
GPU Lab

D. Berényi – M. F. Nagy-Egri

Lectures on Modern Scientific Programming
Wigner RCP

23-25 November 2015

Build Systems,
Version Control,

Integrated Development
Environment

GPU Lab

D. Berényi – M. F. Nagy-Egri

Build System

Please, no more compile.sh

GPU Lab

D. Berényi – M. F. Nagy-Egri

How does a C/C++ application compile?

vector

algorithm

iostream

RK4.hpp

Interaction.hpp

Application.cpp

FileReader.cpp

Particle.cpp

Solver.cpp

Headers

Sources

• Headers

• Contain the declaration of functions

• A declaration consists of the name of

the function, and its signature

• The signature are the types of the

inputs and the type of the output

• 𝑓𝑢𝑛𝑐 𝕄,𝕍 → 𝕍
• Sources

• Contain the definition of functions

• The definition is the actual body of

the function, the series of commands

to execute

GPU Lab

D. Berényi – M. F. Nagy-Egri

How does a C/C++ application compile?

vector

algorithm

iostream

RK4.hpp

Interaction.hpp

Application.cpp

FileReader.cpp

Particle.cpp

Solver.cpp

Headers

Sources

• Each source file references (includes) 𝑛
headers

• Headers may reference each other

• C/C++ has a One Defintion Rule

• Multiple inclusions of a header would

violate ODR

• Headers can be guarded against

multiple inclusions (Include Guard)

• Why do we split code like this if it’s so

complicated?

• Clear seperation of features from

implementation

• Compile times (see later)

http://en.cppreference.com/w/cpp/language/definition
http://en.cppreference.com/w/cpp/preprocessor/include

GPU Lab

D. Berényi – M. F. Nagy-Egri

How does a C++ application compile?

vector

algorithm

iostream

RK4.hpp

Interaction.hpp

Application.cpp

FileReader.cpp

Particle.cpp

Solver.cpp

Application.o

FileReader.o

Particle.o

Solver.o

Compiler
Objects

• Object files

contain decorated

machine code

• They contain the

native binary of

the function

bodies

• Decoration

consists of

compiler

generated

identifiers to

functions called

symbols

__operator*(classMat,classVec)->classVec

GPU Lab

D. Berényi – M. F. Nagy-Egri

How does a C++ application compile?

vector

algorithm

iostream

RK4.hpp

Interaction.hpp

Application.cpp

FileReader.cpp

Particle.cpp

Solver.cpp

Application.o

FileReader.o

Particle.o

Solver.o

MyLib.dll

MyApp.exe

Compiler
Linker

GPU Lab

D. Berényi – M. F. Nagy-Egri

How does a C++ application compile?

• Linking an executable
• The linker inspects all object files, and looks for a special function

(called main)

• Checks which functions are actually needed to create a functional
executable and throw away the rest

• If some library is marked for linking, include those symbols too

• Some functions may be compiled multiple times
• If the binaries to the same symbol match, throw away all but one

• If they mismatch, throw a link time error

• If there is some symbol missing, throw a link time error

• By separating code to headers and sources, we minimize the
chance of compiling the same function multiple times

GPU Lab

D. Berényi – M. F. Nagy-Egri

Static versus dynamic libraries

Static

• Linking statically triggers
inclusion of symbols directly
into the executable

• Results in faster code

• If many executables refer to
the same library, they all
include the same code

Dynamic

• Linking dynamically triggers
including only a reference to
the symbol

• Results in smaller executable

• If many executable refer to
the same library, the code
exists only once on disk

GPU Lab

D. Berényi – M. F. Nagy-Egri

What is a Build System?

• A tool that takes care of building your application in the
fastest way possible with minimal user effort.

• The input is a make file, and the output is one or more
binary/ies (hopefully). 

• Examples of build Systems:
• GNU Make

• NMake

• MSBuild

• Ninja

• Qmake

• CMake

GPU Lab

D. Berényi – M. F. Nagy-Egri

Why use a Build System?

• Didn’t I just say „Minimal user effort”?!
• Build Systems aim at being as comfortable to use as possible

• User declares the task, instead of specifying what to do
• Declarative DSL, not imperative

• Didn’t I just say „Maximum throughput”?!
• Detects the minimal portion of the program that must be recompiled

when editing code.
• Uses time stamps

• Processes independent parts of the build tasks in parallel

• Requires learning, but pays off in the long run!

GPU Lab

D. Berényi – M. F. Nagy-Egri

Choosing a build system

Build System Human readable
Graphical

front-end
Portable Generator

GNU Make ✓

NMake ✓

MSBuild (✓) ✓ ✓

Ninja ✓

Scons

Waf

Invoke-Build

QMake ✓ ✓ ✓ ✓

CMake ✓ (✓) ✓ ✓

GPU Lab

D. Berényi – M. F. Nagy-Egri

GNU Make

• Part of the GNU open-source
software stack

• It is included in all Linux
distributions

• User provides set of tasks
• Task name

• Dependency of task

• Command-line to execute

edit : main.o kbd.o command.o
display.o \ insert.o search.o
files.o utils.o cc -o edit main.o
kbd.o command.o display.o \
insert.o search.o files.o utils.o
main.o : main.c defs.h cc -c main.c
kbd.o : kbd.c defs.h command.h cc -
c kbd.c command.o : command.c
defs.h command.h cc -c command.c
display.o : display.c defs.h
buffer.h cc -c display.c insert.o :
insert.c defs.h buffer.h cc -c
insert.c search.o : search.c defs.h
buffer.h cc -c search.c files.o :
files.c defs.h buffer.h command.h
cc -c files.c utils.o : utils.c
defs.h cc -c utils.c clean : rm
edit main.o kbd.o command.o
display.o \ insert.o search.o
files.o utils.o

GPU Lab

D. Berényi – M. F. Nagy-Egri

NMake

• Part of Microsoft’s Visual
Studio software stack

• Should be considered legacy

• User provides set of tasks
• Task name

• Dependency of task

• Command-line to execute

• Cannot perform tasks in
parallel

Sample pending

GPU Lab

D. Berényi – M. F. Nagy-Egri

MSBuild

• The build system that is
currently used by Microsoft’s
Visual Studio

• It has been open-sourced and
is available on Linux

• XML-based
• Limited human-readability

• Best used with a graphical front-
end

Sample pending

GPU Lab

D. Berényi – M. F. Nagy-Egri

Ninja

• Incredibly fast build system

• Sacrifices human readability
• DSL favors not the user, but

the machine

• It is meant to be generated
by other tools, not hand
authored

• Portable

• Open-source

GPU Lab

D. Berényi – M. F. Nagy-Egri

QMake •Make file generator
• Provide one input

• Ability to produce make files for
multiple other build systems

• Portable

• Open-source

• Designed to serve the needs of
the Qt Project

GPU Lab

D. Berényi – M. F. Nagy-Egri

CMake

• Make file generator

• Portable

• Open-source

• Knows most languages by default
• The known ones are EASY to use

• Others can be taught

• DSL script language sometimes
unfriendly

• Most cross-platform projects use
it

PROJECT(my_app)

LIST(SOURCES)

APPEND(SOURCES main.cpp
vector.cpp)

ADD_EXECUTABLE(${PROJECT_NAME}
SOURCES)

GPU Lab

D. Berényi – M. F. Nagy-Egri

Use something

• We are not workflow nazis anything is better than compile.sh

• If you don’t know any build system,
we highly recommend learning CMake
• Extremely simple for small projects

• Scales well (depending on scripting affinity/skill)

• It is portable

• It is mainstream (has great momentum)

• Actively being developed (and is actually evolving)

• Even if you know one, we recommend giving CMake a chance

GPU Lab

D. Berényi – M. F. Nagy-Egri

CMake + CTest + CPack + Cdash =
EXIT_SUCCESS

• Kitware is the company behind the CMake suite of tools

• Full-fledged scripting language to do virtually anything
• It is (finally) documented

• Gazillions of tutorials online

• Feature missing?
• It’s open-source, so feel free to contribute

• Don’t have time? Hire us to do it!

• Big projects using CMake suite of tools
• Bullet Physics Engine, CLion, Compiz, cURL, ROOT, GEANT4,

GROMACS, KDE, libPNG, LAPACK, LLVM, Clang, MySQL, OGRE, OpenCV,
SFML, zlib, …

GPU Lab

D. Berényi – M. F. Nagy-Egri

Why strive on remaining portable

• Portability is important!
• Today, you might write the code for yourself, but tomorrow you might

have to give it to a collegue

• If your code is bound to a specific OS, compiler, etc. They will be
more reluctant to use your code

• Dependencies
• The portability of code is the union of restrictions imposed by:

• Tools required to build the application

• Environment required to run the application

• Prefer portable tools over non-portable (have good reason to defect)

• Understand the costs of depending upon external software (even OSS)

GPU Lab

D. Berényi – M. F. Nagy-Egri

What can CMake do for you?

• A decent scripting language for authoring make files.
• It is not declarative, but imperative

(more powerful, but makes room for errors)

• Multiple (semi-)automated ways of discovering
dependencies

• Ability to separate common build rules from platform,
compiler specific rules

GPU Lab

D. Berényi – M. F. Nagy-Egri

What can CMake do for you?

Research
project

./

Physics
library

./phys

src

./phys/src

Phys stuff

stuff.cpp

More stuff

more.cpp

inc

./phys/inc

Declarations

decl.hpp

Application

./app

src

./app/src

Main

main.cpp

inc

./app/inc

Header

header.hpp

GPU Lab

D. Berényi – M. F. Nagy-Egri

What can CMake do for you?
Research project

./

Physics library

./phys

src

./phys/src

Phys stuff

stuff.cpp

More stuff

more.cpp

inc

./phys/inc

Declarations

decl.hpp

Library make file

CMakeLists.txt

Application

./app

src

./app/src

Main

main.cpp

inc

./app/inc

Header

header.hpp

Application make file

CMakeLists.txt

Top-level make file

CMakeLists.txt

GPU Lab

D. Berényi – M. F. Nagy-Egri

Top-level CMakeLists.txt

cmake_minimum_required (VERSION 2.8.11)

CMakeLists files in this project can

refer to the root source directory of the project as
${RESEARCH_SOURCE_DIR} and

to the root binary directory of the project as ${RESEARCH_BINARY_DIR}.

project (RESEARCH)

Recurse into the „phys" and „app" subdirectories. This does not actually

cause another cmake executable to run. The same process will walk through

the project's entire directory structure.

add_subdirectory (phys)

add_subdirectory (app)

GPU Lab

D. Berényi – M. F. Nagy-Egri

Library CMakeLists.txt

cmake_minimum_required (VERSION 2.8.11)

Create a library called „Phys" which includes the source files „stuff.cpp” and
„more.cpp”.

The extension is already found. Any number of sources could be listed here.

add_library (Phys src/stuff.cpp src/more.cpp)

Make sure the compiler can find include files for our Phys library

when other libraries or executables link to Phys

target_include_directories (Phys PUBLIC
${CMAKE_CURRENT_SOURCE_DIR}/inc)

GPU Lab

D. Berényi – M. F. Nagy-Egri

Application CMakeLists.txt

cmake_minimum_required (VERSION 2.8.11)

Add executable called „Application" that is built from the source files

„main.cpp”. The extensions are automatically found.

add_executable (Application src/main.cpp)

Make sure the compiler can find include files for our Application sources

target_include_directories (Application PUBLIC
${CMAKE_CURRENT_SOURCE_DIR}/inc)

Link the executable to the Phys library. Since the Phys library has

public include directories we will use those link directories when building

Application

target_link_libraries (Application LINK_PUBLIC Phys)

GPU Lab

D. Berényi – M. F. Nagy-Egri

Configuring the build system

PS C:\Users\Matty\Build\Research\NMake> cmake -G "NMake Makefiles"

C:\Users\Matty\OneDrive\Develop\Tests\CMake\CMake_example\

-- The C compiler identification is MSVC 19.0.23026.0

-- The CXX compiler identification is MSVC 19.0.23026.0

-- Check for working C compiler: C:/Kellekek/Microsoft/Visual Studio/14.0/VC/bin/amd64/cl.exe

-- Check for working C compiler: C:/Kellekek/Microsoft/Visual Studio/14.0/VC/bin/amd64/cl.exe -- works

-- Detecting C compiler ABI info

-- Detecting C compiler ABI info - done

-- Check for working CXX compiler: C:/Kellekek/Microsoft/Visual Studio/14.0/VC/bin/amd64/cl.exe

-- Check for working CXX compiler: C:/Kellekek/Microsoft/Visual Studio/14.0/VC/bin/amd64/cl.exe -- works

-- Detecting CXX compiler ABI info

-- Detecting CXX compiler ABI info - done

-- Detecting CXX compile features

-- Detecting CXX compile features - done

-- Configuring done

-- Generating done

-- Build files have been written to: C:/Users/Matty/Build/Research/NMake

GPU Lab

D. Berényi – M. F. Nagy-Egri

Invoking the build system

PS C:\Users\Matty\Build\Research\NMake> nmake

Microsoft (R) Program Maintenance Utility Version 14.00.23026.0

Copyright (C) Microsoft Corporation. All rights reserved.

Scanning dependencies of target Phys

[20%] Building CXX object phys/CMakeFiles/Phys.dir/src/stuff.cpp.obj

stuff.cpp

[40%] Building CXX object phys/CMakeFiles/Phys.dir/src/more.cpp.obj

more.cpp

[60%] Linking CXX static library Phys.lib

[60%] Built target Phys

Scanning dependencies of target Application

[80%] Building CXX object app/CMakeFiles/Application.dir/src/main.cpp.obj

main.cpp

[100%] Linking CXX executable Application.exe

[100%] Built target Application

GPU Lab

D. Berényi – M. F. Nagy-Egri

Few things to note

• Where did we specify in the make scripts how to invoke the
compiler?
• CMake looks for installed compilers and choses one it likes

• Can be overriden when configuring the build

• What are the actual compiler switches, to make things work?
• User must not need to know compiler options in the most common

cases

• Can be extensively customized if needed

• What order must things be built?
• CMake builds dependency graph and generates make files accordingly

GPU Lab

D. Berényi – M. F. Nagy-Egri

Just the tip of the iceberg

• CMake scripts are not declarative,
but an imperative script language

• Turing complete (you can do ANYTHING with it)

• file command
• Write to a file

• Read from a file

• Hash a file

• Create directories

• Download files

• Upload files

• Collect file names matching regex

GPU Lab

D. Berényi – M. F. Nagy-Egri

What about my dependencies?

• Depending on a library built alongside the application is
simple, but what about external dependencies?

• Find module
• Module config files look for a given library in the most common install

locations
• On Linux it’s fairly trivial, on Windows it usually relies on env. vars.

• If the library is found, it sets some variables that facilitate
consumption

• If not, it prompts the user to provide the root directory of the
installation

• There are 143 pre-installed FindModule.cmake files shipping with
CMake.

• Let us omit the body of such a file. No black magic, but it is
vastly outside to scope of this showcase.

GPU Lab

D. Berényi – M. F. Nagy-Egri

Application CMakeLists.txt

Look for common installation layouts of MPI

If found, it will set some variables, otherwise it will throw an error

find_package (MPI REQUIRED)

Make sure our application’s sources find the include files of MPI

target_include_directories (Application PUBLIC ${MPI_INCLUDE_DIRS})

Link the executable to the MPI library.

target_link_libraries (Application ${MPI_LIBRARIES})

GPU Lab

D. Berényi – M. F. Nagy-Egri

But we can do better

• Couldn’t everything be done automatically?

• Package config
• Package config files provide end-users with the exact layout of a

given installation and all the tasks needed to consume the library

• The libraries will always be found without user interaction, no matter
how exotic the installation is

• How does it work?
• Windows, HKEY_CURRENT_USER and HKEY_LOCAL_MACHINE registry

entries hold paths for user wide and system wide registered packages

• Linux, $(HOME)/.cmake/packages folder holds files with package
paths

GPU Lab

D. Berényi – M. F. Nagy-Egri

Application CMakeLists.txt

Look for a registered clFFT installation

Without „PACKAGE” it starts by looking for package and then for modules

find_package (CLFFT PACKAGE REQUIRED)

We don’t need to set any include directories, as the package promotes

usage to consumers

Link the executable to the clFFT library.

target_link_libraries (Application PUBLIC CLFFT)

GPU Lab

D. Berényi – M. F. Nagy-Egri

Unit Testing

• Writing modular code is good
• Easier to maintain

• Better chance at being reusable

• Faster to compile (!)

• Testable

• Imagine our phys library to contain only the impementations
of physical phenomena

• This code might be reused elsewhere, our concrete simulation
might only be one use case

• Seeing the expected results in one application does not mean
that phys contains no bugs

GPU Lab

D. Berényi – M. F. Nagy-Egri

Unit Testing

• Isolate parts of the code that can stand on it’s own

• Create minimal use cases that have predictable outcome
• Vector addition

• Matrix multiplication

• Periodic boundaries

• Numerical stability

• Etc.

• Check if all of your code behaves as expected in these minimal
use cases

• If all your code passes Unit Testing, you have a much better
chance to avoid bugs in consuming code

GPU Lab

D. Berényi – M. F. Nagy-Egri

Enter CTest

Enable testing functionality

enable_testing ()

add_executable (UnitTest1 src/test1.cpp)

target_link_libraries (UnitTest1 LINK_PUBLIC Phys)

Add unit test that reads an input file, processes it and validates against

a file of known correct results

add_test (NAME „Vector operations”

COMMAND UnitTest1 --input detector.dat --validate result.dat)

GPU Lab

D. Berényi – M. F. Nagy-Egri

CTest output

PS C:\Users\Matty\Build\Research\NMake> ctest

Test project C:/Users/Matty/Build/Research/NMake

Start 1: Vector operations

1/1 Test #1: UnitTest1 Passed 1.58 sec

100% tests passed, 0 tests failed out of 1

Total Test time (real) = 1.58 sec

• By default checks if the exit code of UnitTest1 is 0 or not.

• Can be customized to match console or file output to another
file or even a regular expression instead

• The formatting of CTest’s output can also be customized

GPU Lab

D. Berényi – M. F. Nagy-Egri

CPack for cross-platform packaging

• Applications built with CMake can trivially be packaged for
distribution

• Because packaging varies greatly between platforms, requires
duplicated „boilerplate”
• Boilerplate is package author, company name, version, icons,

contact, etc.

• 10-20 lines per platform can create
• DEB packages

• RPM packages

• Self-extracting EXE installers

GPU Lab

D. Berényi – M. F. Nagy-Egri

Version Control

The art of roll-back

GPU Lab

D. Berényi – M. F. Nagy-Egri

Version Control: Why should you care?

• Short version: the entire world is using it, so should you.

• Long version: even small scale software development is full of
„trial and error”, which is not a linear workflow, but rather
tree-like.
• Updating the working copy of the source tree will result in times

when your application is not functioning (might not even build)

• Manually keeping functioning copies of the code base with feature A,
feature A+B, feature A+C-B, etc. is tedious and you WILL MESS UP

• Back-up is essential, cloud storage helps, but not alone

• Collaborating without version control is very hard

• There is no holy grail, the best kind depends on your workflow

GPU Lab

D. Berényi – M. F. Nagy-Egri

Centrallized Version Control - Locking

GPU Lab

D. Berényi – M. F. Nagy-Egri

Centrallized Version Control - Merging

GPU Lab

D. Berényi – M. F. Nagy-Egri

Distributed Version Control - Merging

GPU Lab

D. Berényi – M. F. Nagy-Egri

Differences between

Centrallized Distributed

Hard drive space required for

history?
None Could be a lot

Who has the latest version? Central „master version” Depends on policy

Where is the full history? Central machine Local machine

Work offline? No* Yes

How fast are operations? Network-dependent Blazing, most are local

Branching and merging? Reliable, use with caution Reliable, use often

Learning curve? Relatively simple Relatively hard

GPU Lab

D. Berényi – M. F. Nagy-Egri

Chosing the right one

• Examples of VCS
• CVS

• Subversion

• Bazaar

• VSS

• TFVC

• Mercurial

• Git

• Some might suit your needs better than others, but we
recommend one of two:
• Git: very powerful, widespread/mainstream, fairly hard to learn

• Mercurial: very good, widespread, easier to learn

GPU Lab

D. Berényi – M. F. Nagy-Egri

Comparing Mercurial to Git

Mercurial is like James Bond

• Has all those sexy and easy
to use gadgets

• Solves most problems in an
instant

• In the rare cases when
none of the gadgets are
useful, he’s pretty much
screwed

Git is like MacGyver

• Has a screwdriver and a
hammer

• Can solve anything, with
the given time and effort

• When hell breaks loose, he
can assemble some ugly
script that will ultimately
save the day

GPU Lab

D. Berényi – M. F. Nagy-Egri

Git FTW

• There are too many good tutorials online to provide an in-
depth course in this limited time
• Using Git with Visual Studio 2013

• Learn Git branching

• There is a decent set of IDE support available as well as GUI
and command line auxiliary tools
• Posh-git

• Tortoise Git

• Git Extensions

GPU Lab

D. Berényi – M. F. Nagy-Egri

General Git/Mercurial workflow

• Declare one branch as stable and always functional (master)

• Create branches for features/fixes you want to implement

• When a feature is ready, merge it into master

• This way
• Switching between branches to work on half-baked features is safe

and trivial

• If your collegue asks you to do something with your app, there is
always a functioning master to switch to

GPU Lab

D. Berényi – M. F. Nagy-Egri

Setting up Git

• Set the default name, e-mail and push method associated with
your commits
git config --global user.name "Gipsz Jakab„
git config --global user.name gipsz.jakab@wigner.mta.hu

git config --global push.default simple

• Set up SSH authentication to the Wigner Git server
• In your $(HOME)/.ssh/config create an entry like

host wigner-git
hostname git.wigner.mta.hu
user gitolite
port 9419
identityfile ~/.ssh/id_rsa

• Write an e-mail to admin@wigner.mta.hu with your Public
SSH Key for authetntication

mailto:gipsz.jakab@wigner.mta.hu
mailto:admin@wigner.mta.hu

GPU Lab

D. Berényi – M. F. Nagy-Egri

Start working with Git

• Create a local repository on your dev box
• git init

• The repo is initially empty, at least one commit is required to create
the default master branch
• git commit -a

• Create a repository on a remote machine
• Write an e-mail to admin@wigner.mta.hu with repo name and

access control

• Clone (fetch) the remote content (initially empty)
• git clone wigner-git:reponame

• Do the first commit to create the master branch

mailto:admin@wigner.mta.hu

GPU Lab

D. Berényi – M. F. Nagy-Egri

A simple development cycle

• Create a branch for a given feature
• git branch my-feature

• Change to seeing the new branch (initially identical to master)
• git checkout my-feature

• Create/delete/modify files, folders as needed

• Occasionally commit your work to the local repo
• git commit -A

• When the feature is done and tested, merge it into master
• git checkout master
• git pull master
• git merge my-feature

• Push your work to the remote repository
• git push

GPU Lab

D. Berényi – M. F. Nagy-Egri

Help?

• Whenever in doubt
• git branch

• git status

• http://google.com

http://google.com

GPU Lab

D. Berényi – M. F. Nagy-Egri

Integrated Development
Environment
The swiss army knife of programming

GPU Lab

D. Berényi – M. F. Nagy-Egri

The lazy programmer

“I will always choose a lazy person to do a difficult job

because a lazy person will find an easy way to do it.”

– Bill Gates, former Microsoft CEO

GPU Lab

D. Berényi – M. F. Nagy-Egri

What is an IDE?

• Text editor

• Compiler

• Build System

• Versioning Control

• Profiler

• Documentation Generator

• Bug tracker

• Collaboration tool

• …

GPU Lab

D. Berényi – M. F. Nagy-Egri

IDE versus toolchain

Integrated Development
Environment

• Pro
• End-to-end automation

• Workflow is natural

• Easy to learn, hard to master

• Con
• Gotta cook with what you got

Toolchain

• Con
• Distinct tools for everything

• Some glitches here and there

• Hard to learn, hard to master

• Pro
• Choose the best of everything

GPU Lab

D. Berényi – M. F. Nagy-Egri

Visual Studio

• The industry standard IDE

• Used to develop all of Microsoft’s software

• By far the most full feautered IDE

• Exhaustive list of Add-Ins

• Is totally free for small dev teams or non-profit use

GPU Lab

D. Berényi – M. F. Nagy-Egri

Installing Visual Studio

• https://www.visualstudio.com/

• Download Community 2015

• Run the installer

• Select development tools you need
• Visual C++

• Visual F#

• Python

• Go and have lunch

https://www.visualstudio.com/

GPU Lab

D. Berényi – M. F. Nagy-Egri

How it looks like

• Text editor
usually
dominates the
UI

• IntelliSense

• Visual
representation
of the build
system

• Debug code
visually

• Performance
counters
visualized

• Source Control
integrated

GPU Lab

D. Berényi – M. F. Nagy-Egri

Developing on Linux

• While Visual Studio pretty much rocks, not everyone is content
with having to work on a Windows desktop

• Using IDEs are somewhat alien to the Linux developer
community
• Usually toolchains are preferred

• While there are good IDEs out there, there is no real competition

• A non-exhaustive list of decent IDEs
• Qt Creator

• Code::Blocks

• Eclipse

• KDevelop

GPU Lab

D. Berényi – M. F. Nagy-Egri

Qt Creator

• Widespread IDE for cross-platform development

• Used to develop most Qt applications

• Easy to install

• Easy to learn

• Is totally free for developers of open-source software

GPU Lab

D. Berényi – M. F. Nagy-Egri

Installing Qt Creator

• Ubuntu
• sudo apt-get install qtcreator

• OpenSUSE
• zypper install qt-creator

• Scientific Linux
• Yum install qt-creator

GPU Lab

D. Berényi – M. F. Nagy-Egri

How it looks like

• Text editor usually
dominates the UI

• Code completion

• Visual
representation of
the build system

• Debug code visually

• Create portable
projects

