

Wolf György (Wigner FK, Budapest)

History of the Universe

<u>Tartalom:</u>

- Bevezetés kvantum színdinamikába
- ≻ Magfizika
- Folyadék-gáz átmenet
- Királis szimmetria, QGP, szín szupravezetés
- Javaslatok

Pre QCD

- •Erősen kölcsönható "elemi" részecskék száma magas, hadronok: barionok: p,n, Δ , ..., mezonok: π , ρ , η
- Multiplettek azonos spin-paritással, hasonló tömeggel gyengén sérülő szimmetria degenerált állapotai
- Felépíthetjük a hadronokat 3 létező részecskéből: p,n,Λ ez nem magyarázza a tömegeket, multipletteket
- •Szimmetria csoport: $SU(3)_{iz} \supset SU(2)_{izospin} \otimes U(1)_{ritka}$
- Alapreprezentáció vektoraiból, nem megfigyelt kvarkokból: u,d,s.
 Mezonok: M≡qq, barionok: B≡qqq

Szimmetriák

- •Szimmetriacsoportot Hilbert-téren unitér-operátorokkal ábrázoljuk
- •Az egyrészecske-állapotok invaráns alteret feszítenek ki, sokrészecske-állapotok tenzorként transzformálódnak
- •A szimmetria-csoport kommutál a Poincaré-csoporttal
- •Mivel van 8 állapotból álló multiplett, így a csoportnak kell lennie 8-dim irreducibilis ábrázolásának
- •A csoport tartalmazza az izospin csoportot és a ritkaságmegmaradást.

Kvark-modell

KVARK Zamat, íz (Flavor)	Jel	Tömeg M GeV	El. töltés q/e	Spin Par. J π	Izospin T Tz	Ba- rion B	Stra- nge S	Cha rm C	Top T*	Bott om B*
Up	u	0,005	+2/3	1/2 +	1/2 +1/2	1/3	0	0	0	0
Down	d	0,009	-1/3	1/2 +	1/2 -1/2	1/3	0	0	0	0
Charm	c	1,350	+2/3	1/2 +	0 0	1/3	0	+1	0	0
Strange	S	0,170	-1/3	1/2 +	0 0	1/3	-1	0	0	0
Тор	t	174,3	+2/3	1/2 +	0 0	1/3	0	0	+1	0
Bottom	b	4,4	-1/3	1/2 +	0 0	1/3	0	0	0	-1

•Új részecskék → új kvarkok: c,b,t

•Pszeudoskalár oktett: $\pi^+=u\overline{d}$, $\pi^-=d\overline{u}$, $\pi^0=(u\overline{u}-d\overline{d})/\sqrt{2}$, $K^+=u\overline{s}$, $K^0=s\overline{d}$, $\overline{K}^0=d\overline{s}$, $K^-=s\overline{u}$, $\eta=(u\overline{u}+d\overline{d}-2s\overline{s})/\sqrt{6}$

•Barion oktett: p=uud, n=udd, Ξ^0 =uss, Ξ^- =dss, Σ^+ =uus, Σ^- =dds, Σ^0 =s(ud+du)/ $\sqrt{2}$, Λ =s(ud-du)/ $\sqrt{2}$

Szín

Probléma:

- összetett rendszer alapállapota általában L=0
- Δ^{++} barion állapota $u^{\uparrow}u^{\uparrow}u^{\uparrow}$, és relatív impulzusmomentum 0
 - Hullámfüggvény szimmetrikus, de a Δ^{++} fermion
 - Probléma megoldása egy új kvantumszám, a szín

•
$$\Delta^{++} = 1/\sqrt{6} \epsilon^{\alpha\beta\gamma} |u^{\uparrow}_{\alpha}u^{\uparrow}_{\beta}u^{\uparrow}_{\gamma} >, \alpha\beta\gamma 3 szín$$

•Legalább 3 színre van szükség, $N_c \ge 3$

Kvark szabadsági fokok

Erős kölcsönhatás

SLAC kísérlet

p alkotóelemei nagyenergián szabadon mozognak

Az erőskölcsönhatás ízfüggetlen Legyen szín az erőskölcsönhatás töltése

- Szín egzakt szimmetria
- N_c=3. Kvarkok a triplet reprezentációhoz tartoznak
- Bezárási hipotézis: hadronikus állapotok szintelenek
- Aszimptotikus szabadság

A kvarkok közötti kölcsönhatást a gluonok biztosítják. A kvarkok 3 "színben" léteznek a gluonok is 'szinesek", szín-antiszín párjuk van.

Csak színtelen állapotokat figyeltünk meg. 3 különböző színű kvark, vagy azonos színű-antiszínű kvark+antikvark pár színtelen lehet.

Alacsony energián csak a 3 valencia kvark látszik. Magasabb energián egyre több virtuális kvarkot, gluont látunk.

$$\begin{aligned} & \mathcal{Q}\mathsf{C}\mathsf{D} \ \mathsf{L}\mathsf{a}\mathsf{g}\mathsf{r}\mathsf{a}\mathsf{n}\mathsf{g}\mathsf{e}-\mathsf{f}\ddot{\mathsf{u}}\mathsf{g}\mathsf{g}\mathsf{v}\check{\mathsf{e}}\mathsf{n}\mathsf{y} \\ \mathcal{L}_{\mathrm{Q}\mathrm{C}\mathrm{D}} &\equiv -\frac{1}{4} \, G_{a}^{\mu\nu}G_{\mu\nu}^{a} + \sum_{f} \, \bar{q}_{f} \, (i\gamma^{\mu}D_{\mu} - m_{f}) \, q_{f} \\ &= -\frac{1}{4} \, (\partial^{\mu}G_{a}^{\nu} - \partial^{\nu}G_{a}^{\mu})(\partial_{\mu}G_{\nu}^{a} - \partial_{\nu}G_{\mu}^{a}) + \sum_{f} \, \bar{q}_{f}^{\alpha} \, (i\gamma^{\mu}\partial_{\mu} - m_{f}) \, q_{f}^{\alpha} \\ &+ g_{s} \, G_{a}^{\mu} \, \sum_{f} \, \bar{q}_{f}^{\alpha}\gamma_{\mu} \left(\frac{\lambda^{a}}{2}\right)_{\alpha\beta} \, q_{f}^{\beta} \\ &- \frac{g_{s}}{2} \, f^{abc} \, (\partial^{\mu}G_{a}^{\nu} - \partial^{\nu}G_{a}^{\mu}) \, G_{\mu}^{b}G_{\nu}^{c} - \frac{g_{s}^{2}}{4} \, f^{abc}f_{ade} \, G_{b}^{\mu}G_{c}^{\nu}G_{\mu}^{d}G_{\nu}^{e} \\ & \mathcal{D}_{\mu} = \partial_{\mu} - ig_{s}A_{\mu}, \, A_{\mu} = \sum_{a=1}^{8} A_{\mu}^{a}\lambda^{a}/2, \, G_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu} - ig_{s}[A_{\mu}, A_{\nu}] \end{aligned}$$

sor: kinetikus energiák sor: kvark-gluon kölcsönhatás sor: gluonok önkölcsönhatása

Futó csatolási állandó

Kvark-kvark csatolási állandót renormáljuk

Gluonok önkölcsönhatása antileárnyékolás

színtöltés eloszlás

Aszimptotikus szabadság

Futó csatolási állandó

Klasszikus Magfizika <mark>Erőskölcsönhatás T=0, ρ≈ρ₀-nál</mark>

Kérdések:

- nukleon potenciálok
- magok szerkezete
- Big Bang nukleoszintézis, nap energiatermelése

Színtelen nukleonok közötti Van der Waals erők

- Hosszú távú vonzás, rövid távú taszítás
- Fenomenológikus potenciálok
- Mezon kicserélődési (π , σ , ω , ρ) potenciálok

Atommagok

Bethe-Weizsäcker tömegformula

• M=A m_N-E_B

Asszimetria A = 16Higher energy Lower energy Neutrons Protons Protons **Neutrons** |N - Z| = 0|N - Z| = 4

Erősen kölcsönható anyag

- Az anyag alapvető tulajdonságai a hőmérséklet és sűrűség függvényében.
- Fázisdiagramm

- Hogyan keletkezik a hadron tömeg
- Milyen a nukleonok struktúrája az elérhető legkisebb skálán

Gyorsítók

gyorsító	cm energia	(AGeV)	fázisdiagramm		
SPIRAL	1.001-1.02	5 (.041)	folyadék-gáz		
SIS	1.025-1.4	(0.1-2.)	χ szimm		
AGS	1.7-3	(4-16)	hozamok		
FAIR	2.2-4.4	(8-35)	χ szimm, Krit. p		
SPS	3.3-9	(20-160)	QGP		
RHIC	20-200		QGP		
LHC	5500		CGC		

Az erősen kölcsönható anyag fázisdiagrammja

RHIC, LHC: nagy T-n és alacsony ρ-n folyamatos átmenet QGP-be Alacsony-energiás RHIC: QCD-CP keresés térfogati jellemzőkkel FAIR: teljes kutatási program ritka mennyiségekkel is

Nukleonok által dominált tartomány

- Állapotegyenlet
- Aszimmetrikus anyag (nagy neutron arány)
- Folyadék-gáz fázisátalakulás
- Compakt csillagok

Maganyag állapotegyenlete

- Nehézion ütközésekből: K=170-250 MeV
- Nagy sűrűségen?
- Asztrofizikai vonatkozás: neutroncsillag, szupernóva robbanás

Szimmetria energia

 ${}^{40}Ca+{}^{48}Ca 25AMeV$ legnagyobb fragmens eloszlása $C_{sym} \propto |\rho_n-\rho_p|^{\gamma}$ transzport modell: $\gamma \approx 1$

Folyadék-gáz fázisátalakulás

Van der Waals erők nukleonok között véges méret Coulomb-hatás

Kalorikus görbe

Spektátor fragmentáció Aladinnal gerjesztési energia: $E^* = \sum_i (m_i + K_i) - (m_0 + K_0)$ Izotóp hőmérséklet: $T_{heLi} = \gamma / ln(\Delta B Y_{6Li} / Y_{7Li} / Y_{3He} / Y_{4He})$

Konstans a nyomás?

Királis szimmetria

- Tömegnélküli fermionokra: helicitás, jobb- vagy balkezes részecske spin ugyanolyan, vagy ellentétes irányú az impulzussal
- m_u≈3 MeV, m_d≈6 MeV, m_s≈95 MeV ha a tömegek 0-k, akkor $U_{OCD} = SU_{V}(3) \otimes SU_{A}(3) \otimes U_{A}(1) \otimes U_{V}(1)$ szimm. m_a << m_p, QCD közel királisan szimmetrikus
- Ha vákuum szimmetrikus, paritás dublettek • nem szimmetrikus \Rightarrow spontán szimmetriasértés

szimmetrikus

spontán sértett explicit sértés is

Királis Szimmetria Helyreállása

- Királis fázisátalakulás rendparamétere: <qq>
- Javasolt jelek:
- Hadron tömegváltozás (σ,ρ,ω,φ)
- diszorientált királis kondenzátum (DCC)
- Hadron spektrálfüggvény változás

Rács szimuláció

 A királis szimmetria helyre áll hasonló hőmérsékleten mint a QGP átalakulás (van-e dinamikai oka?)

Diszorientált királis kondenzátum

- Szimmetrikus állapotban (σ,π) degenerált. Ha a rendszer hül ki, akkor lehet, hogy nem az igazi vákuumban kerül, hanem egy elforgatott vákuumba.
- Hamis vákuum bomlása adott töltésű pionok nagy száma
- Nehézion ütközésben: töltött pionok nagy fluktuációja

Vektormezon tömegek

- Összegszabály (Hatsuda-Lee) $m_{\rho}^{*}/m_{\rho} = m_{\omega}^{*}/m_{\omega} = (\langle \overline{q}q \rangle^{*}/\langle \overline{q}q \rangle)^{0.5}$
- Vektormezonok tömege mérhető dileptonokkal

σ-mezon tömege

- A helyreállt fázisban a σ és π tömege megegyezik
- Ha $m_{\sigma} < 2 m_{\pi} a \sigma$ stabillá válik
- Királis szimmetria részlegesen helyreáll, σ tömege kisebb és keskenyebb
- (π ,2 π) reakció: C^a_{nn}= $\sigma^{A}_{nn}/\sigma^{A}_{tot}/\sigma^{N}_{nn}/\sigma^{N}_{tot}$

"Kvark-gluon plazma"

- 1951. Pomeranchuk: hadron méret végességéből következik egy kritikus sűrűség
- 1965. Hagedorn: tömeggel exp. növekvő hadron állapotok számából következik maximális hőmérséklet $T_{max} \approx 200 \text{ MeV}$
- 1967. asszimptotikus szabadság, SLAC kísérlet

a

QGP átmenet

Alapvető kérdések

- Van-e első rendű fázisátmenet hadronikus és partonikus anyag között?
- Van-e kritikus, vagy hármas pont a fázisdiagrammon?
- Ha igen, hol vannak?
- Egybe esik-e a királis és QGP átmenet?
- Léteznek-e más fázisok?

Kvark-gluon folyadék

Rácsszámítások

2+1 rácsszámolás

Kölcsönhatás: E-3p Csak Tc<<T-re éri el a Stefan-Boltzmann limitet

Normalizált kvark kondenzátum

Együtt a QGP átalakulással?

Plazma átmenet jelei

- S/T³ hirtelen növekedése T-ben, szabadsági fokok számának gyors növekedése
- Leptonpárok a plazmából (Drell-Yan $q\overline{q} \rightarrow e^+e^-$)
- Ritkaság rohamos növekedése $m_s << m_{\kappa}$
- Kvarkónium elnyomás, pl. J/ ψ = cc. Debye-árnyékolás

Termális modellek

Kifagyás a T-µ síkon

Az alacsony energiás pontok (SIS) biztosan nem írnak le termális egyensúlyt.

Gerjesztési függvények

Barion dominanciából mezon dominancia, vagy QGP átmenet?

Jet elnyomás

- dA-ban nincs elnyomás így ezt nem kezdeti állapot okozza
- Nagyon nagy sűrűségű anyag (felszabadított anyag)

V₂

Charmonium

J/ψ elnyomás

Bájos kvark párok kemény parton ütközésben keletkeznek

- Felszabadító fázisban Debye-árnyékolás
- Hideg maganyagban is van elnyomás
- A két effektus elkülönítéséhez:
- D-mezon keltés mérése
- Precíz, több dimenziós charmonium és nyilt bájosság hatáskeresztmetszetek pp, pA és AA-ban

Kritikus fluktuációk

- Megmaradó töltés fluktuáció arányos a töltésnégyzettel
- Nincs jele RHIC-nél és SPS-nél

Nagyenergiájú ütközés képe

- Nagyenergiájú ütközésben korai egyensúly
 v₂ majdnem eléri a hidrodinamikai limitet
 v₂ skálázik a kvark számmal,
 v₂ a partonfázisban kelezkezett
- Először kémiai, majd termális kifagyás
- Kollektív radiális folyás részecskespektrumokat fittelni v-vel s T-vel
- A kezdeti nyomás anizotrópia elliptikus folyást eredményez
- QGP: sűrű, elhanyagolható nyíró viszkozitású folyadék

Szín szupravezetés

- Szín szupravezetés feltétele, hogy vonzó kölcsönhatás legyen a kvarkok között a Fermi-felületen nagy sűrűségen (g(μ_q) << 1) az egy gluon-csere dominálja a kölcsönhatást, amely bizonyos kvark-kvantumszám
 - kombinációk mellett vonzó
- Cooper-párok kondenzációja lesz a rendszer új alapállapota
- Gyorsító energiákon vagy neutron csillagokban a μ_{q} lehet, hogy nem elég magas
- Természetben nem biztos, hogy létrejön, de végtelen sűrűségen ez a rendszer alapállapota

- QED szupravezetés fémekben:
 - -kölcsönhatás nem egyszerű (fonon kicserélődés)
 - egyszerű kondenzátum
- QCD szín szupravezetés:
 - -kölcsönhatás egyszerű (egy gluon csere)
 -sok kvantumszám, sok lehetséges kondenzátum
- Az igazi alapállapotot csak konkrét számításokkal lehet megtalálni. Úgy tünik, hogy a fázis diagrammon legalább 2 különböző szupravezető fázis jelenik meg.

Szupersűrű anyag a természetben: neutroncsillag

Ritka szabadsági fokok? Hadronok közegbeli változása ? Maganyag kompresszibilitása? kvarkfelszabadulás nagy sűrűségen ?

Hadronok sűrű anyagban

Kaonok

- K+ taszító potenciált érez
- K- erős vonzó potenciált
- Szükséges jó transzportmodell (spektrál fv)

Dileptonok

ρ, η' közegben

Diagnosztikus eszközök

U+U 23 AGeV

Elméleti módszerek

- Termális modellek
 - kémiai, valamint termikus egyensúly kifagyáskor
 - főleg kisérletiek módszere
- 3-D hidrodinamika:
 - kezdeti és végállapot nem kezelhető
- Transzport modellek
 - melyek a releváns szabadsági fokok

 nagy nemzetközi együttműködés: lényegében az összes európai műhely összefog egy kód kidolgozására (Frankfurt, Giessen, Nantes, Catania, Budapest) Compressed Baryonic Matter (sűrű barion anyag): fizikai problémák és megfigyelhető mennyiségek

Állapotegyenlet nagy ρ_B-nél

- hadronok kollektív folyása
- részecskekeltés küszöbenergiákon (nyilt bájosság)

Felszabadító fázisátalakulás nagy p_B-n

- \succ ritkaság gerjesztési függvénye, folyása (K, Λ , Σ , Ξ , Ω)
- > bájosság gerjesztési függvénye, folyása (J/ ψ , ψ ',D,D \pm , Λ)
- J/ψ és ψ' elolvadása, charmonium elnyomás

QCD kritikus végpont

> eseményenkénti fluktuációk (K/ π , töltés, ...)

A királis szimmetria helyreállásának folyamata nagy p_B-n

> hadronok közegbeli módosulása (ρ,ω,φ →e⁺e⁻(μ⁺μ⁻),D)

Kísérleti kihívások

Centrális Au+Au ütközés 25 AGeV-en: URQMD + GEANT4

160 p 400 π⁻ 400 π⁺ 44 K⁺ 13 K⁻

- > 10 Au+Au reakció/sec-ig (nyaláb intenzitások 10 ions/s-ig 1 % target kölcsönhatás)
 > vertexek nagy pontosságú meghatározása (≈ 50 µm)

FAIR project ára: ~ 1.1 milliárd € (25% külföldi partnerektől).

14 EVID + 2007

3-folyadék hidrodinamika

QGP vizsgálata charmoniummal

Kvarkonium disszociációs hőmérsékletek – Digal, Karsch, Satz

Bájosság:

bájosság a QGP biztató szignatúrája

 szükséges: gerjesztési függvény J/ψ, ψ', D, Λc keltésre p+A és A+A ütközésekben (pr-spectrum,

folyás)

- nincs végállapoti kölcsönhatás
- vektormezonok megváltozása közegben
 CERES, NA50, NA60, HADES

Dileptons

Dileptonok (In+In 160 AGeV)

NA60 preciz mérései kizárnak modelleket! Végre egy bizonyíték ρ spektrálfüggvény szélesedésére!

D-mezonok közegbeli módosulása

E. Bratkovskaya, W. Cassing

Mélyen rugalmatlan szórás

k $k' \theta$		
\rightarrow { q		Ç
	} _Y	ć
P) ^	x

$$s \equiv (P+k)^2 \qquad y=(E_e-E_e')/E_e$$
$$Q^2 \equiv -q^2$$
$$x \equiv Q^2/2P \cdot q$$
$$xy \equiv Q^2/s$$

Bjorken határeset:x,y rögzített Q,s $\rightarrow \infty$ (DGLAP) Regge-Gribov határeset: y,Q rögzített ,s $\rightarrow \infty$, x $\rightarrow 0$ (BFKL-egyenlet)

Color Glass Condensate

Szaturáció: gluon pdf nem nőhet végtelenségig Q_s(x) szaturációs skála (nő, ha x csökken)

CGC szaturált klasszikus gluon-tér, végtelen impulzusú rendszerben a Regge-Gribov határesetben

Kísérleti megfigyelés

- Nagy pt (perturbatív)
- Adott pt-re a kisebb az x, ha nő a nyalábenergia és a longitudinális impulzus

Szignálok

- Inkluzív hadron hozam elnyomása, ahol a parton szórás dominálna
- Jetek azimutális correlációjának csökkenése

RHIC-nél megfigyelték, de kis fázistér miatt nem signifikáns

Fázisátalakulás véges rendszerben

Fázisátalakulás definiciók

- Negativ hőkapacitás
- Speciális eloszlása a kanonikus partíciós fv. gyökeinek
- Termodinamikai potenciál konvexitása, változó a rendparaméter

Megmaradnak-e a termodinamikai limeszben?

 Eloszlásfüggvény bimodalitása változó a rendparaméter Konzisztens a Yang-Lee tétellel

Folyadék-gáz átmenet

Gerjesztett lövedék (Au) legnagyobb fragmensének eloszlása, Z₁ a rendparaméter

Kvark kondenzátum

Királis fázisátalakulás rendparamétere: <qq>

kvark kondenzátum T és p függvényében

Javasolt jelek:

- Hadron tömegváltozás (σ,ρ,ω,φ)
- diszorientált királis kondenzátum (DCC)
- Hadron spektrálfüggvény változás

Dileptonok

