Light curve modeling of eclipsing binary stars

Gábor Marschalkó Baja Observatory of University of Szeged Wigner Research Centre for Physics

Dániel Berényi

Wigner Research Centre for Physics

GPU Day 2016 - THE FUTURE OF MANY-CORE COMPUTING IN SCIENCE

Binary stars

- physical variables
 - pulsating stars
 - mass, radius, temperature
- optical variables
 - binary stars
 (↔ visual binaries)
 - multiple stellar systems
 - (exoplanets)

Light curve modeling of eclipsing binary stars

2016-06-02

Binary stars

- primary
 - star, minimum
- secondary
 - star, minimum
- orbits
 - circular
 - eccentric
- distance
 - close
 - detached
 - semi-detached
- physical parameters
 - mass, radius, temperature

Observing binaries

- ground based observations
 - MTA CSFK KTM CSI Piszkéstető
 - ELTE GAO Szombathely
- space missions
 - GAIA (petabytes of data during 5 years operational period)
 - Kepler (K2)
 - CoRoT

Observing and modeling binaries

- there are a lot of space missions
- there are a lot of binary and multiple system
- \rightarrow we get a lot of data
- this requires automated light curve modelling and analysing packages
 - Phoebe (Wilson-Devinney code)
 - binary \rightarrow multiple systems
 - paralelization (CPU, GPU).

Complex Analysis of Today's and Future Space Photometry of Multiple Stellar and Planetary Systems

- PI: Dr. Tamás Borkovits
 - 15 years development (binary and triple stellar systems)
- Dr. Emese Forgács-Dajka, senior researcher
 - N-body on GPU, CPU/GPU development
- János Sztakovics
 - the next speaker, will talk about Fast determination of some orbital elements of eclipsing binary stars on GP
- Tamás Hajdú
 - will talk about *Eclipse Timing Variation analysis of binary stars with CUDA*

Modelling binary stellar systems

- Now we have Tamás Borkovits's code for modelling binary and triple stellar systems
 - We would like to
 - refine some parts of it
 - change some algorithms for more accurate ones
 - standardize, modularize the different parts of the code for mutual interoperability
 - accelerate computation by means of GPU paralelization
 - involving multiple stellar systems and exoplanet systems also

Modelling binary stellar systems

- Why it is useful to modelling binary and multiple stellar systems?
 - to determine the stars' physical parameters
 - masses (generally only an upper limit of them)
 - potential field \rightarrow inner structure of the star
 - star evolution
 - orbital elements (like as semi-major axis) and stellar type define the habitable zone

Orbital elements

- Initial parameters:
 - orbital parameters
 - eccentricity
 - semi-major axis
 - inclination
 - argument of pericentre
 - Iongitude of ascending node
 - time of periastron passage
 - stellar parameters
 - radius, mass
 - effective temperature \rightarrow Stephan-Boltzmann law \rightarrow flux

Orbital parameters

- stellar positions are calculated by solving Kepler equation with Newton-Raphson method
- we using a co-rotating system in the center the primary star

Orbital parameters

Radiative properties

- we can calculate the emitted intensity for every surface element
- for the present only by means of the SB law.

load parameters

init_gpu

- calculate surface grid
- solve Kepler equation with Newton-Raphson method

 $M = E - e\sin(E)$

- calculate initial surface element positions in the plane of orbit
- and in the plane of sky.

calc surface br.

- calculate:
 - norm vector
 - surface area
 - cos(gamma)
 - temperature

PHOEBE Scientific Reference (Andrej Prša, Villanova University)

Surface grid

	\odot \odot
E E A A A A A A A A A A	
	ے مممم م
	△
	_
	Ξ
_2 ^t ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
-1 û 1 2	3

GPU Day 2016 - THE FUTURE OF MANY-CORE COMPUTING IN SCIENCE

2016-06-02

Computational prices

CPU 1	CPU 2
Intel Core i7-4770 3.4 GHz	Intel Core i7 920 2.67 GHz
4 cores, hyperthreading enabled	4 cores, hyperthreading enabled
GPU 1	GPU 2
NVIDIA GeForce GT 620	NVIDIA GeForce GTX 980
compute capability: 2.1	compute capability: 5.2
1024 threads/block	1024 threads/block

Case ID	Number of orbital positions	Number of theta grid points	number of surface elements
1	360	40	1348
2	3 600	40	1348
3	36 000	40	1348
4	360	60	3012

Computational prices

configuration	CPU1	CPU2	GPU1 128	GPU1 521	GPU2 128	GPU2 512
1	3,86	7,77	1,13	1,17	0,29	0,32
4	8,53	17,25	2,46	2,48	0,41	0,41
2	29,8	60,17	10,59	10,71	2,54	2,54
3	294,87	588,74	104,17	104,95	24,71	26,2

2016-06-02

Features to involve

- tidal distortions of close binaries
- gravity darkening
- limb darkening
- reflection
- light-time variation
- the inverse problem
 - orbital and stellar parameters from the light (and radial velocity) curve
 - we had to create a great amount binary systems with different parameters (GPU!) for a lot of star
 - using Markov chain Monte Carlo
 - multiple stellar system and exoplanet modelling
 - GUI for setting initial parameters (partly is made)

Acknowledgements

- I would like to thank my colleagues helping me during this project and Wigner Research Centre for Physics allowing us using GPU Labor's computers:
- Wigner Research Centre for Physics, GPU labor
- Tamás Borkovits
- Emese Forgács-Dajka
- Gergely Gábor Barnaföldi
- Máté Ferenc Nagy-Egri
- János Sztakovics
- Tamás Hajdú
- OTKA projekt #113117

Brightness 4 2 3 1 **Thank You for Your Attention** ► Time Period

4