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They are invariant with respect to unitary twirling
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Any state can be brought by twirling to a Werner state.
e One can easily obtain the NPT and the entanglement regions: ps < 1/2.
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e One can define the :

p— do 0% p(O")®*
O(n)
e The NPT and entanglement regions coincide again.
e Some work has been done on more general G ® G-invariant, but their
structure becomes quickly more complicated, and not available for
general dimensions. 5/8
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e The NPT and entangled regions do not coincide.

o First systematic generation of bound entangled states.
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o If there exist NPT bound entangled states, then there exist NPT bound
entangled Werner states.

e For all n, there exist entangled but non-n-distillable Werner states.

8/8



