rho=|\psi\rangle\langle\psi|$ in a bipartite system $\mathcal{H}=\mathcal{H}_{A} \otimes \mathcal{H}_{B}$ with Schmidt decomposition $|\psi\rangle=\sum_{k} \sqrt{\lambda_{k}}\left|\phi_{k}^{A}\right\rangle\left|\phi_{k}^{B}\right\rangle$,

$$
\begin{aligned}
\rho & =\sum_{k, \ell} \sqrt{\lambda_{i} \lambda_{j}}\left|\phi_{k}^{A}\right\rangle\left|\phi_{k}^{B}\right\rangle\left\langle\phi_{\ell}^{A}\right|\left\langle\phi_{\ell}^{B}\right|, \\
\rho^{T_{B}} & =\sum_{k, \ell} \sqrt{\lambda_{i} \lambda_{j}}\left|\phi_{k}^{A}\right\rangle\left|\phi_{\ell}^{B}\right\rangle\left\langle\phi_{\ell}^{A}\right|\left\langle\phi_{k}^{B}\right|,
\end{aligned}
$$

the eigenvectors and eigenvalues are

$$
\begin{array}{ll}
\left|\phi_{k}^{A}\right\rangle\left|\phi_{k}^{B}\right\rangle, & \lambda_{k} \\
\left|\phi_{k}^{A}\right\rangle\left|\phi_{\ell}^{B}\right\rangle, & \pm \sqrt{\lambda_{k} \lambda_{\ell}}
\end{array}
$$

- There are NPT states. All entangled pure states are NPT.

Partial transposed states

Bound En-

 tanglement and the Partial Transpose: Basics- Given a bipartite Hilbert space $\mathcal{H}=\mathcal{H}_{A} \otimes \mathcal{H}_{B}$, and a density matrix ρ on it, then $\rho^{T_{B}}$ can only have negative eigenvalues if ρ is entangled:

$$
\rho^{T_{B}}=\sum_{i} p_{i}\left(\rho_{A, i} \otimes \rho_{B, i}\right)^{T_{B}}=\sum_{i} p_{i} \rho_{A, i} \otimes \rho_{B, i}^{T}
$$

- What about entangled states? Let us first consider pure states.
- Consider a pure state $\rho=|\psi\rangle\langle\psi|$ in a bipartite system $\mathcal{H}=\mathcal{H}_{A} \otimes \mathcal{H}_{B}$ with Schmidt decomposition $|\psi\rangle=\sum_{k} \sqrt{\lambda_{k}}\left|\phi_{k}^{A}\right\rangle\left|\phi_{k}^{B}\right\rangle$,

$$
\begin{aligned}
\rho & =\sum_{k, \ell} \sqrt{\lambda_{i} \lambda_{j}}\left|\phi_{k}^{A}\right\rangle\left|\phi_{k}^{B}\right\rangle\left\langle\phi_{\ell}^{A}\right|\left\langle\phi_{\ell}^{B}\right|, \\
\rho^{T_{B}} & =\sum_{k, \ell} \sqrt{\lambda_{i} \lambda_{j}}\left|\phi_{k}^{A}\right\rangle\left|\phi_{\ell}^{B}\right\rangle\left\langle\phi_{\ell}^{A}\right|\left\langle\phi_{k}^{B}\right|,
\end{aligned}
$$

the eigenvectors and eigenvalues are

$$
\begin{array}{ll}
\left|\phi_{k}^{A}\right\rangle\left|\phi_{k}^{B}\right\rangle, & \lambda_{k} \\
\left|\phi_{k}^{A}\right\rangle\left|\phi_{\ell}^{B}\right\rangle, & \pm \sqrt{\lambda_{k} \lambda_{\ell}}
\end{array}
$$

- There are NPT states. All entangled pure states are NPT.

Partial transposed states

Bound En-

 tanglement and the Partial Transpose: Basics- Given a bipartite Hilbert space $\mathcal{H}=\mathcal{H}_{A} \otimes \mathcal{H}_{B}$, and a density matrix ρ on it, then $\rho^{T_{B}}$ can only have negative eigenvalues if ρ is entangled:

$$
\rho^{T_{B}}=\sum_{i} p_{i}\left(\rho_{A, i} \otimes \rho_{B, i}\right)^{T_{B}}=\sum_{i} p_{i} \rho_{A, i} \otimes \rho_{B, i}^{T}
$$

- What about entangled states? Let us first consider pure states.
- Consider a pure state $\rho=|\psi\rangle\langle\psi|$ in a bipartite system $\mathcal{H}=\mathcal{H}_{A} \otimes \mathcal{H}_{B}$ with Schmidt decomposition $|\psi\rangle=\sum_{k} \sqrt{\lambda_{k}}\left|\phi_{k}^{A}\right\rangle\left|\phi_{k}^{B}\right\rangle$,

$$
\begin{aligned}
\rho & =\sum_{k, \ell} \sqrt{\lambda_{i} \lambda_{j}}\left|\phi_{k}^{A}\right\rangle\left|\phi_{k}^{B}\right\rangle\left\langle\phi_{\ell}^{A}\right|\left\langle\phi_{\ell}^{B}\right|, \\
\rho^{T_{B}} & =\sum_{k, \ell} \sqrt{\lambda_{i} \lambda_{j}}\left|\phi_{k}^{A}\right\rangle\left|\phi_{\ell}^{B}\right\rangle\left\langle\phi_{\ell}^{A}\right|\left\langle\phi_{k}^{B}\right|,
\end{aligned}
$$

the eigenvectors and eigenvalues are

$$
\begin{array}{ll}
\left|\phi_{k}^{A}\right\rangle\left|\phi_{k}^{B}\right\rangle, & \lambda_{k} \\
\left|\phi_{k}^{A}\right\rangle\left|\phi_{\ell}^{B}\right\rangle, & \pm \sqrt{\lambda_{k} \lambda_{\ell}}
\end{array}
$$

- There are NPT states. All entangled pure states are NPT.

Partial transposed states

Bound En-

 tanglement and the Partial Transpose: Basics- By continuity this, of course, also means that there exist NPT mixed states, and one can define $\mathcal{N}(\rho)=\left(\|\rho\|_{1}-1\right) / 2$ and $\mathcal{E}(\rho)=\log \left(\|\rho\|_{1}\right)$.
- For a two-qubit mixed state, one can fairly easily obtain that:

$$
C(\rho) \geq 2 N(\rho) \geq \sqrt{[1-C(\rho)]^{2}+C(\rho)}-[1-C(\rho)] .
$$

- All entangled two-qubit states are NPT

Partial transposed states

Bound En-

 tanglement and the Partial Transpose: BasicsZoltán
Zimborás

- By continuity this, of course, also means that there exist NPT mixed states, and one can define $\mathcal{N}(\rho)=\left(\|\rho\|_{1}-1\right) / 2$ and $\mathcal{E}(\rho)=\log \left(\|\rho\|_{1}\right)$.
- For a two-qubit mixed state, one can fairly easily obtain that:

$$
C(\rho) \geq 2 N(\rho) \geq \sqrt{[1-C(\rho)]^{2}+C(\rho)}-[1-C(\rho)] .
$$

- All entangled two-qubit states are NPT.

Partial transposed states

Bound En-

 tanglement and the Partial Transpose: BasicsZoltán
Zimborás

- By continuity this, of course, also means that there exist NPT mixed states, and one can define $\mathcal{N}(\rho)=\left(\|\rho\|_{1}-1\right) / 2$ and $\mathcal{E}(\rho)=\log \left(\|\rho\|_{1}\right)$.
- For a two-qubit mixed state, one can fairly easily obtain that:

$$
C(\rho) \geq 2 N(\rho) \geq \sqrt{[1-C(\rho)]^{2}+C(\rho)}-[1-C(\rho)] .
$$

- All entangled two-qubit states are NPT.

Partial transposed Werner states

Bound En-

 tanglement and the Partial Transpose: Basics- From the beginning of entanglement theory it has been useful to consider examples of entangled states with high symmetry, e.g. the Werner states $\rho \in \mathcal{B}\left(\mathbb{C}^{d} \otimes \mathbb{C}^{d}\right)$

$$
[\rho, U \otimes U]=0, \quad \forall U \in U(d), \Rightarrow \rho=\alpha \mathbb{1}+\beta F=\frac{2 p_{s}}{d^{2}+d} P_{+}+\frac{2\left(1-p_{s}\right)}{d^{2}-d} P_{-}
$$

- They are invariant with respect to unitary twirling
- Any state can be brought by twirling to a Werner state.
- One can easily obtain the NPT and the entanglement regions: $P_{s}<1 / 2$.

Partial transposed Werner states

Bound En-

 tanglement and the Partial Transpose: Basics- From the beginning of entanglement theory it has been useful to consider examples of entangled states with high symmetry, e.g. the Werner states $\rho \in \mathcal{B}\left(\mathbb{C}^{d} \otimes \mathbb{C}^{d}\right)$

$$
[\rho, U \otimes U]=0, \quad \forall U \in U(d), \Rightarrow \rho=\alpha \mathbb{1}+\beta F=\frac{2 p_{s}}{d^{2}+d} P_{+}+\frac{2\left(1-p_{s}\right)}{d^{2}-d} P_{-}
$$

- They are invariant with respect to unitary twirling

$$
\rho \rightarrow \int_{U(n)} \mathrm{d} U(U \otimes U) \rho\left(U^{\dagger} \otimes U^{\dagger}\right)
$$

- Any state can be brought by twirling to a Werner state.
- One can easily obtain the NPT and the entanglement regions: $p_{s}<1 / 2$.

Partial transposed Werner states

Bound En-

 tanglement and the Partial Transpose: Basics- From the beginning of entanglement theory it has been useful to consider examples of entangled states with high symmetry, e.g. the Werner states $\rho \in \mathcal{B}\left(\mathbb{C}^{d} \otimes \mathbb{C}^{d}\right)$

$$
[\rho, U \otimes U]=0, \quad \forall U \in U(d), \Rightarrow \rho=\alpha \mathbb{1}+\beta F=\frac{2 p_{s}}{d^{2}+d} P_{+}+\frac{2\left(1-p_{s}\right)}{d^{2}-d} P_{-}
$$

- They are invariant with respect to unitary twirling

$$
\rho \rightarrow \int_{U(n)} \mathrm{d} U(U \otimes U) \rho\left(U^{\dagger} \otimes U^{\dagger}\right)
$$

- Any state can be brought by twirling to a Werner state.
- One can easily obtain the NPT and the entanglement regions: $p_{s}<1 / 2$.

Partial transposed Werner states

Bound En-

 tanglement and the Partial Transpose: Basics- From the beginning of entanglement theory it has been useful to consider examples of entangled states with high symmetry, e.g. the Werner states $\rho \in \mathcal{B}\left(\mathbb{C}^{d} \otimes \mathbb{C}^{d}\right)$

$$
[\rho, U \otimes U]=0, \quad \forall U \in U(d), \Rightarrow \rho=\alpha \mathbb{1}+\beta F=\frac{2 p_{s}}{d^{2}+d} P_{+}+\frac{2\left(1-p_{s}\right)}{d^{2}-d} P_{-}
$$

- They are invariant with respect to unitary twirling

$$
\rho \rightarrow \int_{U(n)} \mathrm{d} U(U \otimes U) \rho\left(U^{\dagger} \otimes U^{\dagger}\right)
$$

- Any state can be brought by twirling to a Werner state.
- One can easily obtain the NPT and the entanglement regions: $p_{s}<1 / 2$.

Partial transposed $O \otimes O$ states

Bound Entanglement and the Partial Transpose: Basics

- Also $O \otimes O$-symmetric states were considered

$$
[\rho, O \otimes O]=0, \quad \forall O \in O(d), \Rightarrow \rho=\alpha \mathbb{1}+\beta F+\gamma \widetilde{F}
$$

They have richer structure than Werner states, but they are still treatable

- One can define the
- The NPT and entanglement regions coincide again
- Some work has been done on more general $G \otimes G$-invariant, but their structure becomes quickly more complicated, and not available for general dimensions.

Partial transposed $O \otimes O$ states

Bound Entanglement and the Partial Transpose: Basics

- Also $O \otimes O$-symmetric states were considered

$$
[\rho, O \otimes O]=0, \quad \forall O \in O(d), \Rightarrow \rho=\alpha \mathbb{1}+\beta F+\gamma \widetilde{F}
$$

They have richer structure than Werner states, but they are still treatable

- One can define the :

$$
\rho \rightarrow \int_{O(n)} \mathrm{d} O O^{\otimes t} \rho\left(O^{\dagger}\right)^{\otimes t}
$$

- The NPT and entanglement regions coincide again
- Some work has been done on more general $G \otimes G$-invariant, but their structure becomes quickly more complicated, and not available for general dimensions.

Partial transposed $O \otimes O$ states

Bound Entanglement and the Partial Transpose: Basics

- Also $O \otimes O$-symmetric states were considered

$$
[\rho, O \otimes O]=0, \quad \forall O \in O(d), \Rightarrow \rho=\alpha \mathbb{1}+\beta F+\gamma \widetilde{F}
$$

They have richer structure than Werner states, but they are still treatable

- One can define the :

$$
\rho \rightarrow \int_{O(n)} \mathrm{d} O O^{\otimes t} \rho\left(O^{\dagger}\right)^{\otimes t}
$$

- The NPT and entanglement regions coincide again.
- Some work has been done on more general $G \otimes G$-invariant, but their structure becomes quickly more complicated, and not available for general dimensions.

Partial transposed $O \otimes O$ states

Bound En-

 tanglement and the Partial Transpose: Basics- Also $O \otimes O$-symmetric states were considered

$$
[\rho, O \otimes O]=0, \quad \forall O \in O(d), \Rightarrow \rho=\alpha \mathbb{1}+\beta F+\gamma \widetilde{F}
$$

They have richer structure than Werner states, but they are still treatable

- One can define the :

$$
\rho \rightarrow \int_{O(n)} \mathrm{d} O O^{\otimes t} \rho\left(O^{\dagger}\right)^{\otimes t}
$$

- The NPT and entanglement regions coincide again.
- Some work has been done on more general $G \otimes G$-invariant, but their structure becomes quickly more complicated, and not available for general dimensions.

Partial transposed states and distillability

Bound Entanglement and the Partial Transpose: Basics

- Given a bipartite state ρ, considering the the partial transpose of n identical copies of the state $\left(\rho^{T_{B}}\right)^{\otimes n}=\left(\rho^{\otimes n}\right)^{T_{B}}$. Then the necessary and sufficient condition of distillability (and n-copy distillability) is that there exists a Schmidt-rank-two vector $|\psi\rangle$ such that

$$
\langle\psi|\left(\rho^{T_{B}}\right)^{\otimes n}|\psi\rangle<0
$$

- Thus in order to be distillable, the state should be NPT
 - Does there exist non-distillable entangled states? Yes:

Partial transposed states and distillability

Bound Entanglement and the Partial Transpose: Basics

- Given a bipartite state ρ, considering the the partial transpose of n identical copies of the state $\left(\rho^{T_{B}}\right)^{\otimes n}=\left(\rho^{\otimes n}\right)^{T_{B}}$. Then the necessary and sufficient condition of distillability (and n-copy distillability) is that there exists a Schmidt-rank-two vector $|\psi\rangle$ such that

$$
\langle\psi|\left(\rho^{T_{B}}\right)^{\otimes n}|\psi\rangle<0
$$

- Thus in order to be distillable, the state should be NPT.
- Does there exist non-distillable entangled states? Yes:

Partial transposed states and distillability

Bound Entanglement and the Partial Transpose: Basics

- Given a bipartite state ρ, considering the the partial transpose of n identical copies of the state $\left(\rho^{T_{B}}\right)^{\otimes n}=\left(\rho^{\otimes n}\right)^{T_{B}}$. Then the necessary and sufficient condition of distillability (and n-copy distillability) is that there exists a Schmidt-rank-two vector $|\psi\rangle$ such that

$$
\langle\psi|\left(\rho^{T_{B}}\right)^{\otimes n}|\psi\rangle<0 .
$$

- Thus in order to be distillable, the state should be NPT.
- Does there exist non-distillable entangled states?
with $\lambda=\left(\frac{3257}{6884}, \frac{450}{1721}, \frac{450}{1721}, \frac{27}{6884}\right)$, and the eigenvectors are given by

Partial transposed states and distillability

Bound En-

 tanglement and the Partial Transpose: Basics- Given a bipartite state ρ, considering the the partial transpose of n identical copies of the state $\left(\rho^{T_{B}}\right)^{\otimes n}=\left(\rho^{\otimes n}\right)^{T_{B}}$. Then the necessary and sufficient condition of distillability (and n-copy distillability) is that there exists a Schmidt-rank-two vector $|\psi\rangle$ such that

$$
\langle\psi|\left(\rho^{T_{B}}\right)^{\otimes n}|\psi\rangle<0
$$

- Thus in order to be distillable, the state should be NPT.
- Does there exist non-distillable entangled states? Yes:

$$
\rho=\sum_{i=1}^{4} \lambda_{i}\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right|
$$

with $\lambda=\left(\frac{3257}{6884}, \frac{450}{1721}, \frac{450}{1721}, \frac{27}{6884}\right)$, and the eigenvectors $\left|\psi_{i}\right\rangle \in \mathbb{C}^{3} \otimes \mathbb{C}^{3}$ are given by

$$
\begin{aligned}
\left|\psi_{1}\right\rangle & =\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle),\left|\psi_{2}\right\rangle=\frac{a}{12}(|01\rangle+|10\rangle)+\frac{1}{60}|02\rangle-\frac{3}{10}|21,\rangle \\
\left|\psi_{3}\right\rangle & =\frac{a}{12}(|00\rangle-|11\rangle)+\frac{1}{60}|12\rangle+\frac{3}{10}|20\rangle \\
\left|\psi_{4}\right\rangle & =\frac{1}{\sqrt{3}}(-|01\rangle+|10\rangle+|22\rangle)
\end{aligned}
$$

Partial transposed states and distillability

Bound En-

 tanglement and the Partial Transpose: Basics- Given a bipartite state ρ, considering the the partial transpose of n identical copies of the state $\left(\rho^{T_{B}}\right)^{\otimes n}=\left(\rho^{\otimes n}\right)^{T_{B}}$. Then the necessary and sufficient condition of distillability (and n-copy distillability) is that there exists a Schmidt-rank-two vector $|\psi\rangle$ such that

$$
\langle\psi|\left(\rho^{T_{B}}\right)^{\otimes n}|\psi\rangle<0
$$

- Thus in order to be distillable, the state should be NPT.
- Does there exist non-distillable entangled states? Yes:

$$
\rho=\sum_{i=1}^{4} \lambda_{i}\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right|
$$

with $\lambda=\left(\frac{3257}{6884}, \frac{450}{1721}, \frac{450}{1721}, \frac{27}{6884}\right)$, and the eigenvectors $\left|\psi_{i}\right\rangle \in \mathbb{C}^{3} \otimes \mathbb{C}^{3}$ are given by

$$
\begin{aligned}
\left|\psi_{1}\right\rangle & =\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle),\left|\psi_{2}\right\rangle=\frac{a}{12}(|01\rangle+|10\rangle)+\frac{1}{60}|02\rangle-\frac{3}{10}|21,\rangle \\
\left|\psi_{3}\right\rangle & =\frac{a}{12}(|00\rangle-|11\rangle)+\frac{1}{60}|12\rangle+\frac{3}{10}|20\rangle, \\
\left|\psi_{4}\right\rangle & =\frac{1}{\sqrt{3}}(-|01\rangle+|10\rangle+|22\rangle) .
\end{aligned}
$$

PPT entangled $U S p \otimes U S p$ states

Bound En-

 tanglement and the Partial Transpose: Basics- $U S p \otimes U S p$-invariant states:

$$
[\rho, S \otimes S]=0, \quad \forall S \in U S p(2 d), \Rightarrow \rho=\alpha \mathbb{1}+\beta F+\gamma \mathbb{J}
$$

- The NPT and entangled regions do not coincide.
- First systematic generation of bound entangled states.

PPT entangled $U S p \otimes U S p$ states

Bound En-

 tanglement and the Partial Transpose: Basics- $U S p \otimes U S p$-invariant states:

$$
[\rho, S \otimes S]=0, \quad \forall S \in U S p(2 d), \Rightarrow \rho=\alpha \mathbb{1}+\beta F+\gamma \mathbb{J}
$$

- The NPT and entangled regions do not coincide.
- First systematic generation of bound entangled states.

PPT entangled $U S p \otimes U S p$ states

Bound En-

 tanglement and the Partial Transpose: Basics- $U S p \otimes U S p$-invariant states:

$$
[\rho, S \otimes S]=0, \quad \forall S \in U S p(2 d), \Rightarrow \rho=\alpha \mathbb{1}+\beta F+\gamma \mathbb{J}
$$

- The NPT and entangled regions do not coincide.
- First systematic generation of bound entangled states.

NPT bound entangled states?

Bound En-

 tanglement and the Partial Transpose: Basics- Does there exist NPT bound entangled states?
- Or in other words: does there exists states, for which there is exists a vector $|\varphi\rangle$ with
but for all n and all Schmidt-rank-two vectors $|\psi\rangle$
- If there exist NPT bound entangled states, then there exist NPT bound entangled Werner states.
- For all n, there exist entangled but non-n-distillable Werner states.

NPT bound entangled states?

Bound En-

 tanglement and the Partial Transpose: Basics- Does there exist NPT bound entangled states?
- Or in other words: does there exists states, for which there is exists a vector $|\varphi\rangle$ with

$$
\langle\varphi| \rho^{T_{B}}|\varphi\rangle<0,
$$

but for all n and all Schmidt-rank-two vectors $|\psi\rangle$

$$
\langle\psi|\left(\rho^{T_{B}}\right)^{\otimes n}|\psi\rangle \geq 0 .
$$

- If there exist NPT bound entangled states, then there exist NPT bound entangled Werner states.
- For all n, there exist entangled but non- n-distillable Werner states.

NPT bound entangled states?

Bound En-

 tanglement and the Partial Transpose: Basics- Does there exist NPT bound entangled states?
- Or in other words: does there exists states, for which there is exists a vector $|\varphi\rangle$ with

$$
\langle\varphi| \rho^{T_{B}}|\varphi\rangle<0,
$$

but for all n and all Schmidt-rank-two vectors $|\psi\rangle$

$$
\langle\psi|\left(\rho^{T_{B}}\right)^{\otimes n}|\psi\rangle \geq 0 .
$$

- If there exist NPT bound entangled states, then there exist NPT bound entangled Werner states.
- For all n, there exist entangled but non-n-distillable Werner states.

NPT bound entangled states?

Bound En-

 tanglement and the Partial Transpose: Basics- Does there exist NPT bound entangled states?
- Or in other words: does there exists states, for which there is exists a vector $|\varphi\rangle$ with

$$
\langle\varphi| \rho^{T_{B}}|\varphi\rangle<0,
$$

but for all n and all Schmidt-rank-two vectors $|\psi\rangle$

$$
\langle\psi|\left(\rho^{T_{B}}\right)^{\otimes n}|\psi\rangle \geq 0
$$

- If there exist NPT bound entangled states, then there exist NPT bound entangled Werner states.
- For all n, there exist entangled but non- n-distillable Werner states.

