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Important feature of nuclear spins

* Nuclear gyromagnetic constants are very small

1. Drawback: The Zeeman splitting of the nuclear spin
states are very small even in huge magnetic fields

* At non-zero temperatures, the thermal occupation of the
spin states is almost identical

* Very small “static nuclear spin polarization” (<<<1%)
* NMR sensitivity is low

2. Advantage: The nuclear spins are weakly interact
with their environment (compared with electron
spin)

* They have long spin coherence time
 Attractive for quantum information application
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How

e Basic phenomena: spin polarization transfer

— e.g.: from accessible electron spins to the nuclear
spins

— For the transfer, entangled electron-nuclear spin
states are used

* There are several DNP techniques

— Via the Overhauser-effect, the solid-effect, the
cross-effect, and the thermal-mixing

— A recent new approach is to use the spins of
controllable high spin state point defects
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Hyperfine and dipole couplings
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manipulation
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Hyperfine coupling
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DNP with point defects

e One direction to realize DNP:

Transport paramagnetic point defect’s spin polarization to
the nuclei’ spins

* Recent realization:
Use the spin of optically addressable point defects
— optical control

—room temperature DNP, etc.
- hyperpolarized sample holders for sensitivity-enhanced NMR

* New application:
High fidelity initialization of nuclear qubits
= nuclear quantum memory

 DNP with NV center [phys. rev. Lett. 10 @374be)Rogs|] configurations!
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Controllable point defects

Divacancy in SiC

NV center in diamond




NV-center diamond and divacany in

SIC
Structure Electron configuration
Ground Excited
NV center divacany state state
S=1 S=1
CB CB

Spin density
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Optical electron spin polarization and
the ODMR measurement

Due to the S = 1 spin state and
the localized spin density, the
spin states split in the GS and
the ES (zero-field splitting, D)

A spin selective non-radiative
decay path allows spin
polarization of the defect

ODMR measurement:

— Continuous optical excitation
polarizes the spinin M¢=0

* maximal luminescence

— Resonant microwave field can
flip the spin to M = +1 state.

* from the M, = *1 states a
non-radiative path is

Shelving
states




Spin Hamiltonian

The general case for one adjacent nuclei:
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Hyperfine term

Hyperfine interaction term in the basis of |0 1), |0 |), |—1 1), and |—1 |) states.
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Hyperfine interaction term in the basis of |0 1),
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 To realize polarization transfer
the nuclear and electron spin
states should be coupled
effectively

* For the NV and the divacancy,
the large electron spin-electron
spin interaction (zero field
splitting) hinder the coupling,
D>>A

By applying a magnetic field,
the Mg = 0 and Mg = -1 states
approach each other

— At LAC, the hyperfine
interaction can flip both B
the electron and nuclear
spin states
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The DNP cycle

Consider one adjacent
nuclear spin (I = 1/2) to
a NV center or divacay
in SiC

At LAC, continuous
optical excitation and
the subsequent non-
radiative decay
polarizes both the
electron and nuclear
spins
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DNP cycle

hyperfine interaction

A AN
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At LAC, SOME of the electron and

Consider a non-entangled nuclear spin state are entangled:
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Consider a non-entangled
stating state:

0) @ (a|T)+ 5 1)

Nuclear spin r
effects try t
the equilibrium non-
spin polarized state

DNP cycle

hyperfine interaction

A

N

_I_

At LAC, SOME of the electron and
nuclear spin state are entangled:

al0T)+(y[0d)+o[-11

\

)

J

entangled electron-
nuclear spin state

X=1]

-radiative decay

the electron
spin, the nuclear spin
state jumps into state

0
ey p
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Optical excitation
Spin conserving

GS time evolution

[:]GS = STDGSS + MBBTgeS + STAGSi + MNBTgNi,
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ES time evolution

ﬁEs = STDEsg + ,uBBTges + STAESi + ,uNBTgNi,

Optical excitation
Spin conserving

\

No simplifications
here!

/
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Our model — full cycle — single nucleus

ES time evolution
Hgs = STDgsS + ,MBBTgeS + START + MNBTgNi,

\

Optical excitation Decay

No simplifications : .
Spin conserving hperel May flip the electron spin.

/

Hgs = S™DgsS + MBBTgeS +STAGT + MNBTgNi,

GS time evolution

P+ — P-
p++ p-+k

K: relaxation time of nuclear spins per number of optical cycles per unit time

Steady state nuclear spin polarization: P =



Parameters

* time does matter, particularly, in ES

A is relatively small = spin rotation is slow = = lifetime and/or coherence time of e-spin
NV & N (1=1/2)
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Typical results, NV & >N (1=1/2)

ESLAC GSLAC
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ES: A;=-38.5MHz, A|=-58.1 MHz
GS: A;=3.9MHz, A= 3.4 MHz
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What determines the polarizability?

* |tis of great importance from the application point of view
* There are theories
* Directions cosines of the hyperfine interactions are
important
* High polarizability for nuclei on the axis of the defect
* No satisfactory consensus has been achieved.



What determines the polarizability?



What determines the polarizability?

@ A8
09t
0.8}
07, ————— ]
0.6}
0.5t
04t
0.3}
021AL=1
0.1

0 10 20 30 40 50 60 70 80 90
0[]

Excited state, | = 5, quantities are in MHz unit.



What determines the polarizability?

General cases

02FA; =1
0.1

0 10 20 30 40 50 60 70 80 90
0[]

Excited state, | = 5, quantities are in MHz unit.



What determines the polarizability?

@ A8
09t
0.8}
07, ————— ]
0.6}
0.5t
04t
0.3}
021AL=1
0.1

0 10 20 30 40 50 60 70 80 90
0[]

Excited state, | = 5, quantities are in MHz unit.



What determines the polarizability?
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What determines the polarizability?

* relatively small angular dependence
* the polarizability depends predominantly on A perpendicular
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Excited state, | = 5, quantities are in MHz unit.



Detour:
Silicon carbide polytypes

SiC is a wide-band-gap 6H 4H
semiconductor 7 7

SiC exists in about 250 ]
crystalline form 7

Provides good doping
possibilities 7

L
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I
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e C
_ O Si

|
S

Inequivalent defect sites

Most common Configurations of pair defects
polytypes 3C-SiC kk
3C 4H 6H

4H-SiC hh, kh, kk, hk

Gap[ev] 236 323 3.0 6H-SiIC  hh, k,h, k.k,, k.ky, k.k,, hk,



What other parameter is important?

Near the ESLAC, °Si (I = /5) @ Si,, site close to axial divacancies in SiC.
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What other parameter is important?

Near the ESLAC, °Si (I = /5) @ Si,, site close to axial divacancies in SiC.
QL1 QL2 PL6
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T,*=1.3ns
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GSLAC fine structure

When the symmetry of the spin Hamiltonian is
reduced (divacancy in SiC):

1

0.8}
0.6}
0.4
0.2]
0

R

-0.2¢

0.4

200 250 300 350 400 450/ 500 550 |
B [Gauss] 440 A5 450 455 460 465
B [Gauss]

* nuclear spin polarization can flip as a function of B



Summary

* Theory of optical nuclear spin polarization in solids is advanced

* A. L. Falk et al., Physical Review Letters 114 247603 (2015).
* V. lvady et al., Physical Review B 92 115206 (2015).

Physics VIEWPOINT

Polarizing Nuclear Spins in Silicon Carbide
Published 17 June 2015

An optical technique polarizes the spin of nuclei in silicon carbide, offering a potential
new route to nuclear spin-based quantum memory.

See more in Physics



